Grup (matematika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Fitur saranan suntingan: 3 pranala ditambahkan. |
||
(34 revisi perantara oleh 12 pengguna tidak ditampilkan) | |||
Baris 1:
[[Gambar:Rubik's cube.svg|thumb|right|Manipulasi dari [[Kubus Rubik]] membentuk [[Grup Kubus Rubik]].]]
Dalam [[matematika]], '''grup''' adalah suatu [[himpunan]], beserta satu [[operasi biner]], seperti perkalian atau penjumlahan
Banyak sekali objek yang dipelajari dalam matematika berupa grup. Hal ini mencakup [[sistem bilangan]], seperti bilangan bulat, [[bilangan rasional]], bilangan
Asal usul teori grup berawal dari kerja [[Evariste Galois]] (1830), yang berkaitan dengan masalah [[persamaan aljabar]] yang terpecahkan dengan radikal. Sebelum kerja Galois, grup lebih banyak dipelajari secara konkret, dalam bentuk permutasi; beberapa aspek teori grup abelian dikenal dalam teori [[
==
=== Contoh pertama: bilangan bulat ===
Salah satu grup yang paling dikenal adalah himpunan [[bilangan bulat]]<math display="block">\mathbb{Z} = \{\ldots,-4,-3,-2,-1,0,1,2,3,4,\ldots\}</math>
dengan [[penambahan]].<ref>{{harvnb|Lang|2005|loc = Lihat Apendiks 2, hlm. 360|nb = yes}}</ref> Untuk dua bilangan bulat <math> a </math> dan <math> b </math>, [[penambahan]] <math> a + b </math> menghasilkan bilangan bulat, dan sifat ''[[Ketertutupan (matematika)|ketertutupan]]'' mengatakan bahwa <math> + </math> adalah [[operasi biner]] <math>\mathbb{Z}</math>. Sifat penjumlahan bilangan bulat berikut berfungsi sebagai model untuk aksioma grup dalam definisi di bawah ini.
* Untuk semua bilangan bulat <math> a </math>, <math> b </math> dan <math> c </math>, <math> (a + b) + c = a + (b + c)</math>. Ini dapat dijelaskan melalui kata-kata, yang berarti bahwa menambahkan <math> a </math> ke <math> b </math> terlebih dahulu, dan kemudian menambahkan hasil tersebut ke <math> c </math> akan memberikan hasil akhir yang sama seperti menambahkan <math> a </math> ke penjumlahan <math> b </math> dan <math> c </math>. Sifat ini dikenal sebagai sifat ''[[asosiatif]]''.
* Jika <math> a </math> adalah bilangan bulat, maka <math> 0 + a = a </math> dan <math> a + 0 = a </math>. [[Nol]] disebut ''[[elemen identitas]]'' dari penambahan, sebab menambahkannya ke bilangan bulat akan tetap memberikan hasil bilangan bulat yang sama.
* Untuk setiap bilangan bulat <math> a </math>, terdapat bilangan bulat <math> b </math> sehingga <math> a + b = 0 </math> dan <math> b + a = 0 </math>. Bilangan bulat <math> b </math> disebut ''[[elemen invers]]'' dari bilangan bulat <math> a </math> dan dilambangkan dengan <math> -a </math>.
Bilangan bulat dengan operasi <math> + </math> membentuk objek matematika yang merupakan milik kelas yang luas yang membagi aspek struktural yang serupa. Untuk memahami dengan tepat struktur tersebut sebagai suatu kolektif, disajikanlah definisi di bawah berikut.
=== Definisi ===
{{quote box
|align = right
|width=33%
|quote=Aksioma untuk grup itu sederhana dan sangat jelas... tetapi di balik semua aksioma tersebut terdapat [[Grup monster|grup monster sederhana]], objek matematika sangat luar biasa yang tampaknya suka bergantung pada banyak kebenaran yang aneh. Aksioma untuk grup tidak memberikan petunjuk yang jelas bahwa hal seperti ini ada.
|source=[[Richard Borcherds]] dalam ''Mathematicians: An Outer View of the Inner World''{{sfn|Cook|2009|p=24}}
}}
Grup adalah suatu [[himpunan (matematika)|himpunan]] <math> G </math> dengan [[operasi biner]] <math> G </math>. Operasi biner tersebut dilambangkan sebagai <math> \cdot </math>, yang menggabungkan dua [[elemen (matematika)|elemen]] <math> a </math> dan <math> b </math> untuk membentuk elemen dari <math> G </math>, dan bentuk elemen tersebut dilambangkan <math> a \cdot b </math>. Akibatnya, suatu grup <math> G </math> memenuhi tiga syarat di bawah, yang dikenal sebagai '''aksioma grup''' (''group axiom''):{{sfn|Artin|2018|loc=§2.2|hlm=40}}{{sfn|Lang|2002|loc = hlm. 3, I.§1 dan hlm. 7, I.§2}}{{sfn|Lang|2005|loc=II.§1|hlm=16}}{{efn|Beberapa penulis menyertakan aksioma tambahan yang disebut ''ketertutupan'' terhadap operasi "<math>\cdot</math>", yang berarti bahwa <math>a\cdot b</math> adalah suatu elemen dari <math>G</math> untuk setiap <math>a</math> dan <math>b</math> di <math>G</math>. Syarat ini disertakan dengan memerlukan "<math>\cdot</math>" menjadi suatu operasi biner dalam <math>G</math>. Lihat {{Harvard citations|nb = yes|last = Lang|year = 2002}}.}}
;Asosiatif: Untuk semua <math> a </math>, <math> b </math>, dan <math> c </math> dalam <math> G </math>, maka <math> (a \cdot b) \cdot c = a \cdot (b \cdot c) </math>.
;Elemen identitas: Terdapat elemen <math> e </math> dalam <math> G </math>, sehingga untuk setiap <math> a </math> dalam <math> G </math>, maka <math> e \cdot a = a </math> dan <math> a \cdot e = a </math>. Elemen tersebut dikatakan tunggal (''unique'') ([[#Ketunggalan dari elemen invers|lihat di bawah]]), dan elemen itu disebut ''elemen identitas'' dari grup.
;Elemen invers: Untuk setiap <math> a </math> dalam <math> G </math>, terdapat elemen <math> b </math> dalam <math> G </math> sehingga <math> a \cdot b = e </math> dan <math> b \cdot a = e </math>, dengan <math> e </math> adalah elemen identitas. Untuk setiap <math> a </math>, elemen <math> b </math> adalah tunggal ([[#Ketunggalan dari elemen invers|lihat di bawah]]), dan elemen itu disebut sebagai ''invers'' dari <math> a </math> dan biasanya dilambangkan <math> a^{-1} </math>.
=== Notasi dan terminologi ===
Secara formal, grup adalah [[pasangan terurut]] yang terdiri atas suatu himpunan dan operasi biner pada himpunan yang memenuhi [[aksioma grup]]. Himpunan itu disebut ''himpunan pendasar'' (''underlying set'') grup, dan operasi binernya disebut ''operasi grup'' atau ''hukum grup''. Grup beserta himpunan pendasarnya merupakan dua [[objek matematika]] yang berbeda. Supaya menghindari notasi yang sulit dipahami, digunakanlah simbol yang sama untuk menyatakan kedua-duanya. Hal ini mencerminkan cara berpikir yang informal, bahwa grup sama saja dengan himpunan tetapi diperkaya oleh struktur tambahan yang disediakan oleh operasi. Sebagai contoh, misalkan terdapat himpunan [[bilangan riil|bilangan real]] <math>\mathbb R</math>, yang memiliki operasi penjumlahan <math>a+b</math> dan perkalian <math>ab</math>. Secara formal, <math>\mathbb R</math> adalah suatu himpunan, <math>(\mathbb R,+)</math> adalah suatu grup, dan <math>(\mathbb R,+,\cdot)</math> adalah suatu [[Lapangan (matematika)|lapangan]]. Akan tetapi, biasanya ditulis sebagai <math>\mathbb R</math> untuk menunjukkan salah satu dari tiga objek tersebut.
''Grup aditif'' dari lapangan <math>\mathbb R</math> adalah grup yang himpunan pendasarnya adalah <math>\mathbb R</math>, dan operasinya adalah penambahan. Sementara itu, ''grup perkalian'' dari lapangan <math>\mathbb R</math> adalah grup <math>\mathbb{R}^{\times}</math> yang himpunan pendasarnya adalah himpunan bilangan real bukan nol <math>\mathbb{R} \setminus \{0\}</math> dan operasinya adalah perkalian.
Secara umum, kita berbicara tentang ''grup aditif'' setiap kali operasi grup dinotasikan sebagai penjumlahan; dalam hal ini, identitas biasanya dilambangkan dengan <math>0</math>, dan invers dari elemen <math>x</math> dilambangkan dengan <math>-x</math>. Demikian pula, kita berbicara tentang ''grup perkalian'' setiap kali operasi grup dinotasikan sebagai perkalian; dalam hal ini, identitas biasanya dilambangkan dengan <math>1</math>, dan inversi elemen <math>x</math> dilambangkan dengan <math>x^{-1}</math>. Dalam grup perkalian, simbol operasi biasanya dihilangkan seluruhnya, sehingga bahwa operasi dilambangkan dengan penjajaran, yakni <math>ab</math> sebagai pengganti <math>a \cdot b</math>.
Definisi grup tidak mensyaratkan bahwa <math>a \cdot b = b \cdot a</math> untuk semua elemen <math> a </math> dan <math> b </math> dalam <math> G </math>. Jika ketentuan tambahan berlaku, maka operasi tersebut dikatakan [[komutatif]], dan grup tersebut disebut [[grup abelian]]. Sudah menjadi kesepakatan umum bahwa untuk grup abelian, notasi aditif atau perkalian dapat digunakan, tetapi untuk grup nonabelian hanya digunakan notasi perkalian.
Beberapa notasi lain biasanya digunakan untuk grup yang elemennya bukan bilangan. Untuk grup di mana elemennya [[fungsi (matematika)|fungsi]], operasi sering kali digunakan dalam [[komposisi fungsi]] <math>f\circ g</math>; maka identitas tersebut dapat dilambangkan dengan {{math|id}}. Dalam kasus yang lebih spesifik dari grup [[transformasi geometris]], grup [[simetri (matematika)|simetri]], [[grup permutasi]], dan [[grup automorfisme]], simbol <math>\circ</math> dihilangkan, seperti grup perkalian. Banyak varian notasi lainnya yang ditemui.
=== Definisi alternatif ===
Definisi ekuivalen dari grup terdiri dari penggantian bagian "ada" dari aksioma grup dengan operasi yang hasilnya adalah elemen yang harus ada. Jadi, grup adalah himpunan yang dilengkapi dengan tiga operasi, yaitu [[operasi biner]] yang merupakan operasi grup, [[operasi uner]] sebagai kebalikan dari operan tunggalnya, dan [[operasi nullari]] yang tidak memiliki operan dan menghasilkan elemen identitas. Jika tidak, aksioma grupnya persis sama.
Varian definisi ini menghindari [[kuantifer eksistensial]]. Biasanya lebih sering digunakan untuk [[teori grup komputasi|komputasi dengan grup]] dan untuk [[bukti bantuan komputer]]. Rumus ini menunjukkan grup sebagai variasi [[aljabar universal]]. Ini pula digunakan untuk membicarakan sifat operasi invers, sebagaimana diperlukan untuk mendefinisikan [[grup topologi]] dan [[objek grup]].
=== Contoh kedua: grup simetri ===
Dua bangun pada bidang adalah [[kekongruenan (geometri)|kongruen]] jika bangun tersebut dapat diubah menjadi bangun yang lain menggunakan gabungan dari [[rotasi (matematika)|rotasi]], [[refleksi (matematika)|refleksi]], dan [[translasi (geometri)|translasi]]. Setiap bangun kongruen dengan dirinya sendiri. Namun, beberapa bangun kongruen dengan sendiri dapat dilakukan dengan berbagai cara, dan kekongruenan tambahan tersebut dinamakan [[simetri]]s. Persegi memiliki delapan simetri, yaitu:
* [[operasi identitas]], yang berarti bangun tersebut tidak berubah, dan operasi ini dilambangkan dengan id;
* persegi di sekitar pusatnya diputar sebesar 90°, 180°, dan 270° searah jarum jam, yang dilambangkan dengan <math>r_1</math>, <math>r_2</math> dan <math>r_3</math>;
* refleksi (cermin) terhadap garis tengah horizontal dan vertikal (<math>f_\mathrm{v}</math> dan <math>f_\mathrm{h}</math>, atau terhadap dua [[diagonal|garis diagonal]] (<math>f_\mathrm{d}</math> dan <math>f_\mathrm{c}</math>).
{{multiple image
|header = Elemen dari grup simetri persegi, <math> \mathrm{D}_4 </math>. Titik sudutnya dinyatakan dengan warna ataupun bilangan.
|align = center
|perrow = 4
|total_width = 800
|image1 = group D8 id.svg
|caption1 = {{math|id}}, persegi tetap tidak berubah
|image2 = group D8 90.svg
|caption2 = <math> r_1 </math>, persegi berputar 90° searah jarum jam
|image3 = group D8 180.svg
|caption3 = <math> r_2 </math>, persegi berputar 180° searah jarum jam
|image4 = group D8 270.svg
|caption4 = <math> r_3 </math>, persegi berputar 270° searah jarum jam
|image5 = group D8 fv.svg
|caption5 = <math>f_\mathrm{v}</math>, persegi cermin terhadap garis vertikal|
|image6 = group D8 fh.svg
|caption6 = <math>f_\mathrm{h}</math>, persegi cermin terhadap garis horizontal
|image7 = group D8 f13.svg
|caption7 = <math>f_\mathrm{d}</math>, persegi cermin terhadap garis diagonal
|image8 = group D8 f24.svg
|caption8 = <math>f_\mathrm{c}</math>, persegi cermin terhadap kontra-diagonal
}}
Simetri diatas adalah [[fungsi (matematika)|fungsi]]. Masing-masing untuk satu titik dalam persegi ke titik yang sesuai di bawah simetri. Sebagai contoh, {{math|''r''<sub>1</sub>}} untuk titik ke rotasi 90° searah jarum jam di sekitar pusat persegi, dan {{math|''f''<sub>h</sub>}} untuk titik ke pantulan di garis tengah vertikal persegi. [[Komposisi fungsi|Komposisi]] dua kesimetrian menghasilkan kesimetrian yang lain. Kesimetrian ini menentukan sebuah grup yang disebut [[grup dihedral]] dengan derajat 4, dilambangkan {{math|''D''<sub>4</sub>}}. Himpunan yang didasari grup adalah himpunan simetri di atas, dan operasi grup adalah [[komposisi fungsi]].<ref>{{Harvard citations|last = Herstein|year = 1975|loc = §2.6, p. 54|nb = yes}}</ref> Dua simetri digabungkan dengan menyusunnya sebagai fungsi, yaitu menerapkan yang pertama ke persegi, dan yang kedua ke hasil aplikasi pertama. Hasil dari pertama kali {{math|''a''}} dan kemudian {{math|''b''}} ditulis secara simbolis ''dari kanan ke kiri'' sebagai <math>b\circ a</math> ("terapkan simetri {{math|''b''}} setelah melakukan simetri {{math|''a''}}"). Maka ini adalah notasi biasa untuk komposisi fungsi.
[[Tabel grup]] di sebelah kanan mencantumkan hasil dari semua komposisi yang memungkinkan. Misalnya, 270° searah jarum jam ({{math|''r''<sub>3</sub>}}) dan kemudian merefleksikan secara horizontal ({{math|''f''<sub>h</sub>}}) sama seperti melakukan refleksi di sepanjang diagonal ({{math|''f''<sub>d</sub>}}). Menggunakan simbol di atas, disorot dengan warna biru di tabel grup:
:<math>f_\mathrm h \circ r_3= f_\mathrm d.</math>
{| class="wikitable" style="float:right; text-align:center; margin:.5em 0 .5em 1em; width:40ex; height:40ex;"
|+ [[Tabel Cayley|Tabel grup]] dari {{math|''D''<sub>4</sub>}}
|-
! style="width:12%; background:#fdd; border-top:solid black 2px; border-left:solid black 2px;"|
! style="background:#fdd; border-top:solid black 2px; width:11%;"| {{math|id}}
! style="background:#fdd; border-top:solid black 2px; width:11%;"| {{math|''r''<sub>1</sub>}}
! style="background:#fdd; border-top:solid black 2px; width:11%;"| {{math|r<sub>2</sub>}}
! style="background:#fdd; border-right:solid black 2px; border-top:solid black 2px; width:11%;"| {{math|''r''<sub>3</sub>}}
! style="width:11%;"| {{math|''f''<sub>v</sub>}} !! style="width:11%;"| {{math|''f''<sub>h</sub>}} !! style="width:11%;"| {{math|''f''<sub>d</sub>}} !! style="width:11%;"| {{math|''f''<sub>c</sub>}}
|-
!style="background:#FDD; border-left:solid black 2px;" | {{math|id}}
|style="background:#FDD;"| {{math|id}}
|style="background:#FDD;"| {{math|''r''<sub>1</sub>}}
|style="background:#FDD;" | {{math|''r''<sub>2</sub>}}
|style="background:#FDD; border-right:solid black 2px;"| {{math|''r''<sub>3</sub>}} || {{math|''f''<sub>v</sub>}} || {{math|''f''<sub>h</sub>}} || {{math|''f''<sub>d</sub>}}
|style="background:#FFFC93; border-right:solid black 2px; border-left:solid black 2px; border-top:solid black 2px;"| {{math|''f''<sub>c</sub>}}
|-
!style="background:#FDD; border-left:solid black 2px;" | {{math|''r''<sub>1</sub>}}
|style="background:#FDD;"| {{math|''r''<sub>1</sub>}}
|style="background:#FDD;"| {{math|''r''<sub>2</sub>}}
|style="background:#FDD;"| {{math|''r''<sub>3</sub>}}
|style="background:#FDD; border-right:solid black 2px;"| {{math|id}} || {{math|''f''<sub>c</sub>}} || {{math|''f''<sub>d</sub>}} || {{math|''f''<sub>v</sub>}}
|style="background:#FFFC93; border-right: solid black 2px; border-left: solid black 2px;"| {{math|''f''<sub>h</sub>}}
|- style="height:10%"
!style="background:#FDD; border-left:solid black 2px;" | {{math|''r''<sub>2</sub>}}
|style="background:#FDD;"| {{math|''r''<sub>2</sub>}}
|style="background:#FDD;"| {{math|''r''<sub>3</sub>}}
|style="background:#FDD;"| {{math|id}}
|style="background:#FDD; border-right:solid black 2px;"| {{math|''r''<sub>1</sub>}} || {{math|''f''<sub>h</sub>}} || {{math|''f''<sub>v</sub>}} || {{math|''f''<sub>c</sub>}}
|style="background:#FFFC93; border-right: solid black 2px; border-left: solid black 2px;"| {{math|''f''<sub>d</sub>}}
|- style="height:10%"
!style="background:#FDD; border-bottom:solid black 2px; border-left:solid black 2px;" | {{math|''r''<sub>3</sub>}}
|style="background:#FDD; border-bottom:solid black 2px;"| {{math|''r''<sub>3</sub>}}
|style="background:#FDD; border-bottom:solid black 2px;"| {{math|id}}
|style="background:#FDD; border-bottom:solid black 2px;"| {{math|''r''<sub>1</sub>}}
|style="background:#FDD; border-right:solid black 2px; border-bottom:solid black 2px;"| {{math|''r''<sub>2</sub>}} || {{math|''f''<sub>d</sub>}} || {{math|''f''<sub>c</sub>}} || {{math|''f''<sub>h</sub>}}
|style="background:#FFFC93; border-right:solid black 2px; border-left:solid black 2px; border-bottom:solid black 2px;"| {{math|''f''<sub>v</sub>}}
|- style="height:10%"
! {{math|''f''<sub>v</sub>}}
| {{math|''f''<sub>v</sub>}} || {{math|''f''<sub>d</sub>}} || {{math|''f''<sub>h</sub>}} || {{math|''f''<sub>c</sub>}}|| {{math|id}} || {{math|''r''<sub>2</sub>}} || {{math|''r''<sub>1</sub>}} || {{math|''r''<sub>3</sub>}}
|- style="height:10%"
! {{math|''f''<sub>h</sub>}}
| {{math|''f''<sub>h</sub>}} || {{math|''f''<sub>c</sub>}} || {{math|''f''<sub>v</sub>}} || {{math|''f''<sub>d</sub>}} || {{math|''r''<sub>2</sub>}} || {{math|id}} || {{math|''r''<sub>3</sub>}} || {{math|''r''<sub>1</sub>}}
|- style="height:10%"
! {{math|''f''<sub>d</sub>}}
| {{math|''f''<sub>d</sub>}} || {{math|''f''<sub>h</sub>}} || {{math|''f''<sub>c</sub>}} || {{math|''f''<sub>v</sub>}} || {{math|''r''<sub>3</sub>}} || {{math|''r''<sub>1</sub>}} || {{math|id}} || {{math|''r''<sub>2</sub>}}
|- style="height:10%"
! {{math|''f''<sub>c</sub>}}
|style="background:#9DFF93; border-left: solid black 2px; border-bottom: solid black 2px; border-top: solid black 2px;" | {{math|''f''<sub>c</sub>}}
|style="background:#9DFF93; border-bottom: solid black 2px; border-top: solid black 2px;" | {{math|''f''<sub>v</sub>}}
|style="background:#9DFF93; border-bottom: solid black 2px; border-top: solid black 2px;" | {{math|''f''<sub>d</sub>}}
|style="background:#9DFF93; border-bottom:solid black 2px; border-top:solid black 2px; border-right:solid black 2px;" | {{math|''f''<sub>h</sub>}} || {{math|''r''<sub>1</sub>}} || {{math|''r''<sub>3</sub>}} || {{math|''r''<sub>2</sub>}} || {{math|id}}
|-
| colspan="9" style="text-align:left"| Elemen {{math|id}}, {{math|''r''<sub>1</sub>}}, {{math|''r''<sub>2}}</sub>, dan {{math|''r''<sub>3}}</sub> sebagai bentuk [[subgrup]] tabel grup ditarik dalam {{color box|#FDD}} merah (wilayah kiri atas). [[Kohimpunan]] kiri dan kanan subgrup ini ditarik di {{color box|#9DFF93}} hijau (di baris terakhir) dan {{color box|#FFFC93}} kuning (kolom terakhir).
|}
Mengingat himpunan kesimetrian ini dan operasi yang dijelaskan, aksioma grup dapat dipahami sebagai berikut.
''Komposisi adalah operasi biner.'' Artinya, <math>a\circ b</math> adalah simetri untuk dua simetri {{math|''a''}} dan {{math|''b''}}. Sebagai contoh,
:<math>r_3\circ f_\mathrm h = f_\mathrm c,</math>
yaitu, 270° searah jarum jam setelah memantulkan secara horizontal sama dengan pemantulan di sepanjang kontra-diagonal ({{math|''f''<sub>c</sub>}}). Memang setiap kombinasi lain dari dua simetri masih memberikan kesimetrian, seperti yang diperiksa dengan menggunakan tabel grup.
''Aksioma asosiatif'' berkaitan dengan penyusunan lebih dari dua simetri: Dimulai dengan tiga elemen {{math|''a''}}, {{math|''b''}} dan {{math|''c''}} dari {{math|''D''<sub>4</sub>}}, Ada dua kemungkinan cara menggunakan ketiga kesimetrian ini dalam urutan ini untuk menentukan kesimetrian bujur sangkar. Salah satu cara ini adalah dengan menulis {{math|''a''}} dan {{math|''b''}} menjadi satu simetri, lalu untuk menyusun simetri tersebut dengan {{math|''c''}}. Cara lainnya adalah dengan menulis {{math|''b''}} dan {{math|''c''}}, kemudian untuk menyusun simetri yang dihasilkan dengan {{math|''a''}}. Kedua cara ini harus selalu memberikan hasil yang sama, yaitu,
:<math>(a\circ b)\circ c = a\circ (b\circ c),</math>
Sebagai contoh, <math>(f_\mathrm d\circ f_\mathrm v)\circ r_2 = f_\mathrm d\circ (f_\mathrm v\circ r_2)</math> dapat diperiksa menggunakan tabel grup di sebelah kanan:
:<math>\begin{align}
(f_\mathrm d\circ f_\mathrm v)\circ r_2 &=r_3\circ r_2=r_1\\
f_\mathrm d\circ (f_\mathrm v\circ r_2) &=f_\mathrm d\circ f_\mathrm h =r_1.
\end{align}</math>
''Elemen identitas'' adalah {{math|id}}, karena tidak mengubah simetri {{mvar|a}} saat disusun dengan baik di kiri atau di kanan.
Semua simetri memiliki ''kebalikan'': {{math|is}}, pantulan {{math|''f''<sub>h</sub>}}, {{math|''f''<sub>v</sub>}}, {{math|''f''<sub>d</sub>}}, {{math|''f''<sub>c</sub>}} dan rotasi 180° {{math|r{{sub|2}}}} adalah invers, karena dua kali akan mengembalikan persegi ke orientasi aslinya. Rotasi {{math|''r''<sub>3</sub>}} dan {{math|''r''<sub>1</sub>}} adalah invers satu sama lain, karena 90° dan kemudian rotasi 270° (atau sebaliknya) menghasilkan rotasi lebih dari 360° yang membuat persegi tidak berubah. Ini dengan mudah diverifikasi di atas meja.
Berbeda dengan grup bilangan bulat di atas, di mana urutan operasinya tidak relevan, {{math|''D''<sub>4</sub>}}, misalnya <math>f_\mathrm h\circ r_1=f_\mathrm c</math> but <math>r_1\circ f_\mathrm h=f_\mathrm d</math> Dengan kata lain, {{math|''D''<sub>4</sub>}} bukan abelian.
== Sejarah ==
{{Main|Sejarah teori grup}}
Konsep [[Teori grup#Grup abstrak|grup abstrak]] yang modern dikembangkan dari beberapa cabang matematika.{{sfn|Wussing|2007}}{{sfn|Kleiner|1986}}{{sfn|Smith|1906}} Asal-usul teori grup berawal dari ketika menyelesaikan [[persamaan polinomial]] dengan derajat yang lebih dari 4. Matematikawan berkebangsaan Pranci abad ke-19, [[Évariste Galois]], memperluas karya [[Paolo Ruffini (matematikawan)|Paolo Ruffini]] dan [[Joseph-Louis Lagrange]] dengan memberikan kriteria untuk solvabilitas dari suatu persamaan [[polinomial]] khusus dalam [[grup simetri]] dari (penyelesaian) [[akar fungsi|akar]]nya. Elemen dari [[grup Galois]] tersebut bersesuaian dengan [[permutasi]] dari akar tertentu. Awalnya, gagasan milik Galois ditolak oleh beberapa matematikawan pada masa itu, dan gagasan miliknya kemudian diterbitkan setelah kematiannya.{{sfn|Galois|1908}}{{sfn|Kleiner|1986|p=202}} Grup permutasi yang lebih umum diteliti lebih lanjut oleh [[Augustin Louis Cauchy]]. Dalam makalahnya yang berjudul ''On the theory of groups, as depending on the symbolic equation <math>\theta^n=1</math>'' (1854), ia memberikan definisi abstrak pertama mengenai [[grup terhingga]].{{sfn|Cayley|1889}}
Geometri adalah cabang kedua yang menggunakan grup secara sistematik, terutama grup simetri yang merupakan bagian dari [[program Erlangen]] milik [[Felix Klein]] di tahun 1872.{{sfn|Wussing|2007|loc=§III.2}} Setelah munculnya cabang-cabang geometri baru seperti [[geometri hiperbolik]] dan [[geometri proyektif]], Klein menggunakan teori grup untuk menyusunnya supaya terlihat mudah dimengerti. Berlanjut saat memperluas gagasan tersebut, [[Sophus Lie]] menemukan kajian [[grup Lie]] di tahun 1884.{{sfn|Lie|1973}}
Cabang ketiga yang menyumbangkan teori grup adalah [[teori bilangan]]. Struktur-struktur grup abelian tertentu telah digunakan dalam karya [[Carl Friedrich Gauss]] yang berjudul ''[[Disquisitiones Arithmeticae]]'' (1798). [[Leopold Kronecker]] juga menggunakan struktur tersebut tetapi dijelaskan dengan lebih detail.{{sfn|Kleiner|1986|p=204}} Pada tahun 1847, [[Ernst Kummer]] mencoba membuktikan [[Teorema Terakhir Fermat]] dengan mengembangkan [[grup kelas|grup yang menjelaskan faktorisasi]] menjadi [[bilangan prima]].{{sfn|Wussing|2007|loc=§I.3.4}}
Konvergensi dari berbagai sumber tersebut menjadi teori grup yang berseragam berawal dari karya milik [[Camille Jordan]] yang berjudul ''{{lang|fr|Traité des substitutions et des équations algébriques}}'' (1870).{{sfn|Jordan|1870}} [[Walther von Dyck]] (1882) memperkenalkan gagasan yang menjelaskan grup menggunakan pembangkit (''generator'') dan relasi. Karyanya juga merupakan karya yang pertama kali memberikan definisi aksiomatik dari "grup abstrak".{{sfn|von Dyck|1882}} Hingga pada abad ke-20, grup mendapatkan banyak perhatian dari karya perintis milik [[Ferdinand Georg Frobenius]] dan [[William Burnside]] yang membahas tentang [[teori representasi]] dari grup terhingga, karya [[Richard Brauer]] yang membahas tentang [[teori representasi modular]] dan karya milik [[Issai Schur]].{{sfn|Curtis|2003}} Teori grup Lie, dan lebih umumnya adalah [[grup kompak lokal]] (''locally compact group'') dikaji oleh [[Hermann Weyl]], [[Élie Cartan]] dan banyak matematikawan lainnya.{{sfn|Mackey|1976}} Pasangan teorinya, teori [[grup aljabar]], dikembangkan oleh [[Claude Chevalley]] di akhir tahun 1930-an, dan kemudian dilanjutkan oleh [[Armand Borel]] dan [[Jacques Tits]].{{sfn|Borel|2001}}
== Konsekuensi elementer dari aksioma grup ==
Fakta dasar tentang semua grup yang diperoleh langsung dari aksioma grup biasanya dimasukkan dalam ''teori grup elementer''.<ref>{{Harvard citations|last = Ledermann|year = 1953|loc = §1.2, pp. 4–5|nb = yes}}</ref> Sebagai contoh, penerapan aksioma asosiatif yang [[Induksi matematika|berulang]] menunjukkan bahwa notasi yang rtidak ambigu dari<math display="block">a \cdot b \cdot c = (a \cdot b) \cdot c = a \cdot (b \cdot c)</math>memperumum lebih dari tiga faktor. Karena notasi tersebut menyiratkan bahwa tanda kurung dapat disisipkan di mana saja di suku-suku tersebut, tanda kurung biasanya dihilangkan.{{sfn|Ledermann|1973|loc=§I.1|p=3}}
Aksioma yang terpisah dapat dilemahkan untuk menegaskan hanya keberadaan [[Elemen identitas|identitas kiri]] dan [[Elemen invers|invers kiri]]. Berdasarkan <nowiki>''aksioma sepihak''</nowiki> ini, dapat dibuktikan bahwa identitas kiri juga merupakan identitas kanan, dan begitupula untuk invers kiri yang juga merupakan invers kanan untuk elemen yang sama. Karena identitas beserta inversnya mendefinisikan struktur yang sama seperti grup, aksioma tersebut tidak menjadi lemah.<ref>{{Harvard citations|nb = yes|last = Lang|year = 2002|loc = §I.2, p. 7}}</ref>
===
Aksioma grup mengimplikasikan bahwa elemen identitas adalah tunggal: jika <math>e</math> dan <math>f</math>adalah elemen identitas dari suatu grup, maka <math>e = e \cdot f = f</math>. Oleh karena itu, sangat lazim untuk membahas mengenai identitas.{{sfn|Lang|2005|loc=§II.1|p=17}}
=== Ketunggalan dari invers ===
Aksioma grup mengimplikasikan bahwa invers (atau kebalikan) dari setiap elemen adalah tunggal: jika elemen grup <math>a</math> memiliki <math>b</math> dan <math>c</math> yang merupakan invers, maka
:{|
|''<math>b</math>'' ||<math>=</math>||<math>b \cdot e</math>|| ||karena ''<math>e</math>'' adalah elemen identitas
|-
| ||<math>=</math>||<math>b \cdot (a \cdot c)</math>|| ||karena <math>c</math> adalah invers dari <math>a</math>, sehingga <math>e = a \cdot c</math>
|-
| ||<math>=</math>||<math>(b \cdot a) \cdot c</math>|| ||berdasarkan sifat asosiatif, yang memungkinkan penyusunan ulang tanda kurung
|-
| ||<math>=</math>||<math>e \cdot c</math>|| ||karena <math>b</math> adalah invers dari <math>a</math>, sehingga <math>b \cdot a = e</math>
|-
| ||<math>=</math>||<math>c</math>|| || karena ''<math>e</math>'' adalah elemen identitas.
|}
Oleh karena itu, sangat lazim untuk membahas mengenai ''invers'' dari suatu elemen.{{sfn|Lang|2005|loc=§II.1|p=17}}
=== Pembagian ===
Diberikan elemen <math> a </math> dan <math> b </math> dari grup <math> G </math>, maka terdapat solusi tunggal <math> x </math> dalam <math> G </math> untuk persamaan <math> a \cdot x = b </math>, yaitu <math> a^{-1} \cdot b </math>. (Biasanya notasi seperti <math> b/a </math> dihindari , kecuali jika <math> G </math> adalah abelian, karena notasi tersebut dapat berarti <math> a^{-1} \cdot b </math> atau <math> b \cdot a^{-1}</math>.){{sfn|Artin|2018|p=40}} Oleh karena itu, untuk setiap <math> a </math> dalam <math> G </math>, fungsi <math> G \to G </math> yang memetakan <math> x \to a \cdot x </math> adalah [[bijeksi|bijektif]]; itu disebut ''perkalian kiri dengan <math> a </math>'' atau ''translasi kiri dengan <math> a </math>''. Dengan cara yang serupa, diberikan <math> a </math> dan <math> b </math>, maka solusi tunggal untuk <math> x \cdot a = b </math> adalah <math> b \cdot a^{-1} </math>. Untuk setiap <math> a </math>, fungsi elemen <math> a </math> dan <math> b </math> yang memetakan <math> x \to x \cdot a </math> adalah bijektif yang disebut ''perkalian kanan dengan <math> a </math>'' atau ''translasi kanan dengan <math> a </math>''.
== Catatan==
{{reflist|group=lower-alpha}}
== Kutipan ==
{{Reflist}}
== Referensi ==
=== Referensi umum ===
{{refbegin|30em}}
* {{Citation
| last1=Artin
Baris 135 ⟶ 213:
| year=2018
}}, Chapter 2 contains an undergraduate-level exposition of the notions covered in this article.
* {{Citation |last=Cook |first=Mariana R. |year=2009 |title=Mathematicians: An Outer View of the Inner World |publisher=Princeton University Press |location=Princeton, N.J. |isbn=978-0-691-13951-7 |url=https://books.google.com/books?id=06h8NT77OgMC&q=Richard+Ewen+Borcherds&pg=PA24 |accessdate=2021-04-09 |archive-date=2023-08-09 |archive-url=https://web.archive.org/web/20230809114242/https://books.google.com/books?id=06h8NT77OgMC&q=Richard+Ewen+Borcherds&pg=PA24 |dead-url=no }}
* {{Citation | author-link=George G. Hall | last=Hall | first=G. G. | title=Applied
* {{Citation | last1=Herstein | first1=Israel Nathan |author-link1 = Israel Nathan Herstein | title=Abstract
* {{Citation | last1=Herstein | first1=Israel Nathan | title=Topics in
* {{Lang Algebra}}<!-- Don't add a fullstop here: it breaks the layout! -->
* {{Citation | last1=Lang | first1=Serge | title=Undergraduate Algebra | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | isbn=978-0-387-22025-3 | year=2005}}.
* {{Citation | last1=Ledermann | first1=Walter | title=Introduction to the
* {{Citation | last1=Ledermann | first1=Walter | title=Introduction to
* {{Citation | last1=Robinson | first1=Derek John Scott | title=A
{{refend}}
=== Referensi khusus ===
{{refbegin|30em}}
* {{Citation | last1=Artin | first1=Emil | author1-link=Emil Artin | title=Galois Theory | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-62342-9 | year=1998}}.
* {{Citation | last1=Aschbacher | first1=Michael | author1-link
* {{Citation|title=Category Theory| last
* {{Citation|title=Biphenyl and bimesityl tetrasulfonic acid – new linker molecules for coordination polymers|first1=Florian|last1=Behler|first2=Mathias S.|last2= Wickleder|first3=Jens|last3=Christoffers|doi=10.3998/ark.5550190.p008.911|journal=Arkivoc|year=2014|volume=2015|issue=2|pages=64–75|doi-access=free}}
* {{citation |title=The Jahn–Teller Effect |first=Isaac |last=Bersuker |isbn=0-521-82212-2 |publisher=Cambridge University Press |year=2006 |url=https://archive.org/details/jahntellereffect0000bers/page/2 }}.
* {{Citation | last1=Besche | first1=Hans Ulrich | last2=Eick | first2=Bettina | last3=O'Brien | first3=E. A. | title=The groups of order at most 2000 | url=https://www.ams.org/era/2001-07-01/S1079-6762-01-00087-7/home.html | mr=1826989 | year=2001 | journal=Electronic Research Announcements of the American Mathematical Society | volume=7 | pages=1–4 | doi=10.1090/S1079-6762-01-00087-7 | doi-access=free | accessdate=2023-03-10 | archive-date=2009-08-27 | archive-url=https://web.archive.org/web/20090827060744/http://www.ams.org/era/2001-07-01/S1079-6762-01-00087-7/home.html | dead-url=no }}.
* {{Citation | last1=
* {{Citation | last1=Borel | first1=Armand | author1-link=Armand Borel | title=Linear Algebraic Groups | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=2nd | series=Graduate Texts in Mathematics | isbn=978-0-387-97370-8 | mr=1102012 | year=1991 | volume=126}}.
* {{Citation | last1=Carter | first1=Roger W. | author1-link=Roger Carter (mathematician) | title=Simple Groups of Lie Type | publisher=[[John Wiley & Sons]] | location=New York | isbn=978-0-471-50683-6 | year=1989}}.
* {{Citation | title=The Jahn–Teller Effect in C60 and Other Icosahedral Complexes|first1=C. C.|last1= Chancey|first2=M. C. M.|last2=O'Brien|year=2021|isbn=978-0-691-22534-0|publisher=Princeton University Press}}
* {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Delgado Friedrichs | first2=Olaf | last3=Huson | first3=Daniel H. | last4=Thurston | first4=William P. | author4-link=William Thurston | title=On three-dimensional space groups | arxiv=math.MG/9911185 | mr=1865535 | year=2001 | journal=Beiträge zur Algebra und Geometrie | volume=42 | issue=2 | pages=475–507}}.
* {{Citation | last1=Coornaert | first1=M. | last2=Delzant | first2=T. | last3=Papadopoulos | first3=A. | title=Géométrie et théorie des groupes [Geometry and Group Theory]| publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-52977-4 | mr=1075994 | year=1990 | volume=1441|language=fr}}.
* {{Citation | last1=Denecke | first1=Klaus | last2=Wismath | first2=Shelly L. | title=Universal
* {{citation |title=Structure and Dynamics: An Atomic View of Materials |first=Martin T|last= Dove |page=265 |isbn=0-19-850678-3 |publisher=Oxford University Press |year=2003 }}.
* {{Citation |last=Dudek |first=Wiesław A. |title=On some old and new problems in {{mvar|n}}<!-- not math so it appears correctly colored in the linked title -->-ary groups |journal=Quasigroups and Related Systems |year=2001 |volume=8 |pages=15–36 |mr=1876783 |url=https://ibn.idsi.md/sites/default/files/imag_file/15-36_On%20some%20old%20and%20new%20problems%20in%20n-ary%20groups.pdf |accessdate=2023-03-10 |archive-date=2021-07-26 |archive-url=https://web.archive.org/web/20210726223722/https://ibn.idsi.md/sites/default/files/imag_file/15-36_On%20some%20old%20and%20new%20problems%20in%20n-ary%20groups.pdf |dead-url=no }}.
* {{Citation|title=Stereochemistry of Organic Compounds|last1=Eliel|first1=Ernest|last2=Wilen|first2=Samuel|last3=Mander|first3=Lewis|year=1994 |isbn=978-0-471-01670-0 |publisher=Wiley}}
* {{citation | last = Ellis | first = Graham | contribution = 6.4 Triangle groups | doi = 10.1093/oso/9780198832973.001.0001 | isbn = 978-0-19-883298-0 | mr = 3971587 | pages = 441–444 | publisher = Oxford University Press | title = An Invitation to Computational Homotopy | year = 2019}}.
* {{Citation | author-link=Robert Frucht | last1=Frucht | first1=R. | title=Herstellung von Graphen mit vorgegebener abstrakter Gruppe [Construction of graphs with prescribed group] | url=http://www.numdam.org/numdam-bin/fitem?id=CM_1939__6__239_0 | year=1939 | journal=Compositio Mathematica | volume=6 | pages=239–50 | language=de | url-status=dead | archive-url=https://web.archive.org/web/20081201083831/http://www.numdam.org/numdam-bin/fitem?id=CM_1939__6__239_0 | archive-date=2008-12-01 }}.
* {{Citation| last1 = Fulton| first1 = William| author1-link = William Fulton (mathematician)| last2 = Harris| first2 = Joe| author2-link = Joe Harris (mathematician)| year = 1991| title = Representation Theory: A First Course| publisher = Springer-Verlag| location = New York| series = [[Graduate Texts in Mathematics]], Readings in Mathematics| volume = 129| isbn = 978-0-387-97495-8| mr = 1153249}}
* {{Citation| last = Goldstein | first = Herbert | author-link = Herbert Goldstein | year = 1980 | title = [[Classical Mechanics (textbook)|Classical Mechanics]] | edition = 2nd | publisher = Addison-Wesley Publishing | location = Reading, MA | isbn = 0-201-02918-9 | pages = 588–596}}.
* {{
* {{Citation | last1=Hatcher | first1=Allen | author-link=Allen Hatcher | title=Algebraic Topology | url=http://www.math.cornell.edu/~hatcher/AT/ATpage.html | publisher=[[Cambridge University Press]] | isbn=978-0-521-79540-1 | year=2002 | accessdate=2021-01-30 | archive-date=2012-02-06 | archive-url=https://web.archive.org/web/20120206155217/http://www.math.cornell.edu/~hatcher/AT/ATpage.html | dead-url=no }}.
* {{Citation | last1=Husain | first1=Taqdir | title=Introduction to Topological Groups | publisher=W.B. Saunders Company | location=Philadelphia | isbn=978-0-89874-193-3 | year=1966}}
* {{Citation | last1 = Jahn | first1=H.| author1-link=Hermann Arthur Jahn|last2=Teller|first2=E.|author2-link=Edward Teller| title = Stability of
* {{Citation | last1=Kuipers | first1=Jack B. | title=Quaternions and
* {{Citation | last1=Kuga | first1=Michio | author-link=Michio Kuga | title=Galois'
* {{Citation | last1=Kurzweil | first1=Hans | last2=Stellmacher | first2=Bernd | title=The
* {{Citation | last1=Lay | first1=David | title=Linear Algebra and Its Applications | publisher=[[Addison-Wesley]] | isbn=978-0-201-70970-4 | year=2003}}.
* {{Citation | last1=Mac Lane | first1=Saunders | author1-link=Saunders Mac Lane | title=[[Categories for the Working Mathematician]] | publisher=Springer-Verlag | location=Berlin, New York | edition=2nd | isbn=978-0-387-98403-2 | year=1998}}.
* {{citation |author-link=Wilhelm Magnus |first1=Wilhelm |last1=Magnus |first2=Abraham |last2=Karrass |first3=Donald |last3=Solitar |title=Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations |url=https://books.google.com/books?id=1LW4s1RDRHQC&pg=PR2 |year=2004 |orig-year=1966 |publisher=Courier |isbn=978-0-486-43830-6 }}
* {{Citation|url=https://mathscinet.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=20&co6=AND&pg7=ALLF&s7=&co7=AND&dr=pubyear&yrop=eq&arg3=2020&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&review_format=html&Submit=Suche|title=List of papers reviewed on MathSciNet on "Group theory and its generalizations" (MSC code 20), published in 2020|url-access=registration|access-date=14 May 2021|last=MathSciNet|year=2021}}
* {{Citation | last1=
* {{Citation | last1=
* {{Citation | last1=Mumford | first1=David | author1-link=David Mumford | last2=Fogarty | first2=J. | last3=Kirwan | first3=F. | title=Geometric Invariant Theory | publisher=Springer-Verlag | location=Berlin, New York | edition=3rd | isbn=978-3-540-56963-3 | mr=1304906 | year=1994 | volume=34}}.
* {{Citation | last1=Naber | first1=Gregory L. | title=The Geometry of Minkowski Spacetime | publisher=Dover Publications | location=New York | isbn=978-0-486-43235-9 | mr=2044239 | year=2003}}.
* {{Citation | last = Neukirch| first = Jürgen| author-link = Jürgen Neukirch| title = Algebraic Number Theory| publisher = Springer-Verlag| location = Berlin| series = {{lang|de|Grundlehren der mathematischen Wissenschaften}}| isbn = 978-3-540-65399-8| mr = 1697859| zbl = 0956.11021 | year = 1999| volume = 322}}
* {{Citation | last1=Romanowska | first1=A. B.|author1-link=Anna Romanowska | last2=Smith | first2=J. D. H. | title=Modes | publisher=[[World Scientific]] | isbn=978-981-02-4942-7 | year=2002}}.
* {{Citation | last1=Ronan | first1=Mark | author1-link= Mark Ronan|title=Symmetry and the Monster: The Story of One of the Greatest Quests of Mathematics | publisher=[[Oxford University Press]] | isbn=978-0-19-280723-6 | year=2007}}.
* {{Citation | last1=Rosen | first1=Kenneth H. | title=Elementary
* {{Citation| last = Rudin | first = Walter | author-link = Walter Rudin | title = Fourier Analysis on Groups|publisher=Wiley-Blackwell|series=Wiley Classics|year=1990|isbn=0-471-52364-X}}.
* {{Citation | last1=Seress | first1=Ákos | title=An
* {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Linear
* {{Citation |
* {{Citation | last1=Shatz | first1=Stephen S. | title=Profinite Groups, Arithmetic, and Geometry | publisher=Princeton University Press | isbn=978-0-691-08017-8 | mr=0347778 | year=1972}}
* {{Citation|title=An Introduction to Theoretical Chemistry |last1=Simons|first1=Jack|isbn=978-0-521-53047-7|year=2003|publisher=Cambridge University Press}}
* {{Citation|last1=Solomon|first1=Ronald|title=The classification of finite simple groups: A progress report|journal=Notices of the AMS|year=2018|volume=65|issue=6|page=1|doi=10.1090/noti1689|doi-access=free}}
* {{Citation|last=Stewart |first=Ian |author-link=Ian Stewart (mathematician) |title=Galois Theory |edition=4th |publisher=CRC Press |year=2015 |isbn=978-1-4822-4582-0}}
* {{Citation|last = Suzuki|first= Michio|author-link = Michio Suzuki (mathematician)|title = On the lattice of subgroups of finite groups|journal = [[Transactions of the American Mathematical Society]]| volume = 70| issue = 2| year = 1951| pages = 345–371| doi = 10.2307/1990375|jstor = 1990375|doi-access = free}}.
* {{Citation | last1=Warner | first1=Frank | title=Foundations of Differentiable Manifolds and Lie Groups | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-0-387-90894-6 | year=1983}}.
* {{Weibel IHA|mode=cs2}}
* {{Citation | last1=Weinberg | first1=Steven | author1-link=Steven Weinberg | title=Gravitation and Cosmology | publisher=John Wiley & Sons | location=New York | year=1972 | isbn=0-471-92567-5 | url=https://archive.org/details/gravitationcosmo00stev_0 }}.
* {{Citation | last1=Welsh | first1=Dominic | title=Codes and
* {{Citation | last1=Weyl | first1=Hermann | author1-link=Hermann Weyl | title=Symmetry | publisher=Princeton University Press | isbn=978-0-691-02374-8 | year=1952}}.
* {{Citation |title=Quantum Field Theory in a Nutshell|title-link=Quantum Field Theory in a Nutshell |first=A.|last=Zee |author-link=Anthony Zee |date=2010|edition=second |publisher=Princeton University Press|isbn=978-0-691-14034-6|location=Princeton, N.J.|oclc=768477138}}
{{refend}}
===
{{See also|
{{refbegin|30em}}
* {{Citation | last1=Borel | first1=Armand | author1-link=Armand Borel | title=Essays in the History of Lie Groups and Algebraic Groups | publisher=[[American Mathematical Society]] | location=Providence, R.I. | isbn=978-0-8218-0288-5 | year=2001}}
* {{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title=The
* {{MacTutor | id=Development_group_theory | class=HistTopics | title = The development of group theory}}
* {{Citation | last1=Curtis | first1=Charles W. | author-link = Charles W. Curtis | title=Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer | publisher=American Mathematical Society | location=Providence, R.I. | series=History of Mathematics | isbn=978-0-8218-2677-5 | year=2003}}.
* {{Citation | last1=von Dyck | year=1882 | first1=Walther | author1-link=Walther von Dyck | title=Gruppentheoretische Studien (Group-theoretical
* {{Citation | last1=Galois | first1=Évariste | author1-link=Évariste Galois | editor1-last=Tannery | editor1-first=Jules | title=Manuscrits de Évariste Galois [Évariste Galois' Manuscripts] | url=http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAN9280 | publisher=Gauthier-Villars | location=Paris | year=1908 | language=fr | accessdate=2021-01-30 | archive-date=2011-05-21 | archive-url=https://web.archive.org/web/20110521005315/http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAN9280 | dead-url=no }} (Galois work was first published by [[Joseph Liouville]] in 1843).
* {{Citation | last1=Jordan | first1=Camille | author-link=Camille Jordan | title=Traité des substitutions et des équations algébriques [Study of Substitutions and Algebraic Equations] | url=https://archive.org/details/traitdessubstit00jordgoog | publisher=Gauthier-Villars | location=Paris | year=1870 | language=fr }}.
* {{Citation | doi=10.2307/2690312 | last1=Kleiner | first1=Israel | author-link=Israel Kleiner (mathematician) | title=The
* {{Citation | last1=Lie | first1=Sophus | author1-link=Sophus Lie | title=Gesammelte Abhandlungen. Band 1 [Collected papers. Volume 1] | publisher=Johnson Reprint Corp. | location=New York | mr=0392459 | year=1973|language=de}}.
* {{Citation | last1=Mackey | first1=George Whitelaw | author1-link=George Mackey | title=The
* {{Citation | last1=Smith | first1=David Eugene | author1-link=David Eugene Smith | title=History of Modern Mathematics | url=https://www.gutenberg.org/ebooks/8746 | series=Mathematical Monographs, No. 1 | year=1906 | accessdate=2021-01-30 | archive-date=2023-06-04 | archive-url=https://web.archive.org/web/20230604193407/https://www.gutenberg.org/ebooks/8746 | dead-url=no }}.
* {{Citation | last=Weyl | first=Hermann | author-link=Hermann Weyl |title=The Theory of Groups and Quantum Mechanics |publisher=Dover |orig-year=1931 | year = 1950 | translator-first=H. P. |translator-last=Robertson | isbn = 978-0-486-60269-1}}.
* {{Citation | last1=Wussing | first1=Hans | author-link=Hans Wussing | title=The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-45868-7 | year=2007}}.
{{refend}}
== Pranala luar ==
Baris 210 ⟶ 309:
{{DEFAULTSORT:Group (Mathematics)}}
[[Kategori:Matematika]]
[[Kategori:Struktur aljabar]]
|