Jaringan Syaraf Tiruan Berbasis Wilayah: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Ariyanto (bicara | kontrib)
k Menambah Kategori:Komputer menggunakan HotCat
 
(3 revisi perantara oleh satu pengguna lainnya tidak ditampilkan)
Baris 1:
{{Inuse}}
'''Jaringan Syaraf Tiruan Berbasis Wilayah''' ({{Lang-en|Region-based Convolutional Neural Networks}}) adalah keluarga model pembelajaran mesin untuk [[visi komputer]] dan khususnya [[deteksi objek]]
 
== Sejarah ==
 
Tujuan awal dari R-CNN adalah untuk mengambil gambar input dan menghasilkan sekumpulan kotak pembatas sebagai output, di mana setiap kotak pembatas berisi objek dan juga kategori (misalnya mobil atau pejalan kaki) dari objek tersebut. Baru-baru ini, R-CNN telah diperluas untuk melakukan tugas-tugas visi komputer lainnya. Berikut ini adalah beberapa versi R-CNN yang telah dikembangkan.
The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or pedestrian) of the object. More recently, R-CNN has been extended to perform other computer vision tasks. The following covers some of the versions of R-CNN that have been developed.
 
* November 2013: '''R-CNN'''. GivenDiberikan ansebuah inputgambar imageinput, R-CNN beginsdimulai bydengan applyingmenerapkan amekanisme mechanismyang calleddisebut SelectivePencarian SearchSelektif tountuk extractmengekstrak [[Region of interest|regions of interest]] (ROI), wheredi eachmana setiap ROI isadalah asebuah rectanglepersegi thatpanjang mayyang representdapat themerepresentasikan boundarybatas ofsebuah anobjek objectdalam in imagegambar. Depending onTergantung thepada scenarioskenarionya, theremungkin mayada besebanyak asdua manyribu as two thousand ROIsROI. AfterSetelah thatitu, eachsetiap ROI isdimasukkan fedmelalui throughjaringan asyaraf neuraluntuk networkmenghasilkan tofitur producekeluaran. outputUntuk features.setiap Forfitur eachkeluaran ROI's output features, akumpulan collection ofpengklasifikasi [[support-vectormesin vektor machinependukung]] classifiersdigunakan isuntuk usedmenentukan tojenis determine what type of objectobjek (ifjika anyada) is containedyang withinterkandung thedalam ROI.<ref>{{Cite news|last=Gandhi|first=Rohith|url=https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e|title=R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms|date=July9 9,Juli 2018|work=Towards Data Science|access-date=March12 12,Maret 2020}}</ref>
* April 2015: '''Fast R-CNN'''. While the originalSementara R-CNN independentlyyang computedasli thesecara neuralindependen networkmenghitung featuresfitur onjaringan eachsaraf ofpada asmasing-masing manysebanyak asdua tworibu thousandwilayah regionsyang of interestdiminati, Fast R-CNN runsmenjalankan thejaringan neuralsaraf networksatu oncekali onpada theseluruh whole imagegambar. AtPada theakhir endjaringan ofterdapat themetode networkbaru isyang a novel method calleddisebut ROIPooling, whichyang slicesmemotong out eachsetiap ROI fromdari thetensor network'skeluaran output tensorjaringan, reshapesmembentuk itulang, anddan classifies itmengklasifikasikannya. AsSeperti in the originalpada R-CNN asli, the Fast R-CNN usesmenggunakan SelectivePencarian SearchSelektif tountuk generatemenghasilkan itsproposal region proposalswilayahnya.<ref name=":0">{{Cite news|last=Bhatia|first=Richa|url=https://analyticsindiamag.com/what-is-region-of-interest-pooling/|title=What is region of interest pooling?|date=10 September 10, 2018|work=Analytics India|access-date=March12 12,Maret 2020}}</ref>
* JuneJuni 2015: '''Faster R-CNN'''. WhileSementara Fast R-CNN usedmenggunakan SelectivePencarian SearchSelektif tountuk generatemenghasilkan ROIsROI, Faster R-CNN integratesmengintegrasikan thegenerasi ROI generationke intodalam thejaringan neuralsaraf networkitu itselfsendiri.<ref name=":0" />
* MarchMaret 2017: '''Mask R-CNN'''. WhileSementara previous versions ofversi R-CNN focusedsebelumnya onberfokus objectpada deteksi detectionobjek, Mask R-CNN addsmenambahkan instancesegmentasi segmentationinstance. Mask R-CNN alsojuga replacedmenggantikan ROIPooling withdengan ametode newbaru methodyang calleddisebut ROIAlign, whichyang candapat representmerepresentasikan fractionspecahan of a pixelpiksel.<ref>{{Cite news|last=Farooq|first=Umer|url=https://medium.com/@umerfarooq_26378/from-r-cnn-to-mask-r-cnn-d6367b196cfd|title=From R-CNN to Mask R-CNN|date=February 15, 2018|work=Medium|access-date=March12 12,Maret 2020}}</ref><ref>{{Cite news|last=Weng|first=Lilian|url=https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html|title=Object Detection for Dummies Part 3: R-CNN Family|date=December31 31,Desember 2017|work=Lil'Log|access-date=March12 12,Maret 2020}}</ref>
* JuneJuni 2019: '''Mesh R-CNN''' addsmenambahkan thekemampuan abilityuntuk tomenghasilkan generate amesh 3D meshdari from agambar 2D image.<ref>{{Cite news|last=Wiggers|first=Kyle|url=https://venturebeat.com/2019/10/29/facebook-highlights-ai-that-converts-2d-objects-into-3d-shapes/|title=Facebook highlights AI that converts 2D objects into 3D shapes|date=October 29, 2019|work=VentureBeat|access-date=March 12, 2020}}</ref>
 
== Penerapan ==
Baris 17:
==Referensi==
{{Reflist}}
 
[[Kategori:Komputer]]