Volume: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
k tambahkan pranala arsip |
||
(26 revisi perantara oleh 13 pengguna tidak ditampilkan) | |||
Baris 1:
{{Kegunaan lain}}
{{Infobox physical quantity
| name = Volume, Isi padu
| image = [[Berkas:Simple Measuring Cup.jpg|250px]]
| caption = [[gelas ukur|Gelas pengukur]] dapat digunakan untuk mengukur volume [[cairan]]. Gelas ini mengukur volume dalam satuan [[:en:fluid ounce|ons zalir]] dan [[mililiter]].
| unit = [[Meter kubik]] [m<sup>3</sup>]
| otherunits = [[Liter]], [[:en:Fluid ounce|ons zalir]], [[galon]], [[:en:quart|kuart]], [[:en:pint|''pint'']], [[sendok teh|
| symbols = ''V''
| baseunits = 1 [[Meter|m]]<sup>3</sup>
| dimension = '''L'''<sup>3</sup>
}}
'''Volume''' atau
== Rumus volume ==
Baris 17 ⟶ 18:
|-
|[[Kubus]]
|style="text-align:center"|<math>
|''
|-
|[[Balok]]▼
|[[Silinder (geometri)|Silinder]]▼
|style="text-align:center"|<math>p \
|
|-
|[[Prisma (geometri)|Prisma]]
|style="text-align:center"|<math>
|''
|-▼
▲|[[Balok]]
|style="text-align:center"|<math>l \cdot w \cdot h</math>▼
|-
|[[Prisma segitiga]]
|style="text-align:center"|<math>(\frac{1}{2}
|''
|-▼
|[[bola (geometri)|Bola]]▼
|style="text-align:center"|<math>\frac{4}{3} \pi r^3</math> ▼
|''r'' = jari-jari bola<br>di mana merupakan [[integral]] [[luas permukaan]] bola▼
|-▼
|[[Ellipsoid]]▼
|style="text-align:center"|<math>\frac{4}{3} \pi abc</math> ▼
|''a'', ''b'', ''c'' = semi-axes of ellipsoid▼
|-▼
|[[Torus]]▼
|style="text-align:center"|<math>(\pi r^2)(2\pi R) = 2\pi^2 Rr^2</math>▼
|''r'' = jari-jari kecil, ''R'' = jari-jari besar▼
|-
|[[Limas]]
|style="text-align:center"|<math>\frac{1}{3}
|''
|-
|[[Limas persegi]]
|style="text-align:center"|<math>\frac{1}{3} s^2
|''s'' = sisi samping alas limas, ''
|-
|[[Limas segiempat]]
|style="text-align:center"|<math>\frac{1}{3}
|
|-▼
|[[Kerucut]]▼
|style="text-align:center"|<math>\frac{1}{3} \pi r^2 h</math>▼
|''r'' = jari-jari [[lingkaran]] di dasar kerucut, ''h'' = jarak dari dasar ke pucuk atau tinggi▼
|-▼
|[[Tetrahedron]]<ref name=Cox>[[H. S. M. Coxeter|Coxeter, H. S. M.]]: ''[[Regular Polytopes (book)|Regular Polytopes]]'' (Methuen and Co., 1948). Table I(i).</ref>▼
|style="text-align:center"|<math>{\sqrt{2}\over12}a^3 \,</math>▼
|panjang sisi <math>a</math>▼
|-
|[[Parallelepiped]]
|style="text-align:center"|<math>a b c \sqrt{K}</math><br/>
<math>
\begin{align}
Baris 80 ⟶ 54:
</math>
|''a'', ''b'', and ''c'' are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges
▲|-
▲|[[Tetrahedron]]<ref name="Cox">[[H. S. M. Coxeter|Coxeter, H. S. M.]]: ''[[Regular Polytopes (book)|Regular Polytopes]]'' (Methuen and Co., 1948). Table I(i).</ref>
▲|style="text-align:center"|<math>{\sqrt{2}\over12}a^3 \,</math>
▲|panjang sisi <math>a</math>
▲|-
▲|style="text-align:center"|<math>\frac{4}{3} \pi r^3</math>
▲|''r'' = jari-jari bola<br>di mana merupakan [[integral]] [[luas permukaan]] bola
▲|-
▲|[[Ellipsoid]]
▲|style="text-align:center"|<math>\frac{4}{3} \pi abc</math>
▲|''a'', ''b'', ''c'' = semi-axes of ellipsoid
▲|-
|''r'' = jari-jari alas, ''t'' = tinggi
▲|-
▲|[[Kerucut]]
▲|-
▲|[[Torus]]
▲|style="text-align:center"|<math>(\pi r^2)(2\pi R) = 2\pi^2 Rr^2</math>
▲|''r'' = jari-jari kecil, ''R'' = jari-jari besar
|-
|Volume benda putar<br/>(dibutuhkan [[kalkulus integral|kalkulus]])
Baris 90 ⟶ 88:
|}
=== Rasio volume untuk kerucut, bola, dan
[[Berkas:Inscribed cone sphere cylinder.svg|jmpl|350px|Kerucut, bola, dan
Rumus di atas dapat digunakan untuk menunjukkan bahwa volume kerucut, bola, dan
Besar jari-jari dianggap ''r'' dan tinggi dianggap ''h'' (menjadi 2''r'' untuk bola), maka volume kerucut
Baris 103 ⟶ 101:
:<math>\tfrac{4}{3} \pi r^3 = (\tfrac{2}{3} \pi r^3) \times 2,</math>
sedangkan volume
:<math>\pi r^2 h = \pi r^2 (2r) = (\tfrac{2}{3} \pi r^3) \times 3.</math>
Penemuan rasio volume bola dan
== Penentuan rusuk, sisi dan titik ==
{| class="wikitable"
|-
!Bentuk || Rusuk || Sisi || Titik
|-
|Kubus || 12 || 6 || 8
|-
|Balok || 12 || 6 || 8
|-
|Prisma segitiga || 9 || 5 || 6
|-
|Limas segiempat || 8 || 5 || 5
|-
|Tabung || 2 || 3 || 0
|-
|Kerucut || 1 || 2 || 1
|-
|Bola || 0 || 1 || 0
|-
|Rumus || align=center colspan=3| <math>R + 2 = S + T</math>
|}
== Volume dalam kalkulus ==
Baris 115 ⟶ 135:
:<math>\iiint\limits_D 1 \,dx\,dy\,dz.</math>
Integral volume pada [[koordinat
:<math>\iiint\limits_D r\,dr\,d\theta\,dz, </math>
Baris 133 ⟶ 153:
{{Main|Volume (termodinamika)}}
Dalam [[termodinamika]], '''volume''' dari sebuah [[sistem termodinamika]] adalah suatu [[parameter ekstensif]] untuk menjelaskan [[keadaan termodinamika]]. '''Volume spesifik''', adalah [[properti intensif]], adalah volume per satuan [[massa]]. Volume merupakan [[fungsi keadaan]] dan interdependen dengan properti termodinamika lainnya seperti [[tekanan]] dan [[suhu termodinamika|suhu]]. Contohnya, volume berhubungan tekanan dan suhu [[gas ideal]] melalui [[hukum gas ideal]].
== Referensi ==
{{reflist}}
{{bangun}}
[[Kategori:Volume| ]]
|