Efek pengacau: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
|||
(13 revisi perantara oleh 6 pengguna tidak ditampilkan) | |||
Baris 1:
'''Confounding''' (atau sering kali dikenal sebagai efek perancu/pengacau) merupakan bias yang bersumber dari proses pencampuran efek pajanan utama terhadap efek dari dampak risiko luar lainnya atau adanya variabel pengganggu yang digunakan sebagai perancu pada saat analisis yang bahkan tidak menggunakan metode yang tidak diperhitungkan.<ref name=":2">{{Cite web|last=Thomas|first=Lauren|date=2020|title=Understanding confounding variables|url=https://www.scribbr.com/methodology/confounding-variables/|website=www.scribbr.com|language=en-EN|access-date=2021-12-05}}</ref> Confounding juga diartikan sebagai isu yang penting untuk diperhatikan, karena kehadirannya dapat mempengaruhi ''p'' value dan besaran risiko yang dapat menyebabkan kesalahan dalam pengambilan keputusan.<ref name=":0" />
== Definisi dan
Confounding dalam [[bahasa Indonesia]] dapat diartikan sebagai variabel pengganggu, variabel pengacau ataupun variabel perancu.<ref>{{Cite web|last=UNAIR News|first=|date=2020|title=Confounding Variable's Haruskah Dibuang Begitu Saja?|url=http://news.unair.ac.id/2020/07/26/confounding-variable-s-haruskah-dibuang-begitu-saja/|website=news.unair.ac.id|language=id-ID|access-date=2021-12-05}}</ref>
[[Berkas:Modifier determinan.png|jmpl|Ilustasi peran modifikasi deteminan terhadap ''outcome'' (hasil)]]
Efek pengacau (''confounding'') adalah distorsi berupa efek dalam memprediksi hubungan atau asosiasi antara faktor pajanan (''exposure'') dan hasil (''outcome'')<ref>{{cite
Dalam istilah statistik, confounding juga variabel pengganggu, faktor pembaur, determinan asing dan atau variabel pembaur adalah variabel yang mempengaruhi variabel terikat dan variabel bebas sehingga menyebabkan asosiasi palsu. Pembaur yang dimaksud adalah [[Kausalitas|konsep kausal]] sehingga tidak dapat dijelaskan dalam hal korelasi atau hubungan.
== Ciri-ciri umum ==
Baris 22:
=== ''Confounding'' bukan sebagai paparan hasil dan paparan pajanan ===
Sebuah perancu tidak bisa menjadi perantara antara paparan dan hasilnya. Misalnya, hubungan antara diet dan penyakit jantung koroner dapat dijelaskan dengan mengukur kadar kolesterol serum. [[Kolesterol]] bukanlah pembaur atau perancu karena dapat menjadi hubungan sebab akibat antara diet dan penyakit jantung koroner.<ref name=":4" /> ''Confounding'' yang bukan sebagai paparan hasil dan paparan pajanan dapat diihat pada '''Gambar 4'''.
[[Berkas:Asosiasi-bukan-outcome-eksposur.png|pus|300x300px]]
Baris 40:
Berdasarkan persamaan berikut:{{NumBlk|:|<math>P(y \mid \text{do}(x)) \ne P(y \mid x)</math>|{{EquationRef|2}}}}Dikarenakan kuantitas pengamatan mengandung informasi tentang korelasi antara ''X'' dan ''Z'', dan kuantitas intervensi tidak (atau karena ''X'' tidak berkorelasi dengan ''Z'' dalam percobaan acak). Ahli statistik menginginkan estimasi yang tidak bias <math>P(y \mid \text{do}(x))</math>, tetapi dalam kasus di mana hanya data observasional yang tersedia, perkiraan yang tidak bias hanya dapat diperoleh dengan "menyesuaikan" untuk semua faktor pengganggu, yaitu dengan mengkondisikan berbagai nilai dan rerata hasilnya. Dalam kasus pembaur tunggal ''Z'', ini mengarah ke "rumus penyesuaian":{{Sfn|Pearl|2009|p=101}}{{NumBlk|:|<math>P(y \mid \text{do}(x)) = \sum_{z} P(y \mid x, z) P(z)</math>|{{EquationRef|3}}}}Dengan memberikan perkiraan yang tidak bias untuk efek kausal dari ''X'' pada ''Y''. Rumus penyesuaian yang sama bekerja ketika ada beberapa pembaur khusus. Dalam hal ini, pilihan set ''Z'' variabel yang akan menjamin perkiraan yang tidak bias harus dilakukan dengan hati-hati. Kriteria untuk pilihan variabel yang tepat disebut Pintu Belakang{{Sfn|Pearl|2009|p=127}} dan mensyaratkan bahwa himpunan ''Z yang'' dipilih "memblokir" (atau memotong) setiap jalan dari ''X'' ke ''Y'' yang diakhiri dengan panah ke X. Himpunan seperti itu disebut "Pintu Belakang dapat diterima" dan mencakup variabel yang bukan merupakan penyebab umum ''X'' dan ''Y'', tetapi hanya proksinya. Kembali ke contoh penggunaan narkoba, karena ''Z'' mematuhi persyaratan Pintu Belakang (yaitu, dikarenakan ia memotong satu jalur Pintu Belakang <math>X \leftarrow Z \rightarrow Y</math> ), rumus penyesuaian Pintu Belakang berlaku:{{NumBlk|:|<math>\begin{align}P(Y = \text{recovered}\mid \text{do}(x = \text{give drug})) = {} & P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{male}) P(Z = \text{male}) \\ & {} + P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{female}) P(Z = \text{female})\end{align}</math>|{{EquationRef|4}}}}Jadi, dengan cara ini dokter dapat memprediksi kemungkinan efek pemberian obat dari studi observasional di mana probabilitas bersyarat yang muncul di sisi kanan persamaan dapat diperkirakan dengan regresi.
Berlawanan dengan kepercayaan umum, menambahkan kovariat ke set penyesuaian ''Z'' dapat menimbulkan bias. Misalnya, pada tandingan yang khas terjadi ketika ''Z'' adalah efek umum dari ''X'' dan ''Y'',
Secara umum, pengganggu dapat dikendalikan dengan penyesuaian jika dan hanya jika ada satu set kovariat yang diamati yang memenuhi kondisi Pintu Belakang. Selain itu, jika ''Z'' adalah himpunan seperti itu, maka rumus penyesuaian Persamaan. (3) valid <4,5>. Kalkulus do Pearl memberikan kondisi tambahan di mana <math>P(y \mid \text{do}(x))</math> dapat diperkirakan, tanpa harus dengan rumus penyesuaian.<ref>{{Cite journal|last=Shpitser|first=I.|last2=Pearl|first2=J.|year=2008|title=Complete identification methods for the causal hierarchy|url=https://ftp.cs.ucla.edu/pub/stat_ser/r336-published.pdf|journal=The Journal of Machine Learning Research|language=en|volume=9|pages=1941–1979}}</ref>
== Jenis eksperimen penelitian ==
Jenis confounding dapat dikategorikan menurut sumbernya yakni pilihan instrumen pengukuran (''operational confound''), karakteristik situasional (''procedural confound'') dan perbedaan antar individu (''person confound'').
=== Operational confound (operasional) ===
Pengganggu operasional (''operational confound'') diartikan bahwa pengganggu operasional dapat terjadi dalam dua instrumen pengukuran pada penelitian yakni eksperimental dan non-eksperimental diukur dengan indikasi yang sama atau identik. Jenis ini terjadi saat akan melakukan pengukuran yang akan dirancang untuk menilai
=== Procedural confound (
Pengganggu prosedural (''procedural confound'') diartikan bahwa pengganggu operasional dapat terjadi pada karakteristik situasi eksperimen laboratorium atau eksperimen semu. Jenis ini terjadi ketika peneliti secara keliru membiarkan variabel lain dan berubah bersama dengan variabel bebas yang dimanipulasi.<ref>{{cite
===
Pengganggu individu (''person confound'') diartikan bahwa pengganggu operasional dapat terjadi ketika dua atau lebih kelompok/unit yang berbeda kemudian dianalisis bersama-sama atau terjadi ketika adanya perbedaan individu mempengaruhi variabel hasil.<ref>{{cite book|last1=Steg|first1=Linda|last2=Rothengatter|first2=Talib|date=2008|url=https://id1lib.org/ireader/2935457|title=Applied Social Psychology Understanding and Managing Social Problems|place=[[New York]]|publisher=Cambridge University Press|isbn=9780521869799|pages=91|language=en|coauthors=}}{{Pranala mati|date=Januari 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Misalnya, pekerja dari pekerjaan yang berbeda, meskipun bermacam-macam menurut satu atau lebih karakteristik lain yang diamati atau tidak diamati sebagai contoh jenis kelamin.
== Teknik dalam meminimalisir ==
Peneliti dalam melakukan penelitian eksperimental dapat meminimalisir pengaruh confounding dengan dua pilihan secara konseptual yakni mengeluarkan ''confounding'' potensial dari eksperimen penelitian ataupun
Efek pengganggu lebih kecil kemungkinannya karena hanya terjadi dan bertindak serupa di beberapa waktu dan lokasi. Dalam memilih lokasi studi, lingkungan dapat dicirikan secara rinci di lokasi studi untuk memastikan lokasi tersebut secara ekologis serupa dan oleh karena itu kecil kemungkinannya memiliki variabel pengganggu. Terakhir, hubungan antara variabel lingkungan yang mungkin mengacaukan analisis dan parameter yang diukur dan dipelajari.{{Sfn|Kruuk|2007|p=1893}} Misalnya, pada berbagai tingkat imigrasi hewan, yang akan memainkan peranan penting dalam menentukan rata-rata jumlah kerabat derajat yang berbeda dalam suatu populasi, agar dapat menilai dampak dari mengubah struktur silsilah. Perkiraan kuantitatif parameter genetik dibandingkan di seluruh set data dengan berbagai jumlah generasi, menggunakan salah satu hewan model atau teknik statistik tradisional bertujuan data dapat diperkecil kemungkinannya.{{Sfn|Kruuk|2007|p=1893}} Informasi yang berkaitan dengan variabel lingkungan kemudian dapat digunakan dalam model lingkungan dengan cara yang digunakan yakti perancu substansial antara efek yang berbeda sehingga dapat terjadi.{{Sfn|Kruuk|2007|p=1890}} Terlepas dari keandalan yang jelas ini tes berdasarkan kesalahan standar dengan kemungkinan tes rasio masih akan menyediakan alat yang lebih akurat untuk menguji [[hipotesis]] dengan data nyata.{{Sfn|Kruuk|2007|p=1896}}
== Referensi ==
=== Catatan kaki ===
{{Reflist}}
=== Daftar pustaka ===
|