Persamaan Schrödinger: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Add 1 book for Wikipedia:Pemastian (20210209)) #IABot (v2.0.8) (GreenC bot |
Add 1 book for Wikipedia:Pemastian (20240809)) #IABot (v2.0.9.5) (GreenC bot |
||
(3 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 24:
|year=1994
|title=Principles of Quantum Mechanics
|url=https://archive.org/details/principlesofquan0000shan_x3c9 |edition=2nd
|publisher=[[Kluwer Academic]]/[[Plenum Publishers]]
|isbn=978-0-306-44790-7
Baris 38:
|background colour = #ECFCF4}}
{{Equation box 1
dengan {{math|''i''}} adalah [[satuan imajiner]], {{math|''ħ''}} adalah [[konstanta Planck]] tereduksi yang sama dengan:<math>\hbar = \frac{h}{2 \pi}</math>, lambang {{math|{{sfrac|∂|∂''t''}}}} menunjukkan [[turunan parsial]] terhadap [[waktu]] {{math|''t''}}, {{math|''Ψ''}} (huruf Yunani [[psi (huruf)|psi]]) adalah [[fungsi gelombang]] sistem kuantum, {{math|'''r'''}} dan {{math|''t''}} adalah posisi vektor dan waktu, dan {{math|''Ĥ''}} adalah [[operator (fisika)|operator]] [[Hamiltonian (mekanika kuantum)|Hamiltonian]] (yang mengkarakterisasi total energi sistem).▼
|indent=:
|title='''Persamaan Schrödinger 3 dimensi''' ''
|equation=<math>-\frac{\hbar}{2m}\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} + U(x,y,z)\psi(x,y,z) = E\psi(x,y,z)</math>
Atau diringkas
<math>-\frac{\hbar}{2m}\nabla^2\psi + U(x,y,z)\psi(x,y,z) = E\psi(x,y,z)</math>
|cellpadding
|border
|border colour = #50C878
|background colour = #ECFCF4}}
▲dengan <math>\nabla</math> adalah operator nabla [[Divergence|divergensi]] lalu {{math|''i''}} adalah [[satuan imajiner]], {{math|''ħ''}} adalah [[konstanta Planck]] tereduksi yang sama dengan:<math>\hbar = \frac{h}{2 \pi}</math>, lambang {{math|{{sfrac|∂|∂''t''}}}} menunjukkan [[turunan parsial]] terhadap [[waktu]] {{math|''t''}}, {{math|''Ψ''}} (huruf Yunani [[psi (huruf)|psi]]) adalah [[fungsi gelombang]] sistem kuantum, {{math|'''r'''}} dan {{math|''t''}} adalah posisi vektor dan waktu, dan {{math|''Ĥ''}} adalah [[operator (fisika)|operator]] [[Hamiltonian (mekanika kuantum)|Hamiltonian]] (yang mengkarakterisasi total energi sistem).
[[Berkas:StationaryStatesAnimation.gif|300px|jmpl|ka|Setiap gambar merupakan fungsi gelombang yang memenuhi persamaan Schrödinger tak tergantung waktu untuk [[osilator harmonis kuantum|osilator harmonis]]. Kiri: bagian riil (biru) dan bagian imajiner (kanan) dari fungsi gelombang. Kanan: [[distribusi probabilitas]] dalam menemukan partikel dengan fungsi gelombang ini pada posisi tertentu. Kedua baris teratas adalah contoh '''[[keadaan stasioner]]'''. Baris bawah adalah contoh keadaan ''non'' stasioner. Kolom sebelah kanan menunjukkan mengapa keadaan stasioner disebut "stasioner".]]
Baris 129 ⟶ 140:
Pada tahun 1921, sebelum de Broglie, Arthur C. Lunn di Universitas Chicago telah menggunakan argumen yang sama yang berbasis dari penyelesaian energi-momentum relativistik untuk menurunkan apa yang kita sebtut saat ini sebagai hubungan de Broglie.<ref>{{cite journal|last=Weissman|first=M.B. |author2=V. V. Iliev |author3=I. Gutman|title=A pioneer remembered: biographical notes about Arthur Constant Lunn|journal=Communications in Mathematical and in Computer Chemistry|year=2008|volume=59|issue=3|pages=687–708}}</ref> Tidak seperti de Broglie, Lunn merumuskan persamaan diferensial yang saat ini dikenal sebagai persamaan Schrödinger. Sayangnya paper ini ditolak oleh Physical Review.<ref>{{cite book|last=Kamen|first=Martin D.|title=Radiant Science, Dark Politics|url=https://archive.org/details/radiantscienceda00kame|year=1985|publisher=University of California Press|location=Berkeley and Los Angeles, CA|isbn=0-520-04929-2|pages=[https://archive.org/details/radiantscienceda00kame/page/29 29]–32}}</ref>
Menindaklanjuti ide de Broglie, fisikawan [[Peter Debye]] berkomentar bahwa jika partikel berperilaku seperti gelombang, maka pastinya memiliki bentuk persamaan gelombang. Schrödinger pun berusaha mencari persamaan gelombang 3-dimensi yang layak untuk elektron. Ia dibimbing oleh analogi [[William Rowan Hamilton|William R. Hamilton]] antara [[mekanika]] dan [[optik]],
{{Cite book
|last=Schrodinger |first=E.
Baris 145 ⟶ 156:
* {{en}} [http://eqworld.ipmnet.ru/en/solutions/lpde/lpde108.pdf Linear Schrödinger Equation at EqWorld: The World of Mathematical Equations].
* {{en}} [http://eqworld.ipmnet.ru/en/solutions/npde/npde1403.pdf Nonlinear Schrödinger Equation at EqWorld: The World of Mathematical Equations].
* {{en}} [http://www.colorado.edu/UCB/AcademicAffairs/ArtsSciences/physics/TZD/PageProofs1/TAYL07-203-247.I.pdf The Schrödinger Equation in One Dimension] {{Webarchive|url=https://web.archive.org/web/20060524165051/http://www.colorado.edu/UCB/AcademicAffairs/ArtsSciences/physics/TZD/PageProofs1/ |date=2006-05-24 }}.
* {{en}} [http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html All about 3D schrodinger Equation ]
* {{en}} [http://tosio.math.toronto.edu/wiki/index.php/Main_Page Dispersive PDE Wiki] {{Webarchive|url=https://web.archive.org/web/20070425131659/http://tosio.math.toronto.edu/wiki/index.php/Main_Page |date=2007-04-25 }}.
{{fisika-stub}}
|