Elektron: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 0 sources and tagging 1 as dead.) #IABot (v2.0.9.3
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20240809)) #IABot (v2.0.9.5) (GreenC bot
 
(5 revisi perantara oleh 4 pengguna tidak ditampilkan)
Baris 863:
|location=Istanbul|doi=10.1063/1.1361756}}</ref>
 
Momentum sudut orbital elektron terkuantisasi. Oleh karena elektron bermuatan, ia menghasilkan momen magnetik orbital yang proposional terhadap momentum sudut. Keseluruhan momen magnetik sebuah atom adalah seterasetara dengan jumlah vektor momen magnetik orbital dan momen magnetik spin keseluruhan elektron dan inti atom. Namun, momen magnetik inti sangatlah kecil dan dapat diabaikan jika dibandingkan dengan elektron. Momen magnetik dari dua elektron yang menduduki orbital yang sama (disebut elektron berpasangan) akan saling meniadakan.<ref>{{cite book|last=Jiles|first=David|year=1998|pages=280–287|title=Introduction to Magnetism and Magnetic Materials|publisher=CRC Press|isbn=0412798603|url=http://books.google.com/books?id=axyWXjsdorMC&pg=PA280|access-date=2010-04-14|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121739/https://books.google.com/books?id=axyWXjsdorMC&pg=PA280&hl=en|dead-url=no}}</ref>
 
[[Ikatan kimia]] antaratom terjadi sebagai akibat dari interaksi elektromagnetik, sebagaimana yang dijelaskan oleh hukum mekanika kuantum.<ref>{{cite book|author=Löwdin, Per Olov; Erkki Brändas, Erkki; Kryachko, Eugene S.|title=Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-
Baris 926:
|first=Alan|last=Durrant|year=2000|isbn=0750307218
|title=Quantum Physics of Matter: The Physical World
|url=https://archive.org/details/quantumphysicsof0000alan|page=[https://archive.org/details/quantumphysicsof0000alan/page/43 43], 71–78|publisher=CRC Press|page=http://books.google.com/books?id=F0JmHRkJHiUC&pg=PA43}}</ref>
 
Ketika didinginkan di bawah [[titik kritis|temperatur kritis]], material dapat mengalami transisi fase yang menyebabkannya kehilangan semua resistivitas arus listrik. Hal ini dinamakan [[superkonduktivitas]]. Dalam [[teori BCS]], perilaku ini dimodelkan oleh pasangan elektron yang memasuki keadaan kuantum [[kondensat Bose-Einstein]]. [[Pasangan Cooper]] ini memiliki gerakan yang dikopling oleh materi sekitar via getaran kekisi yang disebut [[fonon]], sehingga elektron dapat menghindari tumbukan dengan atom-atom material yang menciptakan hambatan listrik.<ref>{{cite web|author=Staff|year=2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/1972/|title=The Nobel Prize in Physics 1972|publisher=The Nobel Foundation|accessdate=2008-10-13|archive-date=2008-10-11|archive-url=https://web.archive.org/web/20081011050516/http://nobelprize.org/nobel_prizes/physics/laureates/1972/|dead-url=no}}</ref> (Pasangan Cooper memiliki jari-jari sekitar 100&nbsp;nm, sehingga dapat bertumpang tindih satu sama lain.)<ref>{{cite journal
Baris 1.076:
|journal=The Astrophysical Journal|volume=522|issue=1
|pages=413–418|year=1999
|doi=10.1086/307647|bibcode=1999ApJ...522..413F}}</ref> Menurut [[fisika klasik]], objek luar angkasa yang sangat berat ini menghasilkan gaya tarik gravitasi yang sangat besar sehingganya tiada benda apapun, termasuk [[radiasi elektromagnetik]], yang dapat lolos dari [[jari-jari Schwarzschild]]. Namun, dipercayai bahwa efek mekanika kuantum mengizinkan [[radiasi Hawking]] dipancarkan pada jarak ini. Elektron (dan positron) diperkirakan diciptakan di [[horizon persitiwaperistiwa]] lubang hitam.
 
Ketika pasangan-pasangan partikel maya (seperti elektron dan positron) tercipta disekitar horizon peristiwa, distribusi spasial acak partikel-partikel ini mengizinkan salah satu partikel muncul pada bagian eksterior; proses ini disebut sebagai [[penerowongan kuantum]]. [[Potensial gravitasi]] lubang hitam kemudian dapat memasok energi yang mengubah partikel maya menjadi partikel nyata, mengizinkannya beradiasi keluar menuju luar angkasa.<ref>{{cite journal
Baris 1.224:
[[Difraksi elektron berenergi rendah]] (''Low-energy electron diffraction'') adalah suatu metode penghujanan bahan-bahan kristalin dengan [[cahaya kolimasi|berkas kolimasi]] elektron untuk kemudian dipantau pola-pola difraksi yang dihasilkan untuk menentukan struktur material tersebut. Energi yang diperlukan pada umumnya berkisar antara 20–200&nbsp;eV.<ref>{{cite book
|author=Oura, K.; Lifshifts, V. G.; Saranin, A. A.; Zotov, A. V.; Katayama, M.|title=Surface Science: An Introduction
|url=https://archive.org/details/surfacesciencein0000unse_n1m1|publisher=Springer-Verlag|year=2003|pages=1–45[https://archive.org/details/surfacesciencein0000unse_n1m1/page/1 1]–45
|isbn=3540005455}}</ref> [[Difraksi elektron berenergi tinggi refleksi]] (''reflection high energy electron diffraction'') adalah teknik yang menggunakan refleksi berkas elektron yang ditembakkan pada berbagai sudut rendah untuk mengkarakterisasikan permukaan material kritsalin. Energi berkas biasanya berkisar antara 8–20&nbsp;keV dan sudut tembakan adalah 1–4°.<ref>{{cite book|author=Ichimiya, Ayahiko; Cohen, Philip I.|year=2004|title=Reflection High-energy Electron Diffraction|publisher=Cambridge University Press|page=1|isbn=0521453739|url=http://books.google.com/books?id=AUVbPerNxTcC&pg=PA1|access-date=2010-05-01|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121732/https://books.google.com/books?id=AUVbPerNxTcC&pg=PA1&hl=en|dead-url=no}}</ref><ref>{{cite journal
|last=Heppell|first=T. A.|title=A combined low energy and reflection high energy electron diffraction apparatus