Paleontologi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
fix |
||
(10 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 1:
{{Paleontologi}}
{{Ilmu|expanded=false}}▼
'''Paleontologi'''
Paleontologi merupakan ilmu yang sangat berkaitan dengan [[biologi]] dan [[geologi]], tetapi berbeda dengan [[arkeologi]] karena paleontologi tidak memasukkan kebudayaan manusia modern di dalam studinya. Paleontologi kini mendayagunakan berbagai metode ilmiah dalam sains, mencakup [[biokimia]], [[matematika]], dan [[teknik]]. Penggunaan berbagai metode ini memungkinkan
▲'''Paleontologi''' (Bahasa Inggris: '''''Paleontology''''' ({{IPAc-en|ˌ|p|eɪ|l|i|ɒ|n|ˈ|t|ɒ|l|ə|dʒ|i|,_|ˌ|p|æ|l|i|-|,_|-|ən|-}}), juga dapat dieja sebagai '''''palaeontology'''''{{Efn|Diluar Amerika serikat}} atau '''''palæontology''''') adalah ilmu yang mempelajari [[kehidupan]] praaksara. Paleontologi mencakup studi [[fosil]] untuk menentukan [[evolusi]] suatu organisme dan interaksinya dengan organisme lain beserta lingkungannya ([[paleoekologi]]). Pengamatan paleontologi telah didokumentasikan sejak abad ke 5 sebelum masehi. Ilmu paleontologi berkembang pada abad ke-18 ketika [[Georges Cuvier]] melakukan penelitian [[anatomi komparatif]], dan berkembang secara cepat pada abad ke 19. Istilah paleontologi sendiri berasal dari bahasa Yunani, παλαιός, ''palaios'', "tua, kuno", ὄν, ''on'' ([[Genitif|gen.]] ''ontos''), "makhluk hidup" dan λόγος, ''logos'', "ucapan, pemikiran, ilmu".<ref name="OnlineEtDict">{{cite web|title=paleontology|url=http://www.etymonline.com/index.php?term=paleontology&allowed_in_frame=0|publisher=[[Online Etymology Dictionary]]|access-date=2023-06-06|archive-date=2013-03-07|archive-url=https://web.archive.org/web/20130307065643/http://etymonline.com/index.php?term=paleontology&allowed_in_frame=0|dead-url=no}}</ref>
▲Paleontologi merupakan ilmu yang sangat berkaitan dengan [[biologi]] dan [[geologi]], tetapi berbeda dengan [[arkeologi]] karena paleontologi tidak memasukkan kebudayaan manusia modern di dalam studinya. Paleontologi kini mendayagunakan berbagai metode ilmiah dalam sains, mencakup [[biokimia]], [[matematika]], dan [[teknik]]. Penggunaan berbagai metode ini memungkinkan paleontologi untuk menemukan [[sejarah evolusioner kehidupan]], yaitu ketika [[bumi]] menjadi mampu mendukung terciptanya kehidupan, hampir 4 miliar tahun yang lalu.<ref>{{cite journal |last1=Doolittle |first1=W. Ford |last2=Worm |first2=Boris |url=http://shiva.msu.montana.edu/courses/mb437_537_2005_fall/docs/uprooting.pdf |archive-url=https://web.archive.org/web/20110715111244/http://shiva.msu.montana.edu/courses/mb437_537_2005_fall/docs/uprooting.pdf |archive-date=July 15, 2011 |title=Uprooting the tree of life |journal=Scientific American |date=February 2000 |volume=282 |issue=6 |pages=90–95 |doi=10.1038/scientificamerican0200-90 |pmid=10710791 |url-status=dead |bibcode=2000SciAm.282b..90D}}</ref> Dengan pengetahuan yang terus meningkat, paleontologi kini memiliki subdivisi yang terspesialisasi, beberapa fokus pada jenis fosil tertentu, yang lain mempelajari sejarah lingkungan dalam [[paleoekologi]], dan yang lain mempelajari [[iklim]] purba dalam [[paleoklimatologi]].
▲{{Ilmu|expanded=false}}
Fosil tubuh dan [[fosil jejak]] adalah jenis-jenis bukti utama mengenai kehidupan purbakala. Sementara itu, bukti [[geokimia]] membantu untuk mempelajari evolusi kehidupan sebelum organisme berevolusi cukup besar untuk meninggalkan fosil tubuh. Memperkirakan usai dari bukti-bukti tersebut merupakan hal yang penting, namun sulit: terkadang batu yang bersebalahan memungkinkan [[penanggalan radiometrik]], yang memberi [[Penanggalan absolut|waktu absolut]] yang akurat hingga 0.5%, namun paleontolog lebih sering mengandalkan penanggalan relatif dengan menyusun dan memahami "potongan
== Ringkasan ==
Definisi paling sederhana dari
=== Ilmu sejarah ===
[[File:Europasaurus_Praeparation.JPG|pra=https://en.wiki-indonesia.club/wiki/File:Europasaurus_Praeparation.JPG|jmpl|Persiapan fosil ''[[Europasaurus]] holgeri'']]
[[William Whewell]] (1794–1866) mengklasifikasikan paleontologi sebagai salah satu ilmu sejarah, bersamaan dengan [[arkeologi]], [[geologi]], [[astronomi]], [[kosmologi]], [[filologi]] dan sejarah itu sendiri:<ref>{{Cite book|author=Laudan, R.|date=1992|title=History and Evolution|publisher=SUNY Press|isbn=0-7914-1211-3|editor=Nitecki, M.H.|page=58|chapter=What's so Special about the Past?|quote=To structure my discussion of the historical sciences, I shall borrow a way of analyzing them from the great Victorian philosopher of science, William Whewell [...]. [...] while his analysis of the historical sciences (or as Whewell termed them, the palaetiological sciences) will doubtless need to be modified, it provides a good starting point. Among them he numbered geology, paleontology, cosmogony, philology, and what we would term archaeology and history.|editor2=Nitecki, D.V.|chapter-url=https://books.google.com/books?id=kyLRtsvLS2AC&pg=PA55}}</ref> Paleontologi bertujuan untuk mendeskripsikan fenomena di masa lalu untuk merekontruksi penyebab-penyebabnya.<ref name="Cleland2002MethodologicalAndEpistemicDifferences">{{Cite journal|author=Cleland, C.E.|author-link=Carol Cleland|date=September 2002|title=Methodological and Epistemic Differences between Historical Science and Experimental Science|url=http://spot.colorado.edu/~cleland/articles/Cleland.PS.Pdf|journal=Philosophy of Science|volume=69|issue=3|pages=474–96|doi=10.1086/342453|archive-url=https://web.archive.org/web/20081003221929/http://spot.colorado.edu/~cleland/articles/Cleland.PS.Pdf|archive-date=October 3, 2008|access-date=September 17, 2008|url-status=dead|s2cid=224835750}}</ref> Oleh karena itu, ilmu
Sebuah pendekatan komplementer untuk mengembangkan ilmu pengetahuan, yaitu [[Percobaan|sains percobaan]],<ref>{{cite web|date=October 25, 2019|title='Historical science' vs. 'experimental science'|url=https://ncse.ngo/creationism/analysis/historical-science-vs-experimental-science|publisher=National Center for Science Education|access-date=January 9, 2020|quote=Philosophers of science draw a distinction between research directed towards identifying laws and research which seeks to determine how particular historical events occurred. They do not claim, however, that the line between these sorts of science can be drawn neatly, and certainly do not agree that historical claims are any less empirically verifiable than other sorts of claims. [...] 'we can separate their two enterprises by distinguishing means from ends. The astronomer's problem is a historical one because the goal is to infer the properties of a particular object; the astronomer uses laws only as a means. Particle physics, on the other hand, is a nomothetic discipline because the goal is to infer general laws; descriptions of particular objects are only relevant as a means.'}}</ref> disebut-sebut{{by whom|date=January 2020}} bekerja dengan melaksanakan eksperimen untuk ''membantah'' hipotesis-hipotesis mengani cara kerja dan penyebab sebuah fenomena alami. Pendekatan ini tidak bisa membuktikan sebuah hipotesis, karena beberapa eksperimen yang dilakukan belakangan dapat membantahnya, namun penumpukan kegagalan untuk membantah biasanya dapat menjadi bukti kuat untuk mendukung suatu hipotesis yang lainnya. Namun, saat dihadapkan dengan fenomena yang sama sekali tidak terduga, seperti pada bukti pertama [[radiasi]] tak terlihat, ahli ilmu percobaan biasanya menggunakan pendekatan yang sama dengan ahli ilmu sejarah: membangun serangkaian hipotesis mengenai penyebab, lalu menjadi
=== Ilmu yang berhubungan ===
Paleontologi berada diantara [[biologi]] dan geologi karena ilmu ini berfokus kepada catatan mengenai kehidupan di masa lalu, namun sumber bukti utamanya adalah [[fosil]] pada bebatuan.<ref>{{Cite encyclopedia|url=https://www.britannica.com/science/paleontology|title=paleontology {{!}} science|encyclopedia=Encyclopædia Britannica|access-date=August 24, 2017|language=en|url-status=live|archive-url=https://web.archive.org/web/20170824223403/https://www.britannica.com/science/paleontology|archive-date=August 24, 2017}}</ref><ref>{{Cite book|date=2002|url=https://archive.org/details/mcgrawhillencycl165newy/page/58|title=McGraw-Hill Encyclopedia of Science & Technology|publisher=McGraw-Hill|isbn=0-07-913665-6|page=[https://archive.org/details/mcgrawhillencycl165newy/page/58 58]}}</ref> Karena alasan sejarah, paleontologi merupakan bagian dari departemen geologi pada banyak universitas: pada abad ke-19 dan awal abad
[[File:Joda_paleontologist.jpg|pra=https://en.wiki-indonesia.club/wiki/File:Joda_paleontologist.jpg|jmpl|Seorang paleontolog yang bekerja di [[Monumen Nasional John Day Fossil Beds]]]]{{Linimasa kehidupan}}
Paleontologi juga memiliki aspek yang bertumpang tindih dengan arkeologi, yang sebagian besar mempelajari dan bekerja dengan objek-objek yang dibuat oleh manusia dan dengan sisa-sisa manusia, sementara paleontologi tertarik mengnai karakteristik-karakteristik dan evolusi manusia sebagai sebuah spesies. Saat menangani bukti-bukti mengenai manusia, paleontolog dan arkeolog dapat bekerjasama. Sebagai contoh, paleontolog dapat mengidentifikasi fosil-fosil hewan atau tumbuhan disekitar sebuah [[situs arkeologi]], untuk mengetahui orang-orang yang pernah hidup disana, dan apa yang mereka makan; atau mereka dapat menganalisa iklim pada waktu saat orang-orang disana pernah tinggal.<ref name="UCMPfaqAnthro">{{cite web|title=How does paleontology differ from anthropology and archaeology?|url=http://www.ucmp.berkeley.edu/faq.php#anthro|publisher=University of California Museum of Paleontology|archive-url=https://web.archive.org/web/20080916013642/http://www.ucmp.berkeley.edu/faq.php#anthro|archive-date=September 16, 2008|access-date=September 17, 2008|url-status=dead}}</ref>
Selain itu, paleontologi biasa "meminjam" teknik-teknik atau keahlian dari bidang lainnya, termasuk biologi, [[osteologi]], ekologi, [[kimia]], [[fisika]] dan matematika.<ref name="CowenHistLifeEd3Pxi2">{{Cite book|author=Cowen, R.|date=2000|title=History of Life|url=https://archive.org/details/historyoflife0000cowe_u5z0|publisher=Blackwell Science|isbn=0-632-04444-6|edition=3rd|pages=xi, 47–50, 61}}</ref> Sebagai contoh, tanda [[geokimia]] pada bebatuan dapat membantu mengungkap kapan [[Asal-usul kehidupan|kehidupan pertamakali muncul di Bumi]],<ref name="BrasierMcLoughlinEtAl2006FreshLook">{{Cite journal|author=Brasier, M.|author-link=Martin Brasier|author2=McLoughlin, N.|author3=Green, O.|author4=Wacey, D.|date=June 2006|title=A fresh look at the fossil evidence for early Archaean cellular life|url=http://physwww.mcmaster.ca/~higgsp/3D03/BrasierArchaeanFossils.pdf|journal=[[Philosophical Transactions of the Royal Society B]]|volume=361|issue=1470|pages=887–902|doi=10.1098/rstb.2006.1835|pmc=1578727|pmid=16754605|archive-url=https://web.archive.org/web/20080911075352/http://physwww.mcmaster.ca/~higgsp/3D03/BrasierArchaeanFossils.pdf|archive-date=September 11, 2008|access-date=August 30, 2008|name-list-style=amp|url-status=live}}</ref> sementara analisis [[Analisis isotop|rasio isotop]] [[karbon]] dapat membantu mengidentifikasi perubahan iklim dan bahkan membantu menjelaskan transisi-transisi besar seperti [[Peristiwa kepunahan Perm–Trias]].<ref name="Twitchett">{{Cite journal|author=Twitchett R.J.|author2=Looy C.V.|author3=Morante R.|author4=Visscher H.|author5=Wignall P.B.|year=2001|title=Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis|journal=Geology|volume=29|issue=4|pages=351–54|bibcode=2001Geo....29..351T|doi=10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2|s2cid=129908787}}</ref> Sebuah disiplin ilmu yang relatif baru, [[filogenetika molekuler]], membandingkan [[DNA]] dan [[RNA]] pada organisme moderen untuk merekonstruksi ulang
Paleontologi bahkan juga berkontribusi untuk [[astrobiologi]], yaitu ilmu yang mempelajari kemungkinan kehidupan untuk tinggal di [[planet]] lainnya, dengan cara mengembangkan model mengenai bagaimana kehidupan dapat muncul dan dengan memberi teknik-teknik untuk mendeteksi bukti kehidupan.<ref>{{Cite journal|author=Cady, S.L.|date=April 1998|title=Astrobiology: A New Frontier for 21st Century Paleontologists|journal=[[PALAIOS]]|volume=13|issue=2|pages=95–97|bibcode=1998Palai..13...95C|doi=10.2307/3515482|jstor=3515482|pmid=11542813}}</ref>
Baris 29 ⟶ 27:
=== Subdivisi ===
[[File:Fossil_Tyranausaurus_Rex_at_the_Royal_Tyrell_Museum,_Alberta,_Canada.jpg|pra=https://en.wiki-indonesia.club/wiki/File:Fossil_Tyranausaurus_Rex_at_the_Royal_Tyrell_Museum,_Alberta,_Canada.jpg|kiri|jmpl|Analisis menggunakan teknik-teknik keinsinyuran menunjukkan bahwa ''[[Tyrannosaurus]]'' memiliki gigitan yang kuat, namun mempertanyakan mengenai kemampuan berlarinya.]]
Seiring
[[Paleoklimatologi]], meski terkadang dianggap sebagai bagian dari paleoekologi,<ref name="UCMPpaleoSpecialisms" /> lebih berfokus kepada sejarah iklim Bumi dan mekanisme-mekanisme yang telah mengubahnya<ref>{{cite web|title=Paleoclimatology|url=http://matrix.geology.ohio-state.edu/ProspectiveGradStudents/school-of-earth-sciences-directory/specialties/global-and-environmental-change/paleoclimatology|publisher=Ohio State University|archive-url=https://web.archive.org/web/20071109175527/http://matrix.geology.ohio-state.edu/ProspectiveGradStudents/school-of-earth-sciences-directory/specialties/global-and-environmental-change/paleoclimatology|archive-date=November 9, 2007|access-date=September 17, 2008|url-status=dead}}</ref> – yang terkadang mencakup perkembangan [[Evolusi|evolusioner]], seperti pada saat penyebaran cepat tumbuhan daratan pada periode [[Devon (zaman)|Devon]] mengambil lebih banyak [[karbon dioksida]] dari atmosfer, mengurangi [[gas rumah kaca]] dan akhirnya mengarah ke peristiwa [[zaman es]] pada periode [[Karbon (zaman)|Karbon]]<ref name="AlgeoScheckler1998errestrialMarineTeleconnectionsInDevonian">{{Cite journal|author=Algeo, T.J.|author2=Scheckler, S.E.|date=1998|title=Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events|journal=Philosophical Transactions of the Royal Society B|volume=353|issue=1365|pages=113–30|doi=10.1098/rstb.1998.0195|pmc=1692181|name-list-style=amp}}</ref>
Baris 42 ⟶ 40:
{{Main|Fosil}}
[[File:Marrella_(fossil).png|pra=https://en.wiki-indonesia.club/wiki/File:Marrella_(fossil).png|kiri|jmpl|Spesimen ''[[Marrella]]'' ini menggambarkan seberapa jelas dan mendetail fosil-fosil dari sebuah [[lagerstätte]] (spesimen ini berasal dari lagerstätte [[Batu Burgess]]).]]
Fosil-fosil tubuh organisme biasanya menjadi jenis bukti yang paling informatif. Salah satu jenis fosil yang paling sering dijumpai adalah [[fosil kayu]], tulang, dan cangkang.<ref name="UCMPWhatIsPaleo">{{cite web|title=What is paleontology?|url=http://www.ucmp.berkeley.edu/faq.php#paleo|publisher=University of California Museum of Paleontology|archive-url=https://web.archive.org/web/20080916013642/http://www.ucmp.berkeley.edu/faq.php#paleo|archive-date=September 16, 2008|access-date=September 17, 2008|url-status=dead}}</ref> [[Fosilisasi]] adalah sebuah peristiwa yang langka, dan kebanyakan fosil telah hancur karena [[erosi]] atau [[metamorfisme]] sebelum mereka ditemukan dan digali oleh ilmuwan. Oleh karena itu catatan fosil sangat tidak lengkap. Semakin jauh mengintip ke masa lampau, semakin tak lengkap pula catatan fosilnya. Meski begitu, catatan fosil biasanya cukup untuk mengilustrasikan pola-pola sejarah kehidupan secar luas.<ref name="BentonQualityFossilRecord">{{Cite journal|author=Benton M.J.|author2=Wills M.A.|author3=Hitchin R.|date=2000|title=Quality of the fossil record through time|url=http://doc.rero.ch/record/13615/files/PAL_E635.pdf|journal=Nature|volume=403|issue=6769|pages=534–37|bibcode=2000Natur.403..534B|doi=10.1038/35000558|pmid=10676959|s2cid=4407172}}
:
Terkadang, kondisi-kondisi lingkungan yang tak biasa dapat mengawetkan jaringan lunak.<ref name="Anderson2023FossilChemicalFramework">{{Cite journal|author=Anderson, L.A.|date=2023|title=A chemical framework for the preservation of fossil vertebrate cells and soft tissues|journal=Earth-Science Reviews|volume=240|pages=104367|bibcode=2023ESRv..24004367A|doi=10.1016/j.earscirev.2023.104367|doi-access=free}}</ref>
=== Fosil jejak ===
Baris 66 ⟶ 62:
== Mengklasifikasikan organisme kuno ==
{{Main|Klasifikasi biologi|Kladistika|Nomenklatur filogenetika|Taksonomi evolusioner}}Penamaan kelompok-kelompok organisme dengan cara yang jelas dan disetujui dengan luas adalah perihal yang penting, karena beberapa pertentangan pada paleontologi telah didasari hanya pada kesalahpahaman penamaan organisme.<ref name="BrochuSumrall2001">{{Cite journal|author=Brochu, C.A|author2=Sumrall, C.D.|date=July 2001|title=Phylogenetic Nomenclature and Paleontology|url=http://doc.rero.ch/record/14974/files/PAL_E2123.pdf|journal=Journal of Paleontology|volume=75|issue=4|pages=754–57|doi=10.1666/0022-3360(2001)075<0754:PNAP>2.0.CO;2|issn=0022-3360|jstor=1306999|name-list-style=amp|s2cid=85927950}}</ref> [[Taksonomi Linnaeus]] umumnya digunakan untuk mengklasifikasikan organisme hidup, namun mengalami kesulitan saat menangani organisme-organisme yang baru ditemukan yang sangat berbeda dengan organisme-organisme lainnya yang sudah diketahui. Sebagai contoh: sulit untuk memutuskan tingkat apa pengelompokan tingkat yang lebih tinggi akan ditempatkan (seperti [[genus]], [[Famili (biologi)|famili]] atau [[Ordo (biologi)|ordo]]). Hal ini penting karena peraturan Linnaeus untuk menamai kelompok terhubung dengan peringkat mereka, oleh karena itu bila suatu kelompok dipindahkan ke tingkat yang berbeda, maka kelompok tersebut harus dinamai ulang.<ref>{{Cite book|author=Ereshefsky, M.|date=2001|url=https://books.google.com/books?id=tM6E8-_vSD0C&pg=PP1|title=The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy|publisher=Cambridge University Press|isbn=0-521-78170-1|page=5|author-link=Marc Ereshefsky}}</ref>
[[File:Biological_classification_L_Pengo.svg|pra=https://en.wiki-indonesia.club/wiki/File:Biological_classification_L_Pengo.svg|kiri|jmpl|Peringat-peringkat pada [[Taksonomi Linnaeus]]|213x213px]]
Paleontolog biasanya menggunakan pendekatan bedasarkan [[kladistika]], yaitu sebuah cara untuk mencari tahu suatu
|1=[[Amphibia]] (Amfibi)
|label2=[[Amniota]]
Baris 83 ⟶ 79:
|label3=[[Archosauria]]
|3={{clade
|1=
|2=[[Crocodilia]]
|label3=Dinosaurus<br />{{font color|yellow|red| '''?''' }}
Baris 96 ⟶ 92:
}}|label1=[[Tetrapoda]]}}</div>'''Contoh [[kladogram]] sederhana'''
{{bg|red| }} Ciri berdarah panas berevolusi disekitar transisi syinapsida ke mamalia.
{{font color|yellow|red| '''?''' }} Ciri berdarah panas juga harus berevolusi pada<br />titik-titik ini – sebuah contoh [[evolusi
</div>[[Biologi perkembangan evolusioner]], biasanya disingkat sebagai
== Menentukan penanggalan organisme kuno ==
{{Main|Geokronologi}}
Paleontologi bertujuan untuk memetakan bagaimana kehidupan berubah seiring waktu. Salah satu halangan substansial pada hal ini adalah kesulitan untuk menentukan seberapa tua suatu fosil. Lapisan batuan yang mengawetkan fosil-fosil biasanya tidak memiliki elemen-elemen radioaktif yang dibutuhkan untuk melaksanakan [[penanggalan radiokarbon]]. Teknik ini adalah satu-satunya cara paleontolog untuk memberi batuan yang usianya lebih tua dari 50 juta tahun sebuah umur absolut,<!--<ref group=note>Astrochronology can date sediments back to the Eocene{{Confusing|date=May 2012}}</ref> the link for this note appears not to work--> dan memiliki keakuratan sampai sekitar 0.5% atau lebih baik.<ref name="Martin2000">{{Cite journal|author=Martin, M.W.|author2=Grazhdankin, D.V.|author3=Bowring, S.A.|author4=Evans, D.A.D.|author5=Fedonkin, M.A.|author5-link=Mikhail Fedonkin|author6=Kirschvink, J.L.|author6-link=Joseph Kirschvink|date=May 5, 2000|title=Age of Neoproterozoic Bilaterian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution|journal=Science|type=abstract|volume=288|issue=5467|pages=841–45|bibcode=2000Sci...288..841M|doi=10.1126/science.288.5467.841|pmid=10797002|s2cid=1019572}}</ref> Meski penanggalan radiometrik membutuhkan pekerjaan di laboratorium dengan penuh kehati-hatian, prinsip dasarnya sederhana: laju [[Peluruhan radioaktif|meluruhnya]] elemen radioaktif telah diketahui, maka perbandingan elemen radioaktif dengan elemen yang merupakan hasil dari peluruhan elemen radioaktif tersebut menunjukkan seberapa lama yang lalu elemen radioaktif tersebut masuk kedalam batuan. Elemen radioaktif biasanya digunakan hanya pada batuan dengan asal-usul vulkanik, sehingga bebatuan penyandang fosil yang hanya dapat ditanggali secara radiometrik hanyalah segelintir lapisan abu vulkanik.<ref name="Martin2000" />
Oleh karena itu, paleontolog biasanya harus mengandalkan [[stratigrafi]] untuk menanggali fosil. Stratigrafi adalah ilmu yang mengartikan catatan [[sedimen]] mirip lapisan kue, dan telah dibandingkan dengan menyelesaikan [[teka teki gambar]].<ref>{{Cite journal|author=Pufahl, P.K.|author2=Grimm, K.A.|author3=Abed, A.M.|author4=Sadaqah, R.M.Y.|date=October 2003|title=Upper Cretaceous (Campanian) phosphorites in Jordan: implications for the formation of a south Tethyan phosphorite giant|journal=Sedimentary Geology|volume=161|issue=3–4|pages=175–205|bibcode=2003SedG..161..175P|doi=10.1016/S0037-0738(03)00070-8|name-list-style=amp}}</ref>
Bebatuan biasanya membentuk lapisan yang relatif horizontal, dengan tiap lapisan yang terbentuk, lebih muda daripada yang ada dibawahnya. Bila sebuah fosil ditemukan diantara dua lapisan dengan umur yang telah diektahui, maka umur dari fosil tersebut seharusnya berada diantara dua umur yang telah diketahui.<ref>{{cite web|title=Geologic Time: Radiometric Time Scale|url=http://pubs.usgs.gov/gip/geotime/radiometric.html|publisher=U.S. Geological Survey|archive-url=https://web.archive.org/web/20080921135337/http://pubs.usgs.gov/gip/geotime/radiometric.html|archive-date=September 21, 2008|access-date=September 20, 2008|url-status=live}}</ref>{{Annotated image|caption=[[Fosil indeks|Fosil-fosil indeks]] yang umumnya digunakan untuk menanggali batuan di timur laut Amerika Serikat|image=Index fossils blank 01.png|width=332|style="height:261px;"|image-width=338|image-left=0|image-top=0|float=left|annot-font-size=9|annotations=<!-- eras -->
{{Annotation|1|15|[[Kenozoikum]]}}
{{Annotation|1|70|[[Mesozoikum]]}}
{{Annotation|1|165|[[Paleozoikum]]}}
{{Annotation|1|252|[[Proterozoikum]]}}
<!-- periods -->
{{Annotation|57|0|[[Kuarter]]}}
{{Annotation|57|25|[[Tersier]]}}
{{Annotation|57|42|[[Kapur (zaman)|Kapur]]}}
{{Annotation|57|68|[[Jura (zaman)|Jura]]}}
{{Annotation|57|89|[[Trias]]}}
{{Annotation|57|109|[[Perem]]}}
{{Annotation|57|122|[[Mississippian (geologi)|Missis-<br />sippian]]}}
{{Annotation|57|146|[[Pennsylvanian (geologi)|Pennsyl-<br />vanian]]}}
{{Annotation|57|166|[[Devon (zaman)|Devon]]}}
{{Annotation|57|191|[[Silur]]}}
{{Annotation|57|207|[[Ordovisium|Ordo-<br />visium]]}}
{{Annotation|57|227|[[Kambrium|Kamb-<br />rium]]}}
<!-- fossils: left col -->
{{Annotation|112|2|''[[Pecten|Pecten gibbus]]''}}
{{Annotation|120|20|''[[Calyptraphorus velatus|Calyptraphorus<br />velatus]]''}}
{{Annotation|125|40|''[[Scaphites hippocrepis|Scaphites<br />hippocrepis]]''}}
{{Annotation|129|63|''[[Perisphinctes]]<br />tiziani''}}
{{Annotation|125|83|''[[Tropites subbullatus|Tropites<br />subbullatus]]''}}
{{Annotation|123|105|''[[Leptodus americanus|Leptodus<br />americanus]]''}}
{{Annotation|110|125|''[[Cactocrinus multibrachiatus|Cactocrinus<br />multibrachiatus]]''}}
{{Annotation|128|143|''[[Dictyoclostus americanus|Dictyoclostus<br />americanus]]''}}
{{Annotation|99|166|''[[Mucrospirifer mucronatus|Mucrospirifer<br />mucronatus]]''}}
{{Annotation|125|186|''[[Cystiphyllum niagarense|Cystiphyllum<br />niagarense]]''}}
{{Annotation|105|211|''[[Bathyurus extans]]''}}
{{Annotation|127|231|''[[Paradoxides]] pinus''}}
<!-- fossils: rightcol -->
{{Annotation|225|6|''[[Neptunea]] tabulata''}}
{{Annotation|257|20|''[[Venericardia]]<br />planicosta''}}
{{Annotation|249|40|''[[Inoceramus]]<br />labiatus''}}
{{Annotation|253|63|''[[Nerinea]] trinodosa''}}
{{Annotation|252|82|''[[Monotis subcircularis|Monotis<br />subcircularis]]''}}
{{Annotation|275|103|''[[Parafusulina]]<br />bosei''}}
{{Annotation|230|123|''[[Lophophyllidium proliferum|Lophophyllidium<br />proliferum]]''}}
{{Annotation|255|143|''[[Prolecanites gurleyi]]''}}
{{Annotation|240|165|''[[Palmatolepus]]<br />unicornis''}}
{{Annotation|251|185|''[[Hexamocaras hertzeri]]''}}
{{Annotation|250|206|''[[Tetragraptus]] fructicosus''}}
{{Annotation|260|226|''[[Billingsella corrugata]]''}}}}
Karena deretan batuan tidak sinambung, dan biasanya terpotong dengan [[Patahan (geologi)|patahan]] atau periode [[erosi]], mencocokkan lapisan batuan yang tidak berada disamping satu sama lainnya sangat sulit. Namun, fosil-fosil spesies yang selamat selama periode waktu yang relatif pendek dapat digunakan untuk mengubungan bebatuan terisolasi: teknik ini dikenal sebagai ''biostratigrafi''. Contohnya, spesies [[conodont]] ''Eoplacognathus pseudoplanus'' hanya hidup pada jangka waktu yang pendek di periode Ordovisium Tengah.<ref>{{Cite journal|author=Löfgren, A.|date=2004|title=The conodont fauna in the Middle Ordovician ''Eoplacognathus pseudoplanus'' Zone of Baltoscandia|journal=Geological Magazine|volume=141|issue=4|pages=505–24|bibcode=2004GeoM..141..505L|doi=10.1017/S0016756804009227|s2cid=129600604}}</ref> Bila sebuah batuan dengan umur yang tidak diketahui memiliki sisa-sisa ''E. pseudoplanus'', maka batuan tersebut pasti berasal dari periode Ordovisium Tengah. [[Fosil indeks]] semacam itu harus kentara (khas), terdistribusi secara global, dan memiliki jangkauan waktu yang pendek untuk menjadi berguna. Namun, hasil yang menyesatkan dapat dihasilkan bila fosil indeksnya ternyata memiliki jangkauan fosil yang lebih panjang daripada yang sebelumnya diketahui.<ref name="Gehling2001">{{Cite journal|last1=Gehling|first1=James|last2=Jensen|first2=Sören|last3=Droser|first3=Mary|last4=Myrow|first4=Paul|last5=Narbonne|first5=Guy|date=March 2001|title=Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland|journal=Geological Magazine|volume=138|issue=2|pages=213–18|bibcode=2001GeoM..138..213G|doi=10.1017/S001675680100509X|s2cid=131211543}}</ref> Stratigrafi dan biostratigrafi dapat secara umum memberi hanya penanggalan relatif (A ada sebelum B, dan semacamnya), yang biasanya cukup untuk mempelajari evolusi. Namun, hal ini sulit untuk beberapa periode waktu, karena masalah-masalah yang terlibat pada mencocokan batuan dengan usia yang sama pada benua yang berbeda.<ref name="Gehling2001" />
Hubungan pohon keluarga dapat juga membantu mempersempit tanggal suatu garis keturunan muncul. Contohnya, bila fosil-fosil B atau C berasal dari X juta tahun lalu dan pohon-keluarga yang dihitung mengatakan A adalah leluhur B dan C, maka A seharusnya berevolusi lebih dari X juta tahun lalu.
Juga mungkin untuk memperkirakan seberapa lama yang lalu dua klad hidup terpisah – i.e. kurang lebih seberapa lama lalu leluhur bersama terakhir mereka hidup – dengan menganggap bahwa [[mutasi]] DNA terakumulasi pada laju yang konstan. Namun hal ini, yang dikenal sebagai teknik [[jam molekuler]], bisa salah, dan hanya memberi penentuan waktu dengan perkiraan yang tinggi: contohnya, mereka tidak cukup akurat dan dapat diandalkan untuk menentukan kapan kelompok-kelompok yang muncul pada [[Letusan Kambrium]] muncul,<ref>{{Cite journal|author=Hug, L.A.|author2=Roger, A.J.|date=2007|title=The Impact of Fossils and Taxon Sampling on Ancient Molecular Dating Analyses|journal=Molecular Biology and Evolution|volume=24|issue=8|pages=889–1897|doi=10.1093/molbev/msm115|pmid=17556757|name-list-style=amp|doi-access=free}}</ref> dan perkiraan yang dihasilkan oleh teknik-teknik yang berbeda dapat bervariasi sampai dua kali lipat.<ref name="PetersonEtAl20052">{{Cite journal|author=Peterson, Kevin J.|author2=Butterfield, N.J.|date=2005|title=Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record|journal=Proceedings of the National Academy of Sciences|volume=102|issue=27|pages=9547–52|bibcode=2005PNAS..102.9547P|doi=10.1073/pnas.0503660102|pmc=1172262|pmid=15983372|name-list-style=amp|doi-access=free}}</ref>
== Catatan kaki ==
|