Volume: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k tambahkan pranala arsip |
|||
(7 revisi perantara oleh 6 pengguna tidak ditampilkan) | |||
Baris 1:
{{Kegunaan lain}}
{{Infobox physical quantity
| name = Volume,
| image = [[Berkas:Simple Measuring Cup.jpg|250px]]
| caption = [[gelas ukur|Gelas pengukur]] dapat digunakan untuk mengukur volume [[cairan]]. Gelas ini mengukur volume dalam satuan [[:en:fluid ounce|ons zalir]] dan [[mililiter]].
| unit = [[Meter kubik]] [m<sup>3</sup>]
| otherunits = [[Liter]], [[:en:Fluid ounce|ons zalir]], [[galon]], [[:en:quart|kuart]], [[:en:pint|''pint'']], [[sendok teh|
| symbols = ''V''
| baseunits = 1 [[Meter|m]]<sup>3</sup>
| dimension = '''L'''<sup>3</sup>
}}
'''Volume''' atau
== Rumus volume ==
Baris 30:
|-
|[[Prisma segitiga]]
|style="text-align:center"|<math>(\frac{1}{2}
|''a'' = panjang dasar segitiga, ''t'' = tinggi prisma, ''l'' = length of prism or distance between the triangular bases
|-
Baris 55:
|''a'', ''b'', and ''c'' are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges
|-
|[[Tetrahedron]]<ref name="Cox">[[H. S. M. Coxeter|Coxeter, H. S. M.]]: ''[[Regular Polytopes (book)|Regular Polytopes]]'' (Methuen and Co., 1948). Table I(i).</ref>
|style="text-align:center"|<math>{\sqrt{2}\over12}a^3 \,</math>
|panjang sisi <math>a</math>
Baris 105:
:<math>\pi r^2 h = \pi r^2 (2r) = (\tfrac{2}{3} \pi r^3) \times 3.</math>
Penemuan rasio volume bola dan tabung '''2 : 3''' ditemukan oleh [[Archimedes]].<ref>{{cite web |first=Chris |last=Rorres|url = http://www.math.nyu.edu/~crorres/Archimedes/Tomb/Cicero.html|title = Tomb of Archimedes: Sources|publisher = Courant Institute of Mathematical Sciences|accessdate = 2007-01-02|archiveurl=https://web.archive.org/web/20061209201723/http://www.math.nyu.edu/~crorres/Archimedes/Tomb/Cicero.html|archivedate=2004-09-08}}</ref>
== Penentuan rusuk, sisi dan titik ==
Baris 159:
{{bangun}}
[[Kategori:Volume| ]]
|