Protein: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
OjayzFawayz (bicara | kontrib) k →Struktur: penambahan literatur |
k Membatalkan 1 suntingan oleh 2001:448A:50E0:3239:11B1:9D4C:7D3C:9037 (bicara) ke revisi terakhir oleh Helito Tag: Pembatalan |
||
(8 revisi perantara oleh 6 pengguna tidak ditampilkan) | |||
Baris 8:
Bersama dengan biomolekul raksasa lainnya seperti [[polisakarida]] dan [[asam nukleat]], protein merupakan bagian esensial dari organisme dan terlibat dalam hampir seluruh proses di dalam [[Sel (biologi)|sel]]. Sebagian protein adalah [[enzim]] yang berfungsi sebagai [[Katalisis|katalis]] dalam reaksi-reaksi biokimia dan bersifat vital untuk [[metabolisme]]. Sebagian protein memiliki fungsi pembentuk atau penguat, misalnya protein [[aktin]] dan [[miosin]] dalam otot dan protein-protein dalam [[sitoskeleton]]. Protein-protein lainnya memiliki peran penting dalam [[persinyalan sel]], [[respons imun]], [[adhesi sel]], dan [[siklus sel]]. Hewan memerlukan protein dalam makanannya untuk memperoleh [[asam amino esensial]] yang tidak bisa [[Sintesis asam amino|disintesis]] di dalam tubuh. [[Sistem pencernaan]] memecah protein dari makanan untuk dapat digunakan dalam metabolisme.
Protein dapat [[Pemurnian protein|dimurnikan]] dari komponen seluler lainnya menggunakan berbagai teknik seperti [[ultrasentrifugasi]], [[Reaksi pengendapan|presipitasi]], [[elektroforesis]], dan [[kromatografi]]. [[Rekayasa genetika]] memungkinkan sejumlah metode untuk memfasilitasi pemurnian ini. Metode yang biasa
== Sejarah dan etimologi ==
Protein dikenali sebagai kelompok [[biomolekul]] pada abad kedelapan belas oleh [[Antoine François, comte de Fourcroy|Antoine Fourcroy]] dan lain-lain, yang dicirikan oleh kemampuannya untuk melakukan [[Penggumpalan darah|koagulasi]] atau [[flokulasi]] di bawah perlakuan dengan panas atau asam.<ref>[[Thomas Burr Osborne (ahli kimia)|Thomas Burr Osborne]] (1909): [[iarchive:vegetableprotein00osbouoft|The Vegetable Proteins]] , History pp 1 to 6, dari [[Internet Archive|archive.org]]</ref> Contoh yang tercatat pada saat itu adalah albumin dari [[putih telur]], [[albumin]] dalam serum darah, [[fibrin]], dan [[gluten]] gandum.
Protein pertama kali dijelaskan oleh kimiawan Belanda [[Gerardus Johannes Mulder]] dan dinamai oleh ahli kimia Swedia [[Jöns Jakob Berzelius|Jöns Jacob Berzelius]] pada tahun 1838.<ref name="Mulder1938">{{Cite journal|year=1838|title=Sur la composition de quelques substances animales|url=https://archive.org/stream/bulletindesscien00leyd#page/104/mode/2up|journal=Bulletin des Sciences Physiques et Naturelles en Néerlande|pages=104|vauthors=Mulder GJ}}</ref><ref name="Hartley">{{Cite journal|last=Harold|first=Hartley|year=1951|title=Origin of the Word 'Protein.'|journal=Nature|volume=168|issue=4267|pages=244|bibcode=1951Natur.168..244H|doi=10.1038/168244a0|pmid=14875059}}</ref> Mulder melakukan analisis unsur terhadap protein umum dan menemukan bahwa hampir semua protein memiliki [[rumus empiris]] yang sama, yaitu C<sub>400</sub>H<sub>620</sub>N<sub>100</sub>O<sub>120</sub>P<sub>1</sub>S<sub>1</sub>.<ref name="Perrett2007">{{cite journal|date=August 2007|title=From 'protein' to the beginnings of clinical proteomics|journal=Proteomics: Clinical Applications|volume=1|issue=8|pages=720–38|doi=10.1002/prca.200700525|pmid=21136729|vauthors=Perrett D|s2cid=32843102}}</ref> Ia sampai pada kesimpulan yang salah bahwa mereka mungkin terdiri dari satu jenis molekul (sangat besar). Istilah "protein" untuk menggambarkan molekul-molekul ini diajukan oleh rekan Mulder, Berzelius; protein berasal dari kata [[Bahasa Yunani|Yunani]] πρώτειος (''proteios''), yang berarti "primer",<ref>''New Oxford Dictionary of English''</ref> "di depan", atau "berdiri di depan",<ref name="Reynolds2003">{{cite book|vauthors=Reynolds JA, Tanford C|year=2003|title=Nature's Robots: A History of Proteins (Oxford Paperbacks)|url=https://archive.org/details/naturesrobotshis0000tanf_g4d8|location=New York, New York|publisher=Oxford University Press|isbn=978-0-19-860694-9|page=[https://archive.org/details/naturesrobotshis0000tanf_g4d8/page/15 15]}}</ref> ditambah akhiran ''[[wiktionary:-in#Suffix|-in]]''. Mulder selanjutnya mengidentifikasi produk degradasi protein seperti [[asam amino]] [[Leusina|leusin]] yang ia temukan dengan berat molekul (hampir benar) 131 [[Dalton (satuan)|Da]].<ref name="Perrett2007" /> Sebelum "protein", nama lainnya telah digunakan, seperti "albumin" atau "bahan albumin" (''Eiweisskörper'', dalam bahasa Jerman).<ref>Reynolds and Tanford (2003).</ref>
Ilmuwan nutrisi awal seperti [[Carl von Voit]] dari Jerman percaya bahwa protein adalah nutrisi terpenting untuk menjaga struktur tubuh karena secara umum diyakini bahwa "daging membuat daging."<ref name="Bischoff1860">{{cite book|vauthors=Bischoff TL, Voit C|year=1860|title=Die Gesetze der Ernaehrung des Pflanzenfressers durch neue Untersuchungen festgestellt|location=Leipzig, Heidelberg|language=de}}</ref> [[Karl Heinrich Ritthausen]] memperluas bentuk protein yang diketahui dengan mengidentifikasi [[asam glutamat]]. Di [[Stasiun Percobaan Pertanian Connecticut]], tinjauan terperinci tentang protein nabati dikumpulkan oleh [[Thomas Burr Osborne (ahli kimia)|Thomas Burr Osborne]]. Ia bekerja dengan [[Lafayette Mendel]] dan menerapkan [[hukum minimum Liebig]] dalam memberi makan [[tikus laboratorium]], sehingga adanya [[asam amino esensial]] pun diketahui. Pekerjaan ini dilanjutkan dan dikomunikasikan oleh [[William Cumming Rose]]. Pemahaman tentang protein sebagai [[Peptida|polipeptida]] muncul melalui karya [[Franz Hofmeister]] dan [[Emil Fischer|Hermann Emil Fischer]] pada tahun 1902.<ref>{{Cite web|title=Hofmeister, Franz|url=http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/hofmeister-franz|publisher=encyclopedia.com|archive-url=https://web.archive.org/web/20170405073423/http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/hofmeister-franz|archive-date=5 April 2017|access-date=4 April 2017|url-status=live}}</ref><ref>{{Cite web|title=Protein, section: Classification of protein|url=https://www.britannica.com/science/protein/Conformation-of-proteins-in-interfaces#ref593795|publisher=britannica.com|archive-url=https://web.archive.org/web/20170404225132/https://www.britannica.com/science/protein/Conformation-of-proteins-in-interfaces#ref593795|archive-date=4 April 2017|access-date=4 April 2017|url-status=live}}</ref> Peran sentral protein sebagai [[enzim]] dalam organisme hidup tidak sepenuhnya diapresiasi sampai tahun 1926 ketika [[James Batcheller Sumner|James B. Sumner]] menunjukkan bahwa enzim [[urease]] sebenarnya adalah protein.<ref name="Sumner1926">{{cite journal|author=Sumner JB|year=1926|title=The isolation and crystallization of the enzyme urease. Preliminary paper|url=http://www.jbc.org/content/69/2/435.full.pdf+html|format=PDF|journal=Journal of Biological Chemistry|volume=69|issue=2|pages=435–41|archive-url=https://web.archive.org/web/20110325104920/http://www.jbc.org/content/69/2/435.full.pdf+html|archive-date=2011-03-25|access-date=2011-01-16|url-status=live}}</ref>
Baris 21:
[[Linus Carl Pauling|Linus Pauling]] dianggap sukses dalam memperkirakan [[struktur sekunder]] protein biasa berdasarkan [[ikatan hidrogen]], sebuah ide yang pertama kali dikemukakan oleh [[William Astbury]] pada tahun 1933.<ref name="Pauling1951">{{cite journal|date=May 1951|title=Atomic coordinates and structure factors for two helical configurations of polypeptide chains|url=http://www.pnas.org/site/misc/Protein8.pdf|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=37|issue=5|pages=235–40|bibcode=1951PNAS...37..235P|doi=10.1073/pnas.37.5.235|pmc=1063348|pmid=14834145|archive-url=https://web.archive.org/web/20121128101620/http://www.pnas.org/site/misc/Protein8.pdf|archive-date=2012-11-28|access-date=2009-04-14|vauthors=Pauling L, Corey RB|url-status=live}}</ref> Belakangan, karya [[Walter Kauzmann]] tentang [[denaturasi]],<ref name="Kauzmann1956">{{cite journal|date=May 1956|title=Structural factors in protein denaturation|journal=Journal of Cellular Physiology|volume=47|issue=Suppl 1|pages=113–31|doi=10.1002/jcp.1030470410|pmid=13332017|vauthors=Kauzmann W}}</ref><ref name="Kauzmann1959">{{Cite book|vauthors=Kauzmann W|year=1959|title=Advances in Protein Chemistry Volume 14|isbn=978-0-12-034214-3|series=Advances in Protein Chemistry|volume=14|pages=1–63|chapter=Some factors in the interpretation of protein denaturation|doi=10.1016/S0065-3233(08)60608-7|pmid=14404936}}</ref> yang sebagian didasarkan pada penelitian sebelumnya oleh [[Kaj Ulrik Linderstrøm-Lang|Kaj Linderstrøm-Lang]],<ref name="Kalman1955">{{cite journal|date=February 1955|title=Degradation of ribonuclease by subtilisin|journal=Biochimica et Biophysica Acta|volume=16|issue=2|pages=297–99|doi=10.1016/0006-3002(55)90224-9|pmid=14363272|vauthors=Kalman SM, Linderstrøm-Lang K, Ottesen M, Richards FM}}</ref> memberi pemahaman tentang [[pelipatan protein]] dan struktur yang dimediasi oleh [[Inti hidrofobik|interaksi hidrofobik]].
Protein pertama yang [[Pengurutan protein|diurutkan]] adalah [[insulin]], oleh [[Frederick Sanger]], pada
[[Struktur protein]] pertama yang diketahhui adalah [[hemoglobin]] dan [[mioglobin]], masing-masing oleh [[Max F. Perutz|Max Perutz]] dan [[John Kendrew|Sir John Cowdery Kendrew]], pada tahun 1958.<ref name="Muirhead1963">{{cite journal|date=August 1963|title=Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution|journal=Nature|volume=199|issue=4894|pages=633–38|bibcode=1963Natur.199..633M|doi=10.1038/199633a0|pmid=14074546|vauthors=Muirhead H, Perutz MF|s2cid=4257461}}</ref><ref name="Kendrew1958">{{cite journal|date=March 1958|title=A three-dimensional model of the myoglobin molecule obtained by x-ray analysis|journal=Nature|volume=181|issue=4610|pages=662–66|bibcode=1958Natur.181..662K|doi=10.1038/181662a0|pmid=13517261|vauthors=Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC|s2cid=4162786}}</ref> {{As of|2017}}, [[Protein Data Bank|Bank Data Protein]] memiliki lebih dari 126.060 struktur protein dengan resolusi atomik.<ref name="urlRCSB Protein Data Bank">{{cite web|title=RCSB Protein Data Bank|url=http://www.rcsb.org/pdb/home/home.do|archive-url=https://web.archive.org/web/20150418160606/http://www.rcsb.org/pdb/home/home.do|archive-date=2015-04-18|access-date=2017-01-19|url-status=dead}}</ref> Baru-baru ini, mikroskop krio-elektron terhadap [[Perakitan makromolekul|kumpulan makromolekul]] besar<ref name="Zhou2008">{{cite journal|date=April 2008|title=Towards atomic resolution structural determination by single-particle cryo-electron microscopy|journal=Current Opinion in Structural Biology|volume=18|issue=2|pages=218–28|doi=10.1016/j.sbi.2008.03.004|pmc=2714865|pmid=18403197|vauthors=Zhou ZH}}</ref> dan [[prediksi struktur protein]] komputasional terhadap [[Domain struktural|domain]] protein kecil<ref name="Keskin2008">{{cite journal|date=April 2008|title=Characterization and prediction of protein interfaces to infer protein-protein interaction networks|journal=Current Pharmaceutical Biotechnology|volume=9|issue=2|pages=67–76|doi=10.2174/138920108783955191|pmid=18393863|vauthors=Keskin O, Tuncbag N, Gursoy A}}</ref> adalah dua metode yang mendekati resolusi atomik.
Baris 36:
=== Interaksi ===
Protein dapat berinteraksi dengan banyak jenis molekul, termasuk dengan protein lain, dengan lipid, dengan karbohidrat, dan dengan DNA.<ref>{{Cite journal|last=Ardejani|first=Maziar S.|last2=Powers|first2=Evan T.|last3=Kelly|first3=Jeffery W.|date=2017|title=Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities|journal=Accounts of Chemical Research|volume=50|issue=8|pages=1875–82|doi=10.1021/acs.accounts.7b00195|issn=0001-4842|pmc=5584629|pmid=28723063}}</ref><ref>{{Cite book|vauthors=Branden C, Tooze J|year=1999|title=Introduction to Protein Structure|location=New York|publisher=Garland Pub|isbn=978-0-8153-2305-1}}</ref><ref>{{Cite book|vauthors=Murray RF, Harper HW, Granner DK, Mayes PA, Rodwell VW|year=2006|title=Harper's Illustrated Biochemistry|url=https://archive.org/details/harpersillustrat0000unse_l8z7|location=New York|publisher=Lange Medical Books/McGraw-Hill|isbn=978-0-07-146197-9}}</ref><ref>{{Cite book|vauthors=Van Holde KE, Mathews CK|year=1996|url=https://archive.org/details/biochemistry00math|title=Biochemistry|location=Menlo Park, California|publisher=Benjamin/Cummings Pub. Co., Inc|isbn=978-0-8053-3931-4
=== Kelimpahan dalam sel ===
Baris 143:
=== Penentuan struktur ===
Penemuan struktur tersier dari suatu protein, atau struktur kuaterner dari kompleks protein, dapat memberikan petunjuk penting tentang bagaimana protein tersebut menjalankan fungsinya dan bagaimana fungsi ini dapat dipengaruhi, misalnya dalam [[Desain obat|mendesain obat]]. Karena protein [[Sistem terbatas difraksi|terlalu kecil untuk dilihat]] di bawah [[mikroskop cahaya]], metode lain harus digunakan untuk menentukan strukturnya. Metode eksperimental yang umum meliputi [[kristalografi sinar-X]] dan [[Protein NMR|spektroskopi NMR]], keduanya dapat menghasilkan informasi struktural pada resolusi [[atom]]ik. Eksperimen NMR mampu memberikan informasi dari mana subset jarak di antara pasangan atom dapat diperkirakan, dan kemungkinan konformasi akhir sebuah protein ditentukan dengan memecahkan masalah [[geometri jarak]]. [[Interferometri polarisasi ganda]] adalah metode analitik kuantitatif untuk mengukur [[Struktur protein|konformasi protein]] secara keseluruhan dan [[Perubahan konformasional|perubahan konformasi]] akibat interaksi atau rangsangan lainnya. Dikroisme sirkuler adalah teknik laboratorium lain untuk menentukan komposisi untiran-alfa atau lembaran-beta internal dari protein. [[Mikroskopi cryoelectron|Mikroskop krioelektron]] digunakan untuk menghasilkan informasi struktural beresolusi rendah tentang kompleks protein yang sangat besar, termasuk [[virus]] yang telah dirakit;<ref>Branden and Tooze, pp. 340–41.</ref> varian yang dikenal sebagai [[kristalografi elektron]] juga dapat menghasilkan informasi resolusi tinggi dalam beberapa kasus, terutama untuk kristal protein membran dua dimensi.<ref name="Gonen2005">{{cite journal|date=December 2005|title=Lipid-protein interactions in double-layered two-dimensional AQP0 crystals|journal=Nature|volume=438|issue=7068|pages=633–38|bibcode=2005Natur.438..633G|doi=10.1038/nature04321|pmc=1350984|pmid=16319884|vauthors=Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T}}</ref> Struktur yang diselesaikan biasanya disimpan di [[Protein Data Bank|Bank Data Protein]] (PDB), sumber daya yang tersedia secara bebas mengenai data struktural dari ribuan protein yang dapat diperoleh dalam bentuk [[Sistem koordinat Kartesius|koordinat Cartesian]] untuk setiap atom dalam protein.<ref name="Standley2008">{{cite journal|date=July 2008|title=Protein structure databases with new web services for structural biology and biomedical research|url=http://bib.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18430752|journal=Briefings in Bioinformatics|volume=9|issue=4|pages=276–85|doi=10.1093/bib/bbn015|pmid=18430752|archive-url=https://archive.
Urutan gen lebih banyak diketahui dibandingkan struktur protein. Lebih jauh, himpunan struktur protein yang terselesaikan cenderung bias terhadap protein yang dapat dengan mudah mengalami kondisi yang diperlukan untuk [[kristalografi sinar-X]], salah satu metode utama penentuan struktur protein. Secara khusus, protein globular secara komparatif mudah untuk [[Kristalisasi|mengkristal]] sebagai persiapan untuk kristalografi sinar-X. Sebaliknya, protein membran dan kompleks protein besar sulit untuk dikristalisasi dan kurang terwakili dalam PDB.<ref name="Walian2004">{{cite journal|year=2004|title=Structural genomics of membrane proteins|journal=Genome Biology|volume=5|issue=4|pages=215|doi=10.1186/gb-2004-5-4-215|pmc=395774|pmid=15059248|vauthors=Walian P, Cross TA, Jap BK}}</ref> [[Genomik struktural|Genomika struktural]] telah berusaha untuk memperbaiki kekurangan ini dengan secara sistematis memecahkan struktur perwakilan dari kelas-kelas lipatan utama. Metode [[prediksi struktur protein]] mencoba mencari cara untuk menghasilkan struktur yang masuk akal untuk protein yang strukturnya belum ditentukan secara eksperimental.<ref name="Sleator2012">{{Cite book|vauthors=Sleator RD|year=2012|title=Functional Genomics|isbn=978-1-61779-423-0|series=Methods in Molecular Biology|volume=815|pages=15–24|chapter=Prediction of protein functions|doi=10.1007/978-1-61779-424-7_2|pmid=22130980}}</ref>
Baris 155:
==== Gangguan protein dan prediksi tidak terstruktur ====
Banyak protein (pada eukariota ~33%) mengandung segmen besar yang tidak terstruktur tetapi berfungsi secara biologis dan dapat diklasifikasikan sebagai [[protein yang tidak teratur secara intrinsik]].<ref>{{Cite journal|date=March 2004|title=Prediction and functional analysis of native disorder in proteins from the three kingdoms of life|journal=Journal of Molecular Biology|volume=337|issue=3|pages=635–45|doi=10.1016/j.jmb.2004.02.002|pmid=15019783|vauthors=Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT}}</ref> Oleh karena itu, memprediksi dan menganalisis kelainan protein merupakan bagian penting dari karakterisasi struktur protein.<ref name="TompaFersht2009">{{Cite book|last=Tompa|first=Peter|last2=Fersht|first2=Alan|date=18 November 2009|url=https://books.google.com/books?id=GzuxFYrzfd4C|title=Structure and Function of Intrinsically Disordered Proteins|publisher=CRC Press|isbn=978-1-4200-7893-0|access-date=19 October 2016|archive-url=https://web.archive.org/web/20170419014403/https://books.google.com/books?id=GzuxFYrzfd4C|archive-date=19 April 2017|url-status=live}}</ref>
=== Analisis kimia ===▼
Jumlah kandungan nitrogen dari bahan organik terutama dibentuk oleh gugus amino dalam protein. Total Kjeldahl Nitrogen ([[Metode Kjeldahl|TKN]]) adalah ukuran nitrogen yang banyak digunakan dalam analisis air (limbah), tanah, makanan, pakan, dan bahan organik secara umum. Seperti namanya, [[metode Kjeldahl]] diterapkan untuk menganalisisnya. Meskipun demikian, metode lain yang lebih sensitif juga tersedia.<ref>{{Cite web
== Nutrisi ==
Baris 166 ⟶ 169:
Studi dari Biokimiawan USA Thomas Osborne [[Lafayete Mendel]], Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada [[kelinci]]. Satu grup kelinci-kelinci tersebut diberikan makanan [[protein hewani]], sedangkan grup yang lain diberikan [[protein nabati]]. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari [[University of California, Berkeley|Universitas Berkeley]] menunjukkan bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.{{Butuh rujukan}}
▲== Analisis kimia ==
▲Jumlah kandungan nitrogen dari bahan organik terutama dibentuk oleh gugus amino dalam protein. Total Kjeldahl Nitrogen ([[Metode Kjeldahl|TKN]]) adalah ukuran nitrogen yang banyak digunakan dalam analisis air (limbah), tanah, makanan, pakan, dan bahan organik secara umum. Seperti namanya, [[metode Kjeldahl]] diterapkan untuk menganalisisnya. Meskipun demikian, metode lain yang lebih sensitif juga tersedia.<ref>{{Cite web |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812630/ |title=Muñoz-Huerta et al. (2013) A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances |access-date=2020-12-14 |archive-date=2020-12-31 |archive-url=https://web.archive.org/web/20201231225351/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812630/ |dead-url=no }}</ref><ref>{{Cite web |url=https://cdnsciencepub.com/doi/pdf/10.4141/S01-054 |title=Martin et al. (2002) Determination of soil organic carbon and nitrogen at thefield level using near-infrared spectroscopy |access-date=2020-12-14 |archive-date=2020-11-05 |archive-url=https://web.archive.org/web/20201105144524/https://cdnsciencepub.com/doi/pdf/10.4141/S01-054 |dead-url=no }}</ref>
== Referensi ==
|