Matematika: Perbedaan antara revisi
[revisi tidak terperiksa] | [revisi terperiksa] |
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) kalimat pembuka menjadi berlebihan, mohon untuk dijelaskan secukupnya saja, yakni coba ringkas sebisa mungkin pada bagian tubuh. |
Badak Jawa (bicara | kontrib) Mempranala ke artikel yang lain dan menebalkan kata matematika Tag: halaman dengan galat kutipan VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
(25 revisi perantara oleh 17 pengguna tidak ditampilkan) | |||
Baris 1:
'''Matematika''' adalah bidang studi yang menemukan dan mengorganisasikan metode, [[teori]] dan [[teorema]] yang dikembangkan dan dibuktikan untuk kebutuhan [[Ilmu|ilmu-ilmu empiris]] (sains) dan matematika itu sendiri. Ada banyak area-area dari matematika yang mencakup teori bilangan (studi tentang bilangan), [[aljabar]] (studi tentang rumus dan struktur-struktur terkait), [[geometri]] (studi tentang bentuk dan ruang yang membuatnya), [[Analisis matematis|analisis]] (studi tentang perubahan berkelanjutan), dan [[teori himpunan]] (saat ini digunakan sebagai fondasi untuk segala matematika).
Matematika melibatkan deskripsi dan manipulasi dari [[Objek matematika|objek-objek abstrak]] yang terdiri antara [[Abstraksi (matematika)|abstraksi]] dari alam, atau–dalam matematika modern–entitas abstrak murni yang ditetapkan untuk memiliki sifat-sifat (properti) tertentu, disebut [[aksioma]].
Matematika banyak digunakan dalam [[ilmu pengetahuan]] untuk fenomena pemodelan. Hal ini memungkinkan ekstraksi perkiraan kuantitatif dari hukum-hukum percobaan. Misalnya, pergerakan planet dapat diprediksi dengan akurasi tinggi menggunakan [[Hukum gravitasi universal Newton|hukum gravitasi Newton]] yang dipadukan dengan perhitungan matematis. Ketakbergantungan kebenaran matematis dari percobaan manapun menyiratkan bahwa keakuratan perkiraan semacam itu hanya bergantung pada kecukupan model untuk menggambarkan kenyataan. Jadi, ketika munculnya beberapa perkiraan yang tidak tepat, itu berarti bahwa model harus diperbaiki atau diubah, bukan berarti matematika salah. Misalnya, presesi apsis atau perihelium Merkurius tidak dapat dijelaskan dengan hukum gravitasi Newton, tetapi dijelaskan secara akurat oleh [[relativitas umum]] [[Einstein]]. Pengesahan percobaan teori Einstein ini menunjukkan bahwa hukum gravitasi Newton hanyalah hampiran (yang masih sangat akurat dalam kehidupan sehari-hari).
Matematika sangat penting di banyak bidang, termasuk [[ilmu alam]], [[rekayasa]], [[kedokteran]], [[keuangan]], [[ilmu komputer]], dan [[ilmu sosial]].
Beberapa bidang matematika, seperti [[statistika]] dan [[teori permainan]], dikembangkan dalam korelasi langsung dengan terapannya, dan sering dikelompokkan dengan nama [[matematika terapan]]. Bidang matematika lainnya dikembangkan secara independen dari aplikasi
== Etimologi ==
Baris 29 ⟶ 26:
[[Berkas:Kapitolinischer Pythagoras adjusted.jpg|jmpl|kiri|lurus|Matematikawan Yunani [[Pythagoras]] ({{nowrap|c. 570 BC –}} {{nowrap|c. 495 BC}}), secara umum dikenal atas penemuan [[Teorema Pythagoras]]]]
Selain mengetahui cara [[pencacahan|mencacah]] objek-objek ''fisika'', manusia [[prasejarah]] juga mengenali cara mencacah besaran ''abstrak'', seperti [[waktu]]
[[File:Plimpton 322.jpg|thumb|Lempengan matematika Babilonia, Plimpton 322, berasal dari tahun 1800-an SM.]]
Baris 37 ⟶ 34:
[[Berkas:maya.svg|jmpl|[[Suku Maya|Sistem bilangan Maya]]]]
Penggunaan terkuno matematika adalah di dalam [[perdagangan]], [[pengukuran tanah]], [[lukisan|pelukisan]], dan pola-pola [[menenun|penenunan]] dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke
[[File:Archimedes pi.svg|thumb|left|upright=1.25|Archimedes menggunakan [[metode penghabis]], digambarkan di sini, untuk memperkirakan nilai [[pi]].]]
Baris 43 ⟶ 40:
Naskah matematika tertua berasal dari [[Mesopotamia]] dan [[Mesir Kuno|Mesir]], berangka tahun 2000-an sampai 1800-an SM. Banyak teks awal menyebutkan [[tripel Pythagoras]], dengan demikian dapat disimpulkan bahwa [[teorema Pythagoras]] tampaknya menjadi konsep matematika yang paling kuno dan paling masyhur setelah aritmetika dasar dan geometri. Rekaman arkeologis menunjukkan bahwa [[matematika Babilonia]]-lah yang pertama memunculkan [[aritmetika dasar]] ([[penambahan|perjumlahan]], [[pengurangan|perkurangan]], [[perkalian]], dan [[pembagian|perbagian]]). Orang Babilonia juga memiliki sistem nilai-tempat dan menggunakan sistem angka [[seksagesimal]] yang masih digunakan sampai sekarang untuk mengukur sudut dan waktu.{{sfn|Boyer|1991|loc="Mesopotamia" pp. 24–27}}
[[Berkas:Persian Khwarazmi.jpg|jmpl|lurus|Matematikawan Persia [[Muḥammad bin Mūsā al-Khawārizmī|Al-Khwarizmi]] ({{nowrap|780
Selama [[Zaman keemasan Islam]], khususnya abad ke-9 dan abad ke-10, matematika mendapatkan banyak inovasi penting yang dibangun diatas landasan matematika Yunani: kebanyakan dari inovasi ini termasuk kontribusi dari matematikawan Persia seperti [[Muḥammad bin Mūsā al-Khawārizmī|Al-Khwarizmi]], [[Omar Khayyam]] dan [[Sharaf al-Dīn al-Ṭūsī]].
Selama [[periode modern awal]], matematika mulai berkembang dengan pesat di [[Eropa Barat]]. Pengembangan [[kalkulus]] oleh [[Isaac Newton]] dan [[Gottfried Wilhelm Leibniz|Gottfried Leibniz]] pada abad ke-17 merevolusi matematika. [[Leonhard Euler]] adalah matematikawan paling terkenal dpada abad ke-18, menyumbangkan banyak teorema dan penemuan. Mungkin matematikawan terkemuka abad ke-19 adalah matematikawan Jerman [[Carl Friedrich Gauss|Carl Gauss]], yang membuat banyak kontribusi untuk bidang-bidang seperti [[aljabar]], [[analisis matematika|analisis]], [[geometri diferensial]], [[matriks (matematika)|teori matriks]], [[teori bilangan]], dan [[statistik]]. Pada awal abad ke-20, [[Kurt Gödel]] mengubah matematika dengan menerbitkan [[Teorema ketidaklengkapan Gödel|teorema ketidaklengkapan]], yang menunjukkan sebagian bahwa setiap sistem aksioma yang
Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan [[sains]], menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan [[:en:Bulletin of the American Mathematical Society|Bulletin of the American Mathematical Society]], "Banyaknya makalah dan buku yang dilibatkan di dalam basis data [[Mathematical Reviews]] sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi [[teorema]] matematika baru beserta [[Pembuktian Matematika|bukti-buktinya]]."<ref>Sevryuk</ref>.<ref name=oxforddict/>
Baris 65 ⟶ 62:
{{utama|Keindahan matematika}}
Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam [[perdagangan]], [[pengukuran tanah]], dan kemudian [[astronomi]]; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang [[fisikawan]] [[Richard Feynman]] menemukan [[:en:Path integral formulation|rumus integral lintasan]] [[mekanika kuantum]] menggunakan paduan nalar matematika dan wawasan fisika, dan [[teori dawai]] masa kini, teori ilmiah yang masih berkembang yang berupaya
Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi sering kali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang [[Eugene Wigner]] menyebutnya " [[:en:The Unreasonable Effectiveness of Mathematics in the Natural Sciences|Keefektifan luar biasa matematika sampai taraf tak masuk akal dalam Ilmu Pengetahuan Alam membutuhkan penjelasan.]]".<ref>[[Eugene Wigner]], 1960, "[http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html The Unreasonable Effectiveness of Mathematics in the Natural Sciences,] {{Webarchive|url=https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |date=2011-02-28 }}" ''Komunikasi pada Matematika Murni dan Terapan'' '''13'''(1): 1–14.</ref>
Baris 98 ⟶ 95:
[[Berkas:Infinity symbol.svg|jmpl|kiri|Lambang [[ananta|ketakhinggaan]] '''∞''' di dalam beberapa gaya sajian.]]
Penggunaan bahasa yang ketat secara mendasar merupakan sifat [[pembuktian matematika]]. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "[[teorema]]" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini.<ref>Lihatlah ''bukti palsu'' untuk contoh sederhana dari hal-hal yang bisa salah di dalam bukti formal. [[:en:Four color theorem|sejarah Teorema Empat Warna]] berisi contoh-contoh bukti-bukti salah yang tanpa sengaja diterima oleh para matematikawan lainnya pada saat itu.</ref> Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: [[bangsa Yunani]] menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan [[Isaac Newton]] kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang [[:en:Computer-assisted proof|bukti berbantuan-komputer]]. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.<ref>Ivars Peterson, ''Wisatawan Matematika'', Freeman, 1988, ISBN 0-7167-1953-3. p. 4 "Sedikit keluhan akan ketidakmampuan program komputer memeriksa secara wajar," (merujuk kepada bukti Haken-Apple terhadap Teorema Empat Warna).</ref> [[Aksioma]] menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan.
Pada abad ke-19 berkembanglah sebuah aliran pemikiran yang dikenal sebagai formalisme. Bagi seorang formalis, pada pokoknya matematika adalah tentang sistem formal atas simbol-simbol yang didukung oleh aturan-aturan formal untuk memadukannya. Dari sudut pandang ini, aksioma-aksioma hanyalah rumus-rumus istimewa dalam [[sistem aksioma]], diberikan tanpa diturunkan secara prosedural dari unsur-unsur lain dalam sistem. Contoh maksimal formalisme adalah seruan [[David Hilbert]] pada awal abad ke-20, sering disebut [[program Hilbert]], untuk mengodekan semua matematika dengan cara ini.
Baris 155 ⟶ 152:
[[Berkas:Carl Friedrich Gauss.jpg|ka|jmpl|[[Carl Friedrich Gauss]], menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".]]
[[Carl Friedrich Gauss]] mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".<ref>Waltershausen</ref> Di dalam bahasa aslinya, Latin ''Regina Scientiarum'', juga di dalam [[bahasa Jerman]] ''Königin der Wissenschaften'', kata yang bersesuaian dengan ''ilmu pengetahuan'' berarti (lapangan) pengetahuan. Jelas,
[[Albert Einstein]] menyatakan bahwa ''"sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan.''"<ref name=certain>Einstein, p. 28. Kutipan ini adalah jawaban Einstein terhadap pertanyaan: "betapa mungkin bahwa matematika, di samping yang lain tentunya, menjadi ciptaan pemikiran manusia yang terbebas dari pengalaman, begitu luar biasa bersesuaian dengan objek-objek kenyataan?" Dia juga
Banyak filsuf yakin bahwa matematika tidak dapat dibuktikan maupun disangkal berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi [[Karl Popper]].<ref>{{cite book|title = Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists|author = Shasha, Dennis Elliot; Lazere, Cathy A.|publisher = Springer|year = 1998|page = 228}}</ref> Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya [[fisika]] dan [[biologi]], adalah [[hipotesis|hipotetis]]-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."<ref>Popper 1995, p. 56</ref> Para bijak bestari lainnya, sebut saja [[Imre Lakatos]], telah menerapkan satu versi [[pemalsuan]] kepada matematika itu sendiri.
Baris 194 ⟶ 191:
===Ruang===<!-- This section is linked from [[List of basic mathematics topics]] -->
Pengkajian ruang bermula dengan [[geometri]]
Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan [[polinom]], memadukan konsep-konsep besaran dan ruang, dan juga pengkajian [[:en:Topological group|grup topologi]], yang memadukan struktur dan ruang. [[:en:Lie group|Grup lie]] biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. [[Topologi]] di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan [[:en:Poincaré conjecture|konjektur Poincaré]] yang telah lama ada dan [[:en:Four color theorem|teorema empat warna]], yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.
Baris 289 ⟶ 286:
* [[Penghargaan Wolf dalam bidang matematika]], juga untuk pencapaian seumur hidup,<ref>{{Cite book |last1=Chern |first1=S. S. |last2=Hirzebruch |first2=F. |date=September 2000 |title=Wolf Prize in Mathematics |url=https://www.worldscientific.com/worldscibooks/10.1142/4149 |language=en |doi=10.1142/4149 |isbn=978-981-02-3945-9}}</ref> dilembagakan pada tahun 1978<ref>{{Cite web|title=The Wolf Prize|url=https://wolffund.org.il/the-wolf-prize/|url-status=live|archive-url=https://web.archive.org/web/20200112205029/https://wolffund.org.il/the-wolf-prize/|archive-date=12 Januari 2020|access-date=23 Januari 2022|website=Wolf Foundation|language=en-US}}</ref>
Daftar masyhur 23 soal terbuka, disebut "[[Masalah Hilbert]]", disusun pada tahun 1900 oleh matematikawan Jerman [[David Hilbert]].<ref name=":0">{{Cite web|date=2020-05-06|title=Hilbert's Problems: 23 and Math|url=https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/|access-date=23 Januari 2022|website=Simons Foundation|language=en-US}}</ref> Daftar ini mendapat sambutan hebat di kalangan matematikawan<ref>{{Cite web |last=Newton |first=Tommy |date=2007 |title=A New Approach to Hilbert's Third Problem |url=https://www.wku.edu/scholar/documents/spring2007/hilberts_third_problem.pdf |url-status=live |archive-url=https://web.archive.org/web/20130122213603/https://www.wku.edu/scholar/documents/spring2007/hilberts_third_problem.pdf |archive-date=22 Januari 2013 |access-date=21 Februari 2022 |website=www.wku.edu}}</ref>, dan setidaknya 13 soal (tergantung cara menafsirkan) kini telah diselesaikan.<ref name=":0"
== Lihat pula ==
Baris 333 ⟶ 330:
{{refbegin|2}}
* Benson, Donald C., ''The Moment of Proof: Mathematical Epiphanies'', Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
* [[:en:Carl B. Boyer|Boyer, Carl B.]], ''A History of Mathematics'', Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7.
* Courant, R. and H. Robbins, ''What Is Mathematics?: An Elementary Approach to Ideas and Methods'', Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
* [[:en:Philip J. Davis|Davis, Philip J.]] and [[:en:Reuben Hersh|Hersh, Reuben]], ''[[:en:The Mathematical Experience|The Mathematical Experience]]''. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7.
* {{cite journal
| last = Einstein
Baris 344 ⟶ 341:
| year = 1923}}
* Eves, Howard, ''An Introduction to the History of Mathematics'', Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
* Gullberg, Jan, ''
* Hazewinkel, Michiel (ed.), ''[[:en:Encyclopaedia of Mathematics|Encyclopaedia of Mathematics]]''. Kluwer Academic Publishers 2000.
* Jourdain, Philip E. B., ''The Nature of Mathematics'', in ''The World of Mathematics'', James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
* [[:en:Morris Kline|Kline, Morris]], ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.
|