Eksponensiasi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) →pangkat jumlah: masih berantakan |
Menambahkan kembali templat operasi aritmatika. Maaf! Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
(13 revisi perantara oleh 9 pengguna tidak ditampilkan) | |||
Baris 1:
{{use dmy dates|date=Juli 2020|cs1-dates=y}}
{{Operasi aritmetika}}
[[Gambar:Expo02.svg|thumb|315px|Grafik {{math|1=''y'' = ''b''<sup>''x''</sup>}} untuk sebagai basis ''b'':
{{nobr|{{legend-line|inline=yes|green solid 2px|[[#Pangkat sepuluh|basis
{{nobr|{{legend-line|inline=yes|red solid 2px|[[#Fungsi eksponensial|basis
{{nobr|{{legend-line|inline=yes|blue solid 2px|[[#Pangkat dua|basis
{{nobr|{{legend-line|inline=yes|cyan solid 2px|basis
Setiap kurva melewati titik {{math|(0, 1)}} karena setiap bilangan bukan nol pangkat 0 adalah 1. Pada {{math|1=''x'' = 1}}, nilai ''y'' sama dengan basis karena setiap bilangan yang dipangkatkan 1 adalah bilangan itu sendiri.]]{{Periksa terjemahan|en|Exponentiation}}'''Eksponensiasi''' adalah sebuah [[Operasi (matematika)|operasi matematika]], ditulis sebagai <
:<math>b^n = \underbrace{b \times \dots \times b}_{\text{sebanyak } n \text{ kali}}.</math>
Baris 63 ⟶ 60:
=== Eksponen nol ===
Menurut definisi, setiap bilangan bukan nol terpangkat ke pangkat {{math|0}} adalah {{math|1}}:<ref name=":1" /><ref>{{cite book|url=https://books.google.com/books?id=YOdtemSmzQQC&pg=PA101 |title=Technical Shop Mathematics |first1=Thomas |last1=Achatz |page=101 |date=2005 |edition=3rd |publisher=Industrial Press |isbn=978-0-8311-3086-2}}</ref
:<math>b^0=1.</math>
Baris 248 ⟶ 245:
===Limit eksponen rasional===
[[Berkas:Continuity of the Exponential at 0.svg|thumb|Limit {{math|''e''{{sup|1/''n''}}}} adalah {{math|1=''e''{{sup|0}} = 1}} ketika {{mvar|n}} cenderung ketakterhinggaan.]]
Karena [[bilangan irasional]] dapat dinyatakan sebagai [[limit barisan]] dari bilangan rasional, eksponen bilangan real positif {{mvar|b}} dengan eksponen real sembarang {{mvar|x}} didefinisikan oleh [[fungsi kontinu|kontinuitas]] dengan kaidah<ref name="Denlinger">{{cite book |title=Elements of Real Analysis |url=https://archive.org/details/elementsofrealan0000denl |last=Denlinger |first=Charles G. |publisher=Jones and Bartlett |date=2011 |pages=
:<math> b^x = \lim_{r (\in \mathbb{Q}) \to x} b^r \quad (b \in \mathbb{R}^+,\, x \in \mathbb{R}),</math>
dimana limitnya diambil alih nilai rasional {{mvar|r}} saja. Limit ini ada untuk setiap {{mvar|b}} positif dan setiap {{mvar|x}} real.
Baris 299 ⟶ 296:
[[Rumus Euler]] <math>e^{iy} = \cos y + i \sin y,</math> mengekspresikan [[bentuk polar]] dari <math>b^z</math> dalam hal [[bagian real dan imajiner]] dari {{mvar|z}}, yaitu
:<math>b^{x+iy}= b^x(\cos(y\ln b)+i\sin(y\ln b)),</math>
dimana [[nilai absolut]] dari faktor [[
:<math>b^{x+iy}=b^x b^{iy}=b^x e^{iy\ln b} =b^x(\cos(y\ln b)+i\sin(y\ln b)).</math>
Baris 324 ⟶ 321:
[[Berkas:One3Root.svg|thumb|right|Tiga akar ke-3 dari 1]]
Bilangan kompleks ''w'' sedemikian rupa sehingga {{math|1=''w''<sup>''n''</sup> = 1}} untuk bilangan bulat positif ''n'' adalah '''akar satuan ke-''n'''''. Secara geometris, akar satuan ke-''n'' terletak pada [[lingkaran satuan]] dari medan kompleks pada simpul-simpul dari gon-''n'' beraturan dengan satu simpul pada bilangan real 1.
Jika {{math|1=''w''<sup>''n''</sup> = 1}} akan tetapi {{math|''w''<sup>''k''</sup> 1}} untuk semua bilangan asli ''k'' sehingga {{math|0 < ''k'' < ''n''}}, maka ''w'' disebut '''akar satuan ke-''n'' primitif'''. Satuan negatif −1 adalah satu-satunya [[akar kuadrat]] primitif dari satuan. [[satuan imajiner]] ''i'' adalah salah satu dari dua akar ke-4 primitif dari satuan; yang lainnya adalah −''i''.
Bilangan ''e''<sup>{{sfrac|2''πi''|''n''}}</sup> adalah akar satuan ''n'' primitif dengan [[Argumen (analisis kompleks)|argumen]] positif terkecil. Hal ini terkadang disebut '''akar kesatuan ke-''n'' utama''', meskipun terminologi ini tidaklah universal dan tidak boleh disamakan dengan [[nilai utama]] dari {{radic|1|''n''}}, yaitu 1.<ref>{{cite book |title=Introduction to Algorithms |edition=second |author-first1=Thomas H. |author-last1=Cormen |author-first2=Charles E. |author-last2=Leiserson |author-first3=Ronald L. |author-last3=Rivest |author-first4=Clifford |author-last4=Stein |publisher=[[MIT Press]] |date=2001 |isbn=978-0-262-03293-3}} [http://highered.mcgraw-hill.com/sites/0070131511/student_view0/chapter30/glossary.html Online resource] {{webarchive|url=https://web.archive.org/web/20070930201902/http://highered.mcgraw-hill.com/sites/0070131511/student_view0/chapter30/glossary.html |date=2007-09-30 }}</ref><ref>{{cite book | title = Difference Equations: From Rabbits to Chaos | title-link= Difference Equations: From Rabbits to Chaos | edition = [[Undergraduate Texts in Mathematics]] |author-first1=Paul |author-last1=Cull |author-first2=Mary |author-last2=Flahive |author-link2=Mary Flahive |author-first3=Robby |author-last3=Robson |date=2005 |publisher=Springer |isbn=978-0-387-23234-8}} Didefinisikan pada hal. 351</ref><ref>"[http://mathworld.wolfram.com/PrincipalRootofUnity.html Principal root of unity]", MathWorld.</ref>)
Baris 484 ⟶ 481:
===Matriks dan operator linear===
Jika ''A'' adalah matriks bujur sangkar, maka hasil kali ''A'' dengan ''n'' itu sendiri disebut [[pangkat matriks]]. Juga <math>A^0</math> didefinisikan sebagai [[matriks identitas]],<ref>Bab 1, Aljabar Linear Dasar, 8E, Howard Anton</ref> dan jika ''A'' adalah invers, maka <math>A^{-n} = \left(A^{-1}\right)^n</math>.
pangkat matriks sering muncul dalam konteks [[sistem dinamik diskret]], dimana matriks ''A'' menyatakan transisi dari vektor keadaan ''x'' dari beberapa sistem ke keadaan berikutnya ''Ax'' dari sistem.<ref>{{citation|first=Gilbert|last=Strang|title=Linear algebra and its applications|publisher=Brooks-Cole|date=1988|edition=3rd}}, Bab 5.</ref> Ini adalah interpretasi standar dari [[rantai Markov]], misalnya, apabila <math>A^2x</math> adalah status sistem setelah dua langkah waktu, dan seterusnya: maka, <math>A^nx</math> adalah status sistem setelah langkah kali ''n''. Matriks pangkat <math>A^n</math> adalah matriks transisi antara keadaan sekarang dan keadaan pada langkah kali ''n'' ke depan. Jadi menghitung pangkat matriks setara dengan memecahkan evolusi sistem dinamis. Dalam banyak kasus, pangkat matriks dihitung dengan menggunakan [[nilai eigen dan vektor eigen]].
Baris 649 ⟶ 646:
==Dalam bahasa pemrograman==
[[Bahasa pemrograman]] umumnya menyatakan eksponensial baik sebagai operator infiks atau sebagai fungsi (awalan), karena mereka adalah notasi linear yang tidak mendukung superskrip:
* <code>x ↑ y</code>: [[Bahasa pemrograman Algol|Algol]], [[Komodor BASIC]], [[TRS-80 Level II BASIC|TRS-80 Level II/III BASIC]].<ref name="InfoWorld_1982">{{cite news |title=BASCOM - A BASIC compiler for TRS-80 I and II |author-first=Timothy "Tim" A. |author-last=Daneliuk |date=1982-08-09 |newspaper=[[InfoWorld]] |series=Software Reviews |publisher=[[Popular Computing, Inc.]] |volume=4 |number=31 |pages=41–42 |url=https://books.google.com/books?id=NDAEAAAAMBAJ&pg=PA42 |access-date=2020-02-06 |url-status=live |archive-url=https://web.archive.org/web/20200207104336/https://books.google.de/books?id=NDAEAAAAMBAJ&pg=PA42&lpg=PA42&focus=viewport&dq=TRS-80+exponention&hl=de#v=onepage&q=TRS-80%20exponention&f=false |archive-date=2020-02-07 |quote=[...] Jika [...] mengkuadratkan dilakukan dengan fungsi eksponensial (panah atas) [[TRS-80 BASIC]], interpreter [[waktu berjalan (fase siklus hidup program)|waktu berjalan]] adalah 22 menit 20 detik, dan waktu berjalan yang dikompilasi adalah 20 menit 3 detik. [...]}}</ref><ref name="80Micro_1983">{{cite journal|date=October 1983|title=80 Contents
* <code>x ^ y</code>: [[AWK]], [[BASIC]], [[J programming language|J]], [[MATLAB]], [[Wolfram Language]] ([[Wolfram Mathematica|Mathematica]]), [[R (programming language)|R]], [[Microsoft Excel]], [[Analytica (perangkat lunak)|Analytica]], [[TeX]] (dan turunannya), [[TI-BASIC]], [[bc bahasa pemrograman|bc]] (untuk eksponen bilangan bulat), [[Haskell (bahasa pemrograman)|Haskell]] (untuk eksponen bilangan bulat nonnegatif), [[Lua (bahasa pemrograman)|Lua]] dan sebagian besar [[sistem aljabar komputer]]. Penggunaan simbol <code>^</code> yang bertentangan meliputi: [[XOR]] (dalam ekspansi aritmetika POSIX Shell, AWK, C, C++, C#, D, Go, Java, JavaScript, Perl, PHP, Python, Ruby dan Tcl), [[Indirection]] (Pascal), dan rangkaian string (OCaml dan Standard ML).
* <code>x ^^ y</code>: Haskell (untuk basis pecahan, eksponen bilangan bulat), [[D (bahasa pemrograman)|D]].
Baris 664 ⟶ 661:
* <code>(expt x y)</code>: [[Common Lisp]].
Untuk eksponen tertentu ada cara khusus untuk menghitung ''x''<sup>''y''</sup> jauh lebih cepat daripada melalui eksponen umum. Kasus ini mencakup bilangan bulat positif dan negatif kecil (memilih ''x''
Tidak semua bahasa pemrograman menggunakan konvensi asosiasi yang sama untuk eksponensial: sedangkan [[Wolfram Language]], [[Google Penelusuran]] dan lainnya menggunakan pengaitan kanan (yaitu <code>a^b^c</code> dievaluasi sebagai <code>a^(b^c)</code>), banyak program komputer seperti [[Microsoft Office Excel]] dan [[Matlab]] mengasosiasikan ke kiri (yaitu <code>a^b^c</code> dievaluasi sebagai <code>(a^b)^c</code>).
Baris 693 ⟶ 690:
<ref name="Robinson_1958">{{Cite journal |title=A report on primes of the form k · 2<sup>n</sup> + 1 and on factors of Fermat numbers |author-first=Raphael Mitchel |author-last=Robinson |author-link=Raphael Mitchel Robinson |journal=[[Proceedings of the American Mathematical Society]] |volume=9 |issue=5 |date=Oktober 1958 |orig-year=1958-04-07 |location=[[Universitas California]], Berkeley, California, AS |doi=10.1090/s0002-9939-1958-0096614-7 |pages=673–681 [677] |url=https://www.ams.org/journals/proc/1958-009-05/S0002-9939-1958-0096614-7/S0002-9939-1958-0096614-7.pdf |access-date=2020-06-28 |url-status=live |archive-url=https://web.archive.org/web/20200628100823/https://www.ams.org/journals/proc/1958-009-05/S0002-9939-1958-0096614-7/S0002-9939-1958-0096614-7.pdf |archive-date=2020-06-28|doi-access=free }}</ref>
<ref name="Bronstein_1987">{{cite book |title=Taschenbuch der Mathematik |language=de |trans-title=Pocketbook of mathematics |title-link=Bronstein and Semendjajew |chapter=2.4.1.1. Definition arithmetischer Ausdrücke |trans-chapter=Definisi ekspresi aritmetika |author-first1=Ilja Nikolaevič<!-- Nikolajewitsch --> |author-last1=Bronstein |author-link1=Ilya Nikolaevich Bronshtein<!-- 1903–1976 --> |author-first2=Konstantin Adolfovič<!-- Adolfowitsch --> |author-last2=Semendjajew |author-link2=Konstantin Adolfovic Semendyayev<!-- 1908–1988 --> |editor-first1=Günter |editor-last1=Grosche |editor-first2=Viktor |editor-last2=Ziegler<!-- 1922–1980--> |editor-first3=Dorothea |editor-last3=Ziegler |others=Weiß, Jürgen<!-- lector --> |translator-first=Viktor |translator-last=Ziegler |volume=1 |date=1987 |edition=23 |orig-year=1945 |publisher=[[Verlag Harri Deutsch]] (dan [[B. G. Teubner Verlagsgesellschaft]], Leipzig) |publication-place=Thun, Switzerland / Frankfurt am Main, Germany |location=Leipzig, Germany |isbn=3-87144-492-8 |pages=115–120, 802 <!-- |quote=Regel 7: Ist ''F''(''A'') Teilzeichenreihe eines arithmetischen Ausdrucks oder einer seiner Abkürzungen und ''F'' eine Funktionenkonstante und ''A'' eine Zahlenvariable oder Zahlenkonstante, so darf ''F{{thin space}}A'' dafür geschrieben werden. [Darüber hinaus ist noch die Abkürzung ''F''<sup>''n''</sup>(''A'') für (''F''(''A''))<sup>''n''</sup> üblich. Dabei kann ''F'' sowohl Funktionenkonstante als auch Funktionenvariable sein.] --><!-- -->}}</ref>
<ref name="NIST_2010">{{cite book |title=NIST Handbook of Mathematical Functions |title-link=NIST Handbook of Mathematical Functions |editor-first=Frank W. J. |editor-last=Olver |editor2-first=Daniel W. |editor2-last=Lozier |editor3-first=Ronald F. |editor3-last=Boisvert |editor4-first=Charles W. |editor4-last=Clark |date=2010 |publisher=[[Institut Standar dan Teknologi Nasional]] (NIST), [[A.S. Departemen Perdagangan]], [[Cambridge University Press]] |isbn=978-0-521-19225-5 |mr=2723248}}[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521140638] {{Webarchive|url=https://archive.
<ref name="Zeidler_2013">{{cite book |title=Springer-Handbuch der Mathematik I |title-link=Springer-Handbuch der Mathematik |volume=I |language=de |editor-first=Eberhard |editor-last=Zeidler |editor-link=:de:Eberhard Zeidler |author-last1=Zeidler |author-first1=Eberhard |author-link1=:de:Eberhard Zeidler |author-last2=Schwarz |author-first2=Hans Rudolf |author-last3=Hackbusch |author-first3=Wolfgang |author-link3=Wolfgang Hackbusch |author-last4=Luderer |author-first4=Bernd |author-link4=:de:Bernd Luderer |author-last5=Blath |author-first5=Jochen |author-last6=Schied |author-first6=Alexander |author-last7=Dempe |author-first7=Stephan |author-last8=Wanka |author-first8=Gert |author-link8=Gert Wanka |author-last9=Hromkovič |author-first9=Juraj |author-link9=Juraj Hromkovič |author-last10=Gottwald |author-first10=Siegfried |author-link10=Siegfried Gottwald |publisher=[[Springer Spektrum]], [[Springer Fachmedien Wiesbaden]] |location=Berlin / Heidelberg, Germany |edition=1 |date=2013 |orig-year=2012 |isbn=978-3-658-00284-8 |doi=10.1007/978-3-658-00285-5 |page=590<!-- |url=https://www.springer.com/de/book/9783658002848 |access-date=2020-06-27 -->}} (xii+635 pages)</ref>
<!-- <ref name="Stibitz_1957">{{cite book |title=Mathematics and Computers |url=https://archive.org/details/mathematicscompu00stib |author-first1=George Robert |author-last1=Stibitz |author-link1=George Robert Stibitz |author-first2=Jules A. |author-last2=Larrivee |date=1957 |edition=1 |publisher=[[McGraw-Hill Book Company, Inc.]] |publication-place=New York, AS / Toronto, Kanada / London, Inggris |location=Underhill, Vermont, USA |lccn=56-10331 |page=[https://archive.org/details/mathematicscompu00stib/page/169 169]}} (10+228 halaman) (NB. Stibitz menggunakan tanda kurung bahkan dalam hubungannya dengan fungsi trigonometri (seperti <code>(cos
<ref name="Cajori_1929">{{cite book |author-first=Florian |author-last=Cajori |author-link=Florian Cajori |title=A History of Mathematical Notations |volume=2 |orig-year=March 1929 |publisher=[[Open court publishing company]] |location=Chicago, USA |date=1952 |edition=3rd|pages=108, 176–179, 336, 346 |isbn=978-1-60206-714-1 |url=https://books.google.com/books?id=bT5suOONXlgC |access-date=2016-01-18 }}</ref>
<!-- <ref name="Peirce_1852">{{cite book |author-first=Benjamin |author-last=Peirce |author-link=Benjamin Peirce |title=Curves, Functions and Forces |volume=I |edition=new |location=Boston, USA |date=1852 |page=203}}</ref>-->
|