Konten dihapus Konten ditambahkan
Eko Fadhillah (bicara | kontrib)
Tidak ada ringkasan suntingan
k Bot: Mengganti kategori yang dialihkan Komputer pribadi yang kompatibel dengan IBM menjadi Komputer kompatibel PC IBM
 
(79 revisi perantara oleh 48 pengguna tidak ditampilkan)
Baris 1:
{{Lowercase title}}
'''x86''' atau '''80x86''' adalah nama umum dari arsitektur [[mikroprosesor]] yang pertama kali dikembangkan dan diproduksi oleh [[Intel]]. Arsitektur x86 saat ini mendominasi komputer desktop, komputer portabel, dan pasar server sederhana.
{{Terjemah|Inggris}}
 
'''x86''' atau '''80x86''' adalah nama umum dari arsitektur [[mikroprosesor]] yang pertama kali dikembangkan dan diproduksi oleh [[Intel]]. Arsitektur x86 saat ini mendominasi komputer desktop, komputer portabel, dan pasar server sederhana.
[[Image:Pentium4_northwood.png|thumb|Keping Mikroposesor Intel Pentium 4; Seri Northwood]]
 
Arsitektur ini dikenal dengan nama '''x86''' karena prosesor-prosesor awal dari keluarga arsitektur ini memiliki nomor model yang diakhiri dengan urutan angka "86": prosesor [[8086]], [[80186]], [[80286]], [[Intel 80386|386]], dan [[Intel 80486|486]]. KerenaKarena nomor tidak bisa di-[[paten]]-kandijadikan merek dagang, Intel danakhirnya manufakturmenggunakan pesaingnya mulai mengunakan nama yang bisa dipatenkan misalnyakata [[Pentium]] untuk generasi-generasimerek lanjutandagang dariprocessor arsitekturgenerasi ini,kelima namun penggunaan istilah "x86" telah secara umum digunakan untuk menyebut semua prosesor dalam generasi inimereka.
 
Arsitektur ini telah dua kali diperluas untuk mengakomodasi [[Word (istilah komputer)|ukuran word]] yang lebih besar. DiPada tahun 1985, Intel mengumumkan rancangan generasi 386 32-bit yang menggantikan rancangan generasi 286 16-bit. Arsitektur 32-bit ini dikenal dengan nama '''x86-32''' atau '''[[IA-32]]''' (singkatan dari '''I'''ntel '''A'''rchitecture, 32-bit). Kemudian pada tahun 2003, [[AMD]] memperkenalkan [[Athlon 64]], yang menerapkan secara lebih jauh pengembangan dari arsitektur ini menuju ke arsitektur 64-bit, dikenal dengan beberapa istilah [[AMD64|x86-64]], [[AMD64]] (AMD), [[EM64T]] atau [[IA-32e]] (Intel), dan x64 (Microsoft).
 
== Sejarah ==
Arsitektur x86 pertama kali hadir melalui [[Intel 8086|8086]] [[Central processing unit|CPU]] pada tahun [[1978]]; Intel 8086 adalah pengembangan dari mikroprosesor [[Intel 8080]] (yang dibangun mengikuti arsitektur dari [[Intel 4004|4004]] dan [[Intel 8008|8008]]), dan program bahasa rakitan dari 8080 dapat diterjemahkan secara mekanik ke program yang setara ke bahasa rakitan untuk 8086. Arsitektur ini diadaptasi (dengan versi yang lebih sederhana dari versi [[Intel 8088|8088]]) tiga tahun kemudian sebagai standar dari CPU pada [[IBM PC]]. Kehadiran platform PC secara luas membuat arsitektur x86 menjadi arsitektur CPU yang paling sukses selama ini. (Rancangan CPU lainnya yang sangat sukses, yang dibagun berdasarkan 8080 dan kompatible pada set-instruksi hingga pada tingkatan bahasa-mesin biner adalah arsitektur [[Zilog Z80]].)
 
Perusahaan lain juga membuat atau pernah membuat [[Central processing unit|CPU]] yang berdasarkan arsitektur x86: diantaranyadi antaranya [[Cyrix]] (sekarang diakuisisi oleh [[VIA Technologies]]), [[NEC Corporation]], [[IBM]], [[Integrated Device Technology|IDT]] (juga telah diakuisisi oleh VIA), dan [[Transmeta]]. Manufaktur yang paling sukses adalah [[AMD]], dengan seri [[Athlon]]-nya, yang meskipun belum se-populer seri [[Pentium]], telah menguasai sebagian pangsa pasar secara nyata. Menurut beberapa perusahaan riset pangsa pasar CPU [[AMD]] telah melampaui penjualan CPU [[Intel]] di pasar retail dekstop pada tahun 2006.
 
== Rancangan ==
Intel juga telah memperkenalkan arsitektur 64-bit secara terpisah yang digunakan pada prosesor [[Itanium]] yang dikenal dengan nama [[IA-64]] yang kini disebut juga IPF (Itanium Processor Family). IA-64 adalah sistem yang benar-benar baru dan tidak memiliki kesamaan apapun dengan arsitektur x86; ini berbeda dengan [[IA-32]], yang secara dasar sama dengan versi 32-bit dari x86.
Arsitektur x86 adalah rancangan [[CISC|Set Instruksi Komputer Kompleks (Complex Instruction Set Computer)]] dengan panjang instruksi yang bervariasi. Word disimpan dengan urutan [[endian|endian-kecil]]. Kompatibilitas mundur menjadi motivasi terkuat dalam pengembangan arsitektur x86 (keputusan ini menjadi sangat penting dan sering dikritik, terutama oleh pesaing dari pendukung arsitektur prosesor lainnya, yang dibuat frustasi oleh sukses yang berkelanjutan dari arsitektur ini yang secara umum dipandang memilki banyak kelemahan). Prosesor-prosesor terkini dari x86 menerapkan beberapa langkah penerjemah (dekoder) "tambahan" untuk (saat [[eksekusi]]) memecah (sebagian besar) instruksi x86 kedalam potongan-potongan kecil instruksi (dikenal dengan "micro-ops") yang selanjutnya dieksekusi oleh arsitektur setara dengan arsitektur [[RISC]].
 
==Rancangan==
Arsitektur x86 adalah rancangan [[CISC|Set Instruksi Komputer Kompleks - Complex Instruction Set Computer]] dengan panjang instruksi yang bervariasi. Word disimpan dengan urutan[[endian|endian-kecil]]. Kompatibilitas mundur menjadi motivasi terkuat dalam pengembangan arsitektur x86 (keputusan ini menjadi sangat penting dan sering dikritik, terutama oleh pesaing dari pendukung arsitektur prosesor lainnya, yang dibuat frustasi oleh sukses yang berkelanjutan dari arsitektur ini yang secara umum dipandang memilki banyak kelemahan). Prosesor-prosesor terkini dari x86 menerapkan beberapa langkah penerjemah (dekoder) "tambahan" untuk (saat [[eksekusi]]) memecah (sebagian besar) instruksi x86 kedalam potongan-potongan kecil instruksi (dikenal dengan "micro-ops") yang selanjutnya dieksekusi oleh arsitektur setara dengan arsitektur [[RISC]].
 
[[Bahasa rakitan]] dari x86 dibahas secara lebih terperinci di artikel [[Bahasa Rakitan x86]].
 
[[Mikroprosesor]] x86 dapat bekerja dalam beberapa modus berikut:
===Mode Real (Real Mode)===
* Real-mode (Modus Real)
The Intel 8086 and 8088 had 14 16-[[bit]] [[processor register|registers]]. Four of them (AX, BX, CX, DX) were general purpose (although each had also an additional purpose; for example only CX can be used as a counter with the ''loop'' instruction). Each could be accessed as two separate bytes (thus BX's high byte can be accessed as BH and low byte as BL). In addition to them, there are four segment registers ('''CS, DS, SS and ES'''). They are used to form a memory address. There are two pointer registers (SP which points to the bottom of the stack, and BP which can be used to point at some other place in the stack or the memory). There are two index registers (SI and DI) which can be used to point inside an array. Finally, there is the [[flag register]] ([[FLAGS register (computing)|FLAGS]]) containing flags such as [[carry]], [[overflow]], zero and so on, and the instruction pointer (IP) which points at the current instruction.
* Protected Mode (Modus terproteksi)
 
* Virtual Protected Mode (Modus Terproteksi Virtual)
In real mode, memory access is ''segmented''. This is done by shifting the segment address left by 4 bits and adding an offset in order to receive a final 20-bit address. For example, if DS is A000h and SI is 5677h, DS:SI will point at the absolute address DS &times; 16 + SI = A5677h. Thus the total address space in real mode is 2<sup>20</sup> bytes, or 1 [[Mebibyte|MiB]], quite an impressive figure for 1978. All memory addresses consist of both a segment and offset; every type of access (code, data, or stack) has a default segment register associated with it (for data the register is usually DS, for code it is CS, and for stack it is SS). For data accesses, the segment register can be explicitly specified (using a segment override prefix) to use any of the four segment registers.
* Compatibility Mode
 
* Long Mode/IA32e Full Mode
In this scheme, two different segment/offset pairs can point at a single absolute location. Thus, if DS is A111h and SI is 4567h, DS:SI will point at the same A5677h as above. In addition to duplicity, this scheme also makes it impossible to use more than four segments at once. Moreover, CS and SS are vital for the correct functioning of the program, so that only DS and ES can be used to point to data segments outside the program (or, more prcecisely, outside the currently-executing segment of the program) or the stack. This scheme, which was intended as a compatibility measure with the [[Intel 8085]], is often cited by programmers as a cause of much grief (though some programmers do not mind it so much, and the popularity of the x86 in the years before protected mode was introduced testifies that this is not an extremely serious flaw).
 
In addition to the above-stated, the 8086 also had 64 [[Kilobyte|KB]] of 8-bit (or alternatively 32 K-word of 16-bit) [[I/O]] space, and a 64 KB (one segment) [[Stack (data structure)|stack]] in memory supported by [[hardware]] (using the aforementioned SS, SP, and BP registers). Only words (2 bytes) can be pushed to the stack. The stack grows downwards (toward numerically lower addresses), its bottom being pointed by SS:SP. There are 256 [[interrupt|interrupts]], which can be invoked by both hardware and software. The interrupts can cascade, using the stack to store the return address.
 
Modern 32-bit x86 CPUs still support real mode, and in fact start up in real mode after reset. Real mode code running on these processors can take advantage of the 32-bit wide registers and additional segment registers (FS and GS) offered since the 80386.
 
===Mode terproteksi 16-bit (16-bit protected mode)===
The Intel 80286 could support 8086 [[real mode]] 16-bit OSes without any changes, however it also supported another mode of work called the [[protected mode]], which expanded addressable physical memory to 16[[MB]] and addressable virtual memory to 1 [[Gigabyte|GB]]. This was done by using the segment registers only for storing an index to a segment table. There were two such tables, the [[GDT]] and the [[LDT]], holding each up to 8192 segment descriptors, each segment giving access to up to 64 KB of memory. The segment table provided a 24-bit [[base address]], which could then be added to the desired offset to create an absolute address. In addition, each segment could be given one of four privilege levels (called the ''rings'').
 
Although the introductions were an improvement, they were not widely used because a protected mode operating system could not run existing real mode software as processes. Actually, in theory it could, but many DOS programs do direct hardware access and some do [[segment arithmetic]] and therefore could not run directly in [[protected mode]].
 
So in the 386, Intel introduced [[Virtual 8086 mode]], in which it is still subject to paging but used the real mode way to form linear address and allowed the OS to trap I/O accesses and, through paging, trap memory accesses.
 
In the meantime, operating systems like [[OS/2]] tried to ping-pong the processor between protected and real modes. This was both slow and unsafe, as in real mode a program could easily crash the computer. OS/2 also defined restrictive programming rules which allowed a ''Family API'' or ''bound'' program to run either in real mode or in protected mode. This was however about running programs originally designed for protected mode, not vice-versa. By design, protected mode programs did not suppose that there is a relation between selector values and physical addresses. It is sometimes mistakenly believed that problems with running real mode code in 16-bit protected mode resulted from IBM having chosen to use Intel reserved interrupts for BIOS calls. It is actually related to such programs using arbitrary selector values and performing "segment arithmetic" described above on them and also direct hardware access.
 
This problem also appeared with [[Windows 3.0]]. Optimally, this release wanted to run programs in 16-bit protected mode, while previously they were running in real mode. Theoretically, if a Windows 1.x or 2.x program was written "properly" and avoided segment arithmetic it would run indifferently in both real and protected modes. Windows programs generally avoided segment arithmetic because Windows implemented a software virtual memory scheme and moved program code and data in memory when programs were not running, so manipulating absolute addresses was dangerous; programs were supposed to only keep ''handles'' to memory blocks when not running, and such handles were quite similar to protected-mode selectors already. Starting an old program while Windows 3.0 was running in protected mode triggered a warning dialog, suggesting to either run Windows in real mode (it could presumably still use expanded memory, possibly emulated with [[EMM386]] on 80386 machines, so it was not [[640K barrier|limited to 640 KB]]) or to obtain an updated version from the vendor. Well-behaved programs could be "blessed" using a special tool to avoid this dialog. It was not possible to have some GUI programs running in 16-bit protected mode and other GUI programs running in real mode, probably because this would require having two separate environments and (on 80286) would be subject to the previously mentioned ping-ponging of the processor between modes. In version 3.1 real mode disappeared.
 
===Mode terproteksi 32-bit (32-bit protected mode)===
 
The Intel 80386 introduced, perhaps, the greatest leap so far in the x86 architecture. With the notable exception of the [[Intel 80386SX]], which was 32-bit yet only had 24-bit addressing (and a 16-bit data bus), it was all 32-bit - all the registers, instructions, I/O space and memory. To work with the latter, it used a 32-bit extension of Protected Mode. As it was in the 286, segment registers were used to index inside a segment table that described the division of memory. Unlike the 286, however, inside each segment one could use 32-bit offsets, which allowed every application to access up to 4 [[Gigabyte|GB]] without segmentation and even more if segmentation was used. In addition, 32-bit protected mode supported [[paging]], a mechanism which made it possible to use [[virtual memory]].
 
No new general-purpose registers were added. All 16-bit registers except the segment ones were expanded to 32 bits. Intel represented this by adding "E" to the register mnemonics (thus the expanded AX became EAX, SI became ESI and so on). Since there was a greater number of registers, instructions and operands, the machine code format was expanded as well. In order to provide backwards compatibility, the segments which contain executable code can be marked as containing either 16 or 32 bit instructions. In addition, special prefixes can be used to include 32-bit instructions in a 16-bit segment and vice versa.
 
Paging and segmented memory access were both required in order to support a modern multitasking operating system. [[Linux]], [[386BSD]], [[Windows NT]] were all initially developed for the 386, because it was the first CPU that support paging and 32-bit segment offsets. The basic architecture of the 386 became the basis of all further development in the x86 series.
 
The [[Intel 80387]] math co-processor was integrated into the next CPU in the series, the Intel 80486. The new [[FPU]] could be used to make [[floating point]] calculations, important for scientific calculation and graphic design.
 
===MMX dan generasi sesudahnya===
1996 saw the appearance of the [[MMX]] (Matrix Math Extensions, though sometimes incorrectly referred to as Multi-Media Extensions) technology by Intel. While the new technology has been advertised widely and vaguely, its essence is very simple: MMX defined eight 64-bit [[SIMD]] registers overlayed onto the FPU stack to the [[Intel Pentium]] CPU design. Unfortunately, these instructions were not easily mappable to the code generated by ordinary [[C programming language|C]] [[compiler]]s, and Microsoft, the dominant compiler vendor, was slow to support them even as intrinsics. MMX is also limited to integer operations. These technical shortcomings caused MMX to have little impact in its early existence. Nowadays, MMX is typically used for some 2D video applications.
 
===3DNow!===
In 1997 AMD introduced [[3DNow!]] which consisted of SIMD floating point instruction enhancements to MMX (targeting the same MMX registers). While this did not solve the compiler difficulties, the introduction of this technology coincided with the rise of 3D entertainment applications in the PC space. 3D video game developers and 3D graphics hardware vendors used 3DNow! to help enhance their performance on AMD's [[AMD_K6|K6]] and [[Athlon]] series of processors.
 
===SSE= Real-Mode ==
Real-Mode adalah sebuah modus di mana prosesor Intel x86 berjalan seolah-olah dirinya adalah sebuah prosesor [[Intel 8086]] atau [[Intel 8088]], meski ia merupakan prosesor [[Intel 80286]] atau lebih tinggi. Karenanya, modus ini juga disebut sebagai '''modus 8086''' (''8086 Mode''). Dalam modus ini, prosesor hanya dapat mengeksekusi instruksi 16-bit saja dengan menggunakan register internal yang berukuran [[16-bit]], serta hanya dapat mengakses hanya 1024 KB dari [[memori fisik|memori]] karena hanya menggunakan [[bit|20-bit]] jalur [[bus alamat]]. Semua program DOS berjalan pada modus ini.
In 1999 Intel introduced the [[Streaming SIMD Extensions|SSE]] [[instruction set]] which added eight new 128 bit registers (not overlayed with other registers). These instructions were analogous to AMD's 3DNow! in that they primarily added floating point SIMD.
 
Prosesor yang dirilis setelah 8086, semacam [[Intel 80286]] juga dapat menjalankan instruksi 16-bit, tetapi jauh lebih cepat dibandingkan 8086. Dengan kata lain, Intel 80286 benar-benar kompatibel dengan prosesor Intel 8086 yang didesain sebelumnya. Sehingga prosesor Intel 80286 pun dapat menjalankan program-program 16-bit yang didesain untuk 8086 ([[IBM PC]]), dengan tentunya kecepatan yang jauh lebih tinggi.
===SSE2===
In 2000 Intel introduced the [[SSE2]] instruction set which added 1) a complete complement of integer instructions (analogous to MMX) to the original SSE registers and 2) 64-bit SIMD floating point instructions to the original SSE registers. The first addition made MMX almost obsolete, and the second allowed the instructions to be realistically targeted by conventional compilers.
 
Dalam Real-mode, tidak ada proteksi ruang alamat memori, sehingga tidak dapat melakukan ''multi-tasking''. Inilah sebabnya, mengapa program-program DOS bersifat ''single-tasking''. Jika dalam modus real terdapat ''multi-tasking'', maka kemungkinan besar antara dua program yang sedang berjalan, terjadi tabrakan (''crash'') antara satu dengan lainnya.
===SSE3===
Introduced in [[2004]] along with the [[Pentium 4#Prescott|''Prescott'']] revision of the [[Pentium 4]] processor, [[SSE3]] added specific memory and [[Thread (software engineering)|thread]]-handling instructions to boost the performance of Intel's [[HyperThreading]] technology. [[AMD]] later licensed the SSE3 instruction set for its latest (E) revision Athlon 64 processors. The SSE3 instruction set included on the new Athlons are only lacking a couple of the instructions that Intel designed for HyperThreading, since the [[Athlon 64]] does not support HyperThreading; however SSE3 is still recognized in software as being supported on the platform.
 
== Protected Mode ==
===64-bit===
Modus terproteksi (protected mode) adalah sebuah modus di mana terdapat proteksi ruang alamat memori yang ditawarkan oleh mikroprosesor untuk digunakan oleh sistem operasi. Modus ini datang dengan [[mikroprosesor]] [[Intel 80286]] atau yang lebih tinggi. Karena memiliki proteksi ruang alamat memori, maka dalam modus ini sistem operasi dapat melakukan multitasking.
By 2002, it was obvious that the 32-bit address space of the x86 architecture was limiting its performance in applications requiring large data sets. A 32-bit address space would allow the processor to directly address only 4 GB of data - a size frequently surpassed by applications such as video processing or [[database engine]]s.
 
Prosesor Intel 80286 memang dilengkapi kemampuan masuk ke dalam modus terproteksi, tetapi tidak dapat keluar dari modus tersebut tanpa harus mengalami reset (''warm boot'' atau ''cold boot''). Kesalahan ini telah diperbaiki oleh Intel dengan merilis prosesor [[Intel 80386]] yang dapat masuk ke dalam modus terproteksi dan keluar darinya tanpa harus melakukan reset. Inilah sebabnya mengapa [[Windows 95]]/[[Windows 98]] dilengkapi dengan modus '''Restart in MS-DOS Mode''', meski sebenarnya [[sistem operasi]] tersebut merupakan sistem operasi yang berjalan dalam modus terproteksi.
Intel had originally decided not to extend x86 to 64-bit as they had to 32-bits, and instead introduced a new architecture called [[IA-64]]. IA-64 technology is the basis for its [[Itanium]] line of processors. IA-64 provides a backward compatibility for older 32-bit x86; this mode of operation, however, is exceedingly slow.
 
== Virtual Protected Mode ==
[[AMD]] took the initiative of extending the 32-bit x86 (which Intel calls [[IA-32]]) to [[64-bit]]. It came up with an architecture, called [[AMD64]] (or [[x86-64]], prior to rebranding), and based the [[Opteron]] and [[Athlon 64]] family of processors on this technology. The success of the AMD64 line of processors coupled with the lukewarm reception of the IA-64 architecture prompted Intel to adopt the AMD64 instruction set, adding some new extensions of its own and branding it the [[EM64T]] architecture. In its literature and product version names, Microsoft refers to this processor architecture as x64.
'''Virtual Protected Mode''' juga kadang disebut sebagai '''Virtual Real Mode'''. Dalam modus ini, sebuah prosesor Intel x86 berjalan dalam modus terproteksi tetapi mengizinkan aplikasi-aplikasi 16-bit real-mode agar dapat dijalankan di atas sistem operasi. Microsoft [[Windows 3.x|Windows 3.1]], yang berjalan di dalam modus Enhanced 386, [[Windows 95]], serta [[Windows 98]] mendukung modus ini sepenuhnya. Sistem-sistem operasi dapat menjalankan beberapa aplikasi [[16-bit]] real-mode secara sekaligus, pada window MS-DOS Prompt yang berbeda-beda, karena memang Microsoft mengimplementasikan sebuah lapisan emulasi yang disebut sebagai [[DPMI|DOS Protected Mode Interface (DPMI)]]. Setiap window MS-DOS Prompt yang dibuat, aplikasi hanya berjalan dalam real mode, tetapi karena Windows 3.1 (yang berjalan dalam modus Enhanced 386) dan Windows 95/98 berjalan dalam modus terproteksi, aplikasi akan menganggap dirinya berjalan pada komputer yang berbeda, meski pada fisiknya mereka dijalankan pada modus yang sama. Hal ini mengizinkan aplikasi-aplikasi 16-bit real-mode agar dapat dijalankan secara serentak ([[multitasking]]), meski pada awalnya aplikasi 16-bit berjalan dalam kondisi single-tasking.
 
DPMI digunakan oleh Windows 3.1 ke atas untuk mengakses [[Manajemen memori DOS|extended memory]] agar dapat digunakan oleh aplikasi Windows. DPMI mengizinkan program-program dapat menggunakan memori yang lebih banyak, meski pada aslinya program tersebut merupakan program 16-bit. Hal ini populer dilakukan, khususnya bagi program-program game komputer DOS, karena game-game tersebut dapat mengakses lebih dari 1 MB (diberi hak akses oleh sistem operasi). DPMI dapat melakukan switching prosesor dari real-mode ke protected mode atau sebaliknya.
This was the first time that a major upgrade of the x86 architecture was initiated and originated by a manufacturer other than Intel. Perhaps more importantly, it was the first time that Intel actually accepted technology of this nature from an outside source.
 
=== IA32e/AMD64/x64/x86-64 Compatibility Mode ===
===Virtualisasi===
Modus kompatibilitas adalah sebuah modus prosesor berbasis IA32e ([[x86-64]], [[AMD64]], [[EM64T]], atau [[x64]]) di mana prosesor sedang menjalankan instruksi [[32-bit]] ([[sistem operasi]] 32-bit dan aplikasinya yang dijalankan di atas prosesor x64 atau sistem operasi 64-bit yang menjalankan aplikasi 32-bit). Dalam modus ini, prosesor tersebut bekerja seolah-olah dirinya adalah prosesor x86 32-bit, sehingga hanya dapat mengalamati memori hingga 4 GB saja.
x86 [[virtual machine|virtualization]] is difficult because the architecture does not meet the [[Popek and Goldberg virtualization requirements]]. Nevertheless, there are several commercial [[x86 virtualization]] products, such as [[VMware]] and [[Virtual PC|Microsoft Virtual PC]]. There is also an open source virtualization project [[Xen|Xen]]. Intel and AMD have both announced that future x86 processors will have new enhancements to facilitate more efficient virtualization. Intel's code names for their virtualization features are "Vanderpool" and "Silvervale"; AMD uses the code name "Pacifica".
 
=== IA32e/x86-64/AMD64/x64/EM64T Long Mode ===
===Sistem diatas satu chip - [[System-on-a-chip]] (SOC)===
Modus panjang (long mode) adalah sebuah modus prosesor 64-bit IA32e ([[x86-64]]/[[AMD64]]/[[x64]]/[[EM64T]]) yang berjalan di atas sistem operasi 64-bit, sehingga ia dapat mengeluarkan seluruh kemampuannya, seperti halnya mengakses memori lebih besar daripada 4 GB (hingga batasan yang dimiliki oleh prosesor dan sistem operasi), dan menjalankan aplikasi 64-bit. Hanya beberapa sistem operasi yang dapat menjalankan prosesor IA32e dalam modus ini, yakni [[Windows XP|Windows XP Professional x64 Edition]], [[Windows Server 2003]], [[GNU/Linux]] (versi [[kernel Linux|kernel]] 2.6 ke atas), [[Solaris|Solaris 10]] dan beberapa varian UNIX lainnya.
An x86 system-on-a-chip is a combination of an x86 CPU [[core]] with a [[northbridge (computing)|northbridge]] ([[memory controller]]) and a [[southbridge (computing)|southbridge]] (input/output (I/O) controller) in a single [[integrated circuit]] (IC).
 
== Daftar Pabrikan ==
x86 dan yang kompatibel dengan x86 telah dirancang, diproduksi, dan dijual oleh beberapa perusahaan, termasuk:
x86 and compatibles have been designed, manufactured and sold by a number of companies, including:
{{col-begin}}
{{col-break}}
* [[Intel]]
* [[AMD]]
* [[Chips and Technologies]]
* [[Cyrix]]
{{col-break}}
* [[IBM]]
* [[Integrated Device Technology|IDT]]
* [[National Semiconductor]]
* [[Nippon Electric Corporation|NEC]]
{{col-break}}
* [[NexGen]]
* [[Rise Technology]]
* [[STMicroelectronics|SGS-Thomson]]
* [[SiS]]
{{col-break}}
* [[Texas Instruments]]
* [[Transmeta]]
* [[United Microelectronics Corporation|UMC]]
* [[VIA Technologies|VIA]]
{{col-end}}
 
== Lihat Jugapula ==
* [[IA-32]]
* [[x86 assembly language]]
* [[x86 instruction listings]]
* [[Real mode]] &mdash; [[Unreal mode]] &mdash; [[Virtual 8086 mode]] &mdash; [[Protected mode]] &mdash; [[Long mode]]
 
== Pranala Luarluar ==
* [http://homemuvy.comcast.netorg/~fbuitech/intel.htmlphp The 8086 /80186/ 80286 / 80386 / 80486 Instruction Set ]{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* [https://web.archive.org/web/20051119075713/http://mixeurpc.free.fr/SITE_Guide_CPU/accueil.php?new_langue=en x86 cpus' guide]
* [http://sandpile.org x86 and x86-64 Instruction Set at sandpile.org]
* [http://www.amd.com/us-en/Corporate/VirtualPressRoom/0,,51_104_572_573^10034,00.html AMD Geode Series]
* [http://www.chiplist.com/ The ChipList] &ndash; By Adrian Offerman
* [http://www.cpu-info.com/index.php CPU-INFO: x86 processor information and indepth processor history] {{Webarchive|url=https://web.archive.org/web/20060410190329/http://www.cpu-info.com/index.php |date=2006-04-10 }}
* [http://www.eetimes.com/story/OEG19990805S0021 VIA bought IDT CPU division]
* [https://web.archive.org/web/20001017213428/http://www.linuxdevices.com/articles/AT4313418436.html#x86 List of SOC] List of System-On-Chip ([[SOC]]) based on X86 core.
* [http://www.national.com/news/item/0,1735,687,00.html National Instrument Geode] {{Webarchive|url=https://web.archive.org/web/20070122104850/http://www.national.com/news/item/0,1735,687,00.html |date=2007-01-22 }}
 
{{Intel processors}}
[[Category:Arsitektur x86| ]]
{{Authority control}}
[[Category:Intel]]
[[Category:Mikroprosesor]]
[[Category:IBM kompatibel PC]]
[[Category:Arsitektur Komputer]]
 
[[Kategori:Arsitektur x86| ]]
[[ca:X86]]
[[csKategori:X86Intel]]
[[Kategori:Mikroprosesor]]
[[da:X86]]
[[Kategori:Komputer kompatibel PC IBM]]
[[de:X86-Prozessor]]
[[es:X86]]
[[fr:X86]]
[[ko:X86]]
[[it:Architettura x86]]
[[hu:X86]]
[[nl:X86-instructieset]]
[[ja:80x86]]
[[no:X86-arkitektur]]
[[pl:X86]]
[[pt:X86]]
[[ru:X86]]
[[sk:X86]]
[[fi:X86]]
[[sv:X86]]
[[uk:X86]]
[[zh:X86]]