Teorema dasar aljabar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
VIGENio (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala
 
(12 revisi perantara oleh 6 pengguna tidak ditampilkan)
Baris 2:
{{Rough translation|1=Inggris|2=Fundamental theorem of algebra|listed=yes|date=Oktober 2020}}
{{Distinguish|Teorema dasar aritmetika}}
'''[[Teorema fundamental]]dasar [[aljabar]]''' menyatakan bahwa setiap polinomial variabel tunggal non [[Polinomial konstanta|konstantakonstan]] pada variabel tunggaldengan [[polinomialkoefisien]] dengan [[bilangan kompleks]] [[koefisien]] memiliki setidaknya satu akar kompleks. Ini termasuk polinomial dengan koefisien nyatareal, karena setiap bilangan real adalah bilangan kompleks dengan [[bagian imajiner]] sama dengan nol.
 
Secara ekivalenekuivalen (menurut definisi), teorema tersebut menyatakan bahwa [[BidangMedan (matematika)|bidanglapangan]] dari [[bilangan kompleks]] adalah [[Bidang tertutup aljabar|tertutup secara aljabar]].
 
Teorema ini dinyatakan sebagai berikut: setiap bukanpolinomial nol,nonkonstan variabel tunggal, [[Derajatberderajat polinomial|derajat]] ''<math>n'' polinomial</math> dengan koefisien kompleks memiliki, dihitungtepat dengan<math>n</math> [[Multiplisitasakar kompleks (matematika)#Multiplisitasdengan darimemperhitungkan sebuah akar polinomial|multiplisitas]], tepatnyaaljabar). akarKesetaraan komplekspernyataan ''ini ndengan ''.pernyataan Kesetaraanpada kedua pernyataanparagraf tersebutpertama dapat dibuktikan melalui penggunaan [[pembagian polinomial]] yang berurutan.
 
Terlepas dari namanya, tidak ada bukti teorema yang murni aljabar, karena bukti apa punapapun harus menggunakan beberapa bentuk analitik [[kelengkapan bilangan riil]], yang merupakan [[Teorema dasar aljabar#Bukti Aljabar|bukan konsep aljabar]].<ref>Bahkan bukti bahwa persamaan <math> x^2-2 = 0 </math> memiliki solusi melibatkan [[konstruksiKonstruksi bilangan riil|definisi bilangan real]] melalui beberapa bentuk kelengkapan (khususnya).</ref> Selain itu, ini tidakbukanlah fundamentalteorema dasar untuk [[aljabar modern]]; namanya diberikan pada saat aljabar identik dengan [[teori persamaan]].
 
== Sejarah ==
Peter Roth, dalam bukunya ''Arithmetica Philosophica'' (diterbitkan pada 1608, di Nürnberg, oleh Johann Lantzenberger),<ref>[http://www.e-rara.ch/doi/10.3931/e-rara-4843 Rare books]</ref> menulis bahwa persamaan polinomial derajat ''berderajat <math>n '' </math>(dengan koefisien nyatabilangan real) '' mungkin '' memiliki solusi '' <math>n</math> ''akar. [[Albert Girard]], dalam bukunya '' L'invention nouvelle en l'Algèbre '' (diterbitkan tahun 1629), menegaskan bahwa persamaan polinomial derajat ''berderajat <math>n ''</math> memiliki solusi '' <math>n ''</math>akar, tetapi dia tidak menyatakan bahwa merekasemua solusinya harus bilangan real. Lebih jauh, dia menambahkan bahwa pernyataannya menyatakan "kecuali persamaannya tidak lengkap", yang dia maksudkan bahwa tidak ada koefisien yang sama dengan <math>0</math>. Namun, ketika dia menjelaskan secara rinci apa yang dia maksud, jelas bahwa dia benar-benar percaya bahwa pernyataannya itu selalu benar; Misalnya, dia menunjukkan persamaan itu <math>x^4 = 4x-3,</math> meskipun tidak lengkap, memiliki empat penyelesaian (menghitung kelipatanmultiplisitas aljabar): <math>1</math> (dua kali), <math>-1+i\sqrt{2},</math> anddan <math>-1-i\sqrt{2}.</math>
 
Seperti yang akan disebutkan lagi di bawah ini, Iniini mengikutidapat disimpulkan dari teorema dasar aljabar bahwa setiap polinomial tidak konstan dengan koefisien nyatabilangan real dapat ditulis sebagai hasil kali polinomial dengan-polinomial koefisien nyatabilangan real yang derajatnya adalah 1 atau 2. Namun, pada 1702, [[Gottfried Leibniz|Leibniz]] secara keliru mengatakan bahwa tidak ada polinomial dari jenis {{math|''x''<sup>4</sup> + ''a''<sup>4</sup>}} (dengan {{math|'' a ''}} nyataadalah danbilangan berbedareal daritidak 0) dapat ditulis sedemikian rupa. Belakangan, [[Nicolaus I Bernoulli|Nikolaus Bernoulli]] membuat pernyataan yang sama tentang polinomial {{math|''x''<sup>4</sup> − 4''x''<sup>3</sup> + 2''x''<sup>2</sup> + 4''x'' + 4}}, tapitetapi dia mendapat surat dari [[Leonhard Euler|Euler]] pada tahun 1742<ref>Lihat bagian '' Le rôle d'Euler '' dalam artikel C. Gilain ''Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral''.</ref> di manayang ditunjukkanmenunjukkan bahwa polinomial ini sama dengan
:<math>\left (x^2-(2+\alpha)x+1+\sqrt{7}+\alpha \right ) \left (x^2-(2-\alpha)x+1+\sqrt{7}-\alpha \right ),</math>
withdengan <math>\alpha = \sqrt{4+2\sqrt{7}}.</math> Selain itu, Euler menunjukkan itu
Pula, Euler menunjukkan itu
:<math>x^4+a^4= \left (x^2+a\sqrt{2}\cdot x+a^2 \right ) \left (x^2-a\sqrt{2}\cdot x+a^2 \right ).</math>
 
Upaya pertama untuk membuktikan teorema dilakukan oleh [[Jean le Rond d'Alembert|d'Alembert]] pada tahun 1746, tetapi buktinya tidak lengkap. Di antara masalah lainnya, ia mengasumsikan secara implisit sebuah teorema (sekarang dikenal sebagai [[Teorema Puiseux]]), yang tidak akan dibuktikan sampai lebih dari satu abad kemudian dan menggunakan teorema dasar aljabar. Upaya lain dilakukan oleh [[Leonhard Euler|Euler]] (1749), [[François Daviet de Foncenex|de Foncenex]] (1759), [[Joseph Louis Lagrange|Lagrange]] (1772), dan [[Pierre-Simon Laplace|Laplace]] (1795). Empat percobaan terakhir ini secara implisit mengasumsikan pernyataan Girard; lebih tepatnya, keberadaanapabila solusisetiap diasumsikanpolinomial dannonkonstan yangmemiliki tersisaakar untukmaka dibuktikanakarnya adalahakan bahwaberbentuk bentuknya ''<math>a''&nbsp;+&nbsp;''bi''</math> untuk beberapasuatu bilangan real '' <math>a ''</math> dan '' <math>b ''</math>. Dalam istilah modern, Euler, de Foncenex, Lagrange, dan Laplace mengasumsikan adanya [[bidang pemisah|lapangan pemisah]] dari polinomial ''<math>p''(''z'')</math>.
 
Pada akhir abad ke-18, dua bukti baru diterbitkan yang tidak mengasumsikan keberadaan akar, tetapi tidak ada yang lengkap. Salah satunya, karenaoleh [[James Wood (matematikawan)|James Wood]] dandengan bukti yang terutamabersifat aljabar, diterbitkan pada tahun 1798 dan itudianggap samavalid sekalitanpa diabaikancelah awalnya. BuktiNamun, beberapa tahun kemudian, bukti Wood didapati memiliki celah aljabar.<ref>Mengenai bukti Wood, lihat artikel '' Makalah yang terlupakan tentang teorema dasar aljabar '', oleh Frank Smithies.</ref> YangBukti lainnya diterbitkan oleh [[Carl Friedrich Gauss|Gauss]] pada tahun 1799 dandengan sebagianbukti besaryang bersifat geometris, tetapi memiliki celah topologi, hanyayang diisidilengkapi oleh [[Alexander Ostrowski]] pada tahun 1920, seperti yang dibahas di Smale.<ref>[http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183547848 Smale writes], "...Saya ingin menunjukkan betapa besarnya celah yang terkandung dalam bukti Gauss. Bahkan sekarang ini adalah titik halus bahwa kurva bidang aljabar nyata tidak dapat memasuki cakram tanpa keluar. Faktanya, meskipun Gauss memperbaiki bukti ini 50 tahun kemudian, kesenjangan tetap ada. Baru pada tahun 1920 pembuktian Gauss selesai. Dalam referensi Gauss. Ostrowski memiliki makalah yang melakukan ini dan memberikan diskusi yang sangat baik tentang masalahnya juga..."</ref> Bukti ketatformal pertama diterbitkan oleh [[Jean-Robert Argand|Argand]] pada 1806 (dan ditinjau kembali pada 1813);<ref>{{MacTutor Biography|id=Argand|title=Jean-Robert Argand}}</ref> Di sinilah, untuk pertama kalinya, teorema dasar aljabar dinyatakan untuk polinomial dengan koefisien bilangan kompleks, bukan hanya koefisien bilangan riil. Gauss menghasilkan dua bukti lain pada tahun 1816 dan versi lain yang tidak lengkap yang lain dari bukti aslinya pada tahun 1849.
 
Buku teks pertama yang berisi bukti teorema dasar aljabar adalah milikbuku karangan [[Cauchy|Cauchy,]] ''Cours d'analyse de l'École Royale Polytechnique'' (1821). IsinyaBuku tersebut menggunakan bukti dari Argand, meskipunnamun tidak menyebut [[Jean Robert Argand|Argand]] tidaksebagai dikreditkanpenemu untukbukti itutersebut.
 
Tak satu pun dari bukti yang disebutkan sejauh ini adalah [[Konstruktivisme (matematika)|konstruktif]]. Hal ini pertama kali disinggung oleh [[Weierstrass]] yang membesarkan untuk pertama kalinya, dipada pertengahan abad ke-19. Pada 1891, masalahdia menemukanmempresentasikan [[bukti konstruktif]] dari teorema dasar aljabar. Dia mempresentasikan solusinyakonstuktifnya, yang jumlahnyapada dalamsaat istilahini moderndikenal menjadisebagai kombinasi dari [[metode Durand–Kerner]] dengan prinsip [[kelanjutan homotopi]], pada tahun 1891. Bukti lain sepertiyang inikonstruktif diberikan diperoleholeh [[Hellmuth Kneser]] pada tahun 1940 dan disederhanakan oleh putranya [[Martin Kneser]] pada tahun 1981.
 
Tanpa menggunakan aksioma [[pilihan terhitung]], tidaklahmembuktikan mungkinteorema dasar aljabar untuk membuktikanbilangan kompleks secara konstruktif teoremaadalah dasarhal aljabaryang untukmustahil. bilanganHal kompleksini berdasarkandidasarkan dari [[konstruksi bilangan riil|konstruksi bilangan real Dedekind]] (yang secara konstruktif tidak setara secara konstruktif dengan bilangan real Cauchy tanpa pilihan[[Aksioma yangpemilihan|aksioma dapatpilihan]] dihitung)terhitung.<ref>Untuk kebutuhan minimum untuk membuktikan kesetaraan mereka, lihat Bridges, Schuster, dan Richman; 1998; <cite>Prinsip pilihan yang dapat dihitung yang lemah</cite>; available from [http://math.fau.edu/richman/HTML/DOCS.HTM] {{Webarchive|url=https://web.archive.org/web/20200219002009/http://math.fau.edu/richman/html/docs.htm |date=2020-02-19 }}.</ref> Namun, [[Fred Richman]] berhasil membuktikan versiformulasi ulang dari teorema yangdasar dirumuskanaljabar ulangtanpa yangmenggunakan berhasilaksioma pilihan terhitung secara konstruktif.<ref>See Fred Richman; 1998; <cite>Teorema fundamental aljabar: perkembangan konstruktif tanpa pilihan</cite>; tersedia dari [http://math.fau.edu/richman/HTML/DOCS.HTM] {{Webarchive|url=https://web.archive.org/web/20200219002009/http://math.fau.edu/richman/html/docs.htm |date=2020-02-19 }}.</ref>
 
== BuktiPernyataan ekuivalen ==
Pernyataan-pernyataan berikut ekuivalen dengan teorema dasar aljabar:
Semua bukti di bawah ini melibatkan beberapa [[analisis matematika]], atau setidaknya konsep [[topologi]] dari [[fungsi berkelanjutan|kontinuitas]] dari fungsi nyata atau kompleks. Beberapa juga menggunakan fungsi [[Turunan|terdiferensiasi]] atau bahkan [[Fungsi analitik|analitik]]. This fact has led to the remark bahwa Teorema Dasar Aljabar bukanlah teorema fundamental, juga bukan teorema aljabar.{{Citation needed|reason=Who made the remark?|date=Februari 2016}}
 
* ''Setiap [[Polinomial|polinomial variabel tunggal]] berderajat positif dengan koefisien real memiliki setidaknya satu akar kompleks.''
Beberapa bukti teorema hanya membuktikan bahwa polinomial tak konstan apapun dengan koefisien '''riil''' memiliki akar yang kompleks. Ini cukup untuk membangun teorema dalam kasus umum karena, diberikan polinomial non-konstan '' p '' ('' z '') dengan koefisien kompleks, polinomial
* ''Setiap polinomial variabel tunggal berderajat positif dengan koefisien kompleks memiliki setidaknya satu akar kompleks.''Tentunya ini mengimplikasikan pernyataan pada poin sebelumnya, karena semua bilangan real adalah bilangan kompleks. Konversnya, yaitu pernyataan poin pertama mengimplikasikan pernyataan pada poin ini, juga benar, karena polinomial real dapat dituliskan sebagai hasil kali suatu polinomial kompleks <math>p(x)</math> dengan konjugat kompleksnya <math>q(x)</math> (diperoleh dengan mengganti semua koefisien pada <math>p(x)</math> dengan konjugat kompleksnya). Dengan demikian, akar-akar dari polinomial real tersebut terdiri dari semua akar <math>p(x)</math> dan semua akar <math>q(x)</math> (akarnya berupa konjugat kompleks dari akar-akar <math>p(x)</math>).
* ''Setiap polinomial variabel tunggal dengan derajat positif <math>n</math> dengan koefisien kompleks dapat difaktorkan sebagai<math>c(x-r_1)\dots(x-r_n),</math> dengan <math>c, r_1, \dots, r_n</math> adalah bilangan kompleks.''Bilangan-bilangan kompleks <math>r_1, r_2, \dots, r_n</math>adalah akar-akar dari polinomial tersebut. Jika ada akar yang muncul di beberapa faktor, maka akar tersebut merupakan [[akar ganda]] dan banyaknya kemunculan akar tersebut merupakan multiplisitas dari akar tersebut. Bukti dari ekuivalensi pernyataan ini telah dituliskan di atas melalui [[rekursi]] pada <math>n</math>: misalkan <math>r_1</math> diketahui sebagai akar dari suatu polinomial, maka polinomial tersebut habis dibagi faktor <math>x-r_1</math> dan hasil baginya adalah polinomial berderajat <math>n-1</math> yang akar-akarnya adalah akar-akar lain dari polinomial yang diberikan.
 
Dua pernyataan selanjutnya ekuivalen dengan pernyataan-pernyataan di atas, walaupun kedua pernyataan ini tidak melibatkan bilangan kompleks nonreal. Kedua pernyataan ini dapat dibuktikan dengan faktorisasi sebelumnya, dengan mengobservasi bahwa jika <math>r</math> adalah akar nonreal dari polinomial dengan koefisien real, maka <math>\bar{r}</math> adalah akar dari polinomial tersebut dan <math>(x-r)(x-\bar{r})</math> merupakan polinomial real berderajat dua. Sebaliknya, jika suatu polinomial habis dibagi faktor polinomial berderajat dua, maka akar faktor tersebut dapat dicari dengan menggunakan [[rumus kuadrat]].
:<math>q(z)=p(z)\overline{p(\overline z)}</math>
 
* ''Setiap polinomial variabel tunggal dengan koefisien real yang berderajat lebih besar daripada dua memiliki faktor berderajat dua dengan koefisien real.''
hanya memiliki koefisien nyata dan, jika '' z '' adalah nol dari '' q '' ('' z ''), maka '' z '' atau konjugatnya adalah akar dari ''p''(''z'').
* ''Setiap polinomial variabel tunggal dengan koefisien real yang berderajat positif dapat difaktorkan sebagai <math>cp_1 \dots p_k,</math> dengan <math>c</math> adalah bilangan real dan setiap <math>p_i</math>adalah [[polinomial monik]] berderajat maksimal dua dengan koefisien real. Faktor <math>p_i</math> yang memiliki derajat dua tidak memiliki akar real.''
 
== Bukti ==
Sejumlah besar bukti teorema non-aljabar menggunakan fakta (kadang-kadang disebut "lemma pertumbuhan") bahwa fungsi polinomial derajat ke-'' n '' - '' p '' ('' z '') yang koefisien dominannya adalah 1 berperilaku li ''z<sup>n</sup>'' dimana |''z''| adalah nilai besar. Pernyataan yang lebih tepat adalah: ada bilangan real positif '' R '' sedemikian rupa sehingga:
Semua bukti di bawah ini melibatkan konsep dari [[analisis matematika]], atau setidaknya konsep [[topologi|topologis]] [[fungsi berkelanjutan|kekontinuan]] dari fungsi real atau kompleks. Beberapa bukti juga menggunakan konsep fungsi [[Turunan|diferensiabel]] atau bahkan fungsi [[Fungsi analitik|analitik]]. Karena inilah, orang-orang berpendapat bahwa Teorema Dasar Aljabar bukanlah teorema yang mendasar ataupun teorema aljabar.<ref>{{Cite book|last=Aigner|first=Martin|date=2018|url=https://www.worldcat.org/oclc/1040612781|title=Proofs from THE BOOK|location=Berlin, Heidelberg|isbn=978-3-662-57265-8|edition=Sixth edition|others=Günter M. Ziegler|oclc=1040612781}}</ref>
 
Beberapa bukti teorema ini hanya membuktikan bahwa polinomial tak konstan apapun dengan koefisien real memiliki akar yang kompleks. Ini cukup untuk membangun teorema dalam kasus umum, karena apabila diberikan polinomial nonkonstan <math>p(z)</math> dengan koefisien kompleks, polinomial<math display="block">q(z)=p(z)\overline{p(\overline z)}</math>adalah polinomial dengan koefisien real dan, jika <math>z</math> adalah akar dari <math>q(z)</math>, maka <math>z</math> atau konjugatnya adalah akar dari <math>p(z)</math>.
:<math>\tfrac{1}{2}|z^n|<|p(z)|<\tfrac{3}{2}|z^n|</math>
 
Banyak bukti nonaljabar dari teorema menggunakan fakta (kadang-kadang disebut "lema pertumbuhan") bahwa fungsi polinomial <math>p(z)</math> berderajat <math>n</math> yang koefisien dominannya adalah 1 berperilaku seperti <math>z^n</math> saat <math>|z|</math> bernilai cukup besar. Lebih tepatnya, ada bilangan real positif <math>R</math> sedemikian rupa sehingga:<math display="block">\frac{1}{2}|z^n|<|p(z)|<\frac{3}{2}|z^n|</math>jika <math>|z|>R</math>.<!-- Bagian ini belum diterjemahkan
jika |''z''|&nbsp;>&nbsp;''R''.
 
Real-analytic proofs[edit source]
== Bukti analitik kompleks ==
Temukan tertutup [[disk (matematika)|disk]] '' D '' dengan radius '' r '' berpusat di tempat asal sedemikian rupa sehingga |''p''(''z'')|&nbsp;>&nbsp;|''p''(0)| adalah |''z''|&nbsp;≥&nbsp;''r''. Minimum |''p''(''z'')| di ''D'', yang harus ada karena '' D '' adalah [[himpunan kompak|kompak]], oleh karena itu tercapai di beberapa titik ''z''<sub>0</sub> di bagian dalam '' D '', tetapi tidak di titik mana pun dari batasnya. [[Prinsip modulus maksimum]] (diterapkan ke 1/''p''(''z'')) menyiratkan kemudian itu ''p''(''z''<sub>0</sub>)&nbsp;=&nbsp;0. In other words, ''z''<sub>0</sub> is a zero of ''p''(''z'').
 
Even without using complex numbers, it is possible to show that a real-valued polynomial p(x): p(0) ≠ 0 of degree n > 2 can always be divided by some quadratic polynomial with real coefficients. In other words, for some real-valued a and b, the coefficients of the linear remainder on dividing p(x) by x2 − ax − b simultaneously become zero.
'''Variasi dari bukti ini''' tidak memerlukan penggunaan prinsip modulus maksimum (pada kenyataannya, argumen yang sama dengan perubahan kecil juga memberikan bukti prinsip modulus maksimum untuk fungsi holomorfik). Jika kita berasumsi dengan kontradiksi itu ''a'' := ''p''(''z''<sub>0</sub>) ≠ 0, then, expanding ''p''(''z'') in powers of ''z'' − ''z''<sub>0</sub> we can write
 
where q(x) is a polynomial of degree n − 2. The coefficients Rp(x)(a, b) and Sp(x)(a, b) are independent of x and completely defined by the coefficients of p(x). In terms of representation, Rp(x)(a, b) and Sp(x)(a, b) are bivariate polynomials in a and b. In the flavor of Gauss's first (incomplete) proof of this theorem from 1799, the key is to show that for any sufficiently large negative value of b, all the roots of both Rp(x)(a, b) and Sp(x)(a, b) in the variable a are real-valued and alternating each other (interlacing property). Utilizing a Sturm-like chain that contain Rp(x)(a, b) and Sp(x)(a, b) as consecutive terms, interlacing in the variable a can be shown for all consecutive pairs in the chain whenever b has sufficiently large negative value. As Sp(a, b = 0) = p(0) has no roots, interlacing of Rp(x)(a, b) and Sp(x)(a, b) in the variable a fails at b = 0. Topological arguments can be applied on the interlacing property to show that the locus of the roots of Rp(x)(a, b) and Sp(x)(a, b) must intersect for some real-valued a and b < 0. -->
:<math>p(z) = a + c_k (z-z_0)^k + c_{k+1} (z-z_0)^{k+1} + \cdots + c_n (z-z_0)^n.</math>
 
=== Bukti analisis kompleks ===
dalam arti bahwa (seperti mudah untuk memeriksa) fungsinya
Misalkan <math>D</math> adalah [[disk (matematika)|cakram]] dengan radius <math>r</math> berpusat di titik asal sedemikian rupa sehingga <math>|p(z)|>|p(0)|</math> saat <math>|z|\geq r</math>. Nilai minimal dari <math>|p(z)|</math> pada himpunan <math>D</math> ada'','' sebab <math>D</math> adalah himpunan [[himpunan kompak|kompak]], sehingga nilai minimum tersebut tercapai di suatu titik interior <math>z_0</math> dari himpunan <math>D</math>'','' bukan di titik batas dari himpunan <math>D</math>. [[Prinsip modulus maksimum]] (diterapkan ke <math>1/p(z)</math>) kemudian menunjukkan bahwa <math>p(z_0)=0</math>. Dengan kata lain, <math>z_0</math> adalah akar dari <math>p(z)</math>.
 
Variasi dari bukti ini tidak memerlukan penggunaan prinsip modulus maksimum (pada kenyataannya, argumen yang sama dengan perubahan kecil memberikan bukti prinsip modulus maksimum untuk fungsi holomorfik). Bagian sebelum penggunaan prinsip modulus maksimum juga dapat dilanjutkan dengan kontradiksi, i.e. memisalkan <math>p(z_0)</math> bernilai suatu konstan <math>a</math> tak nol, maka <math>p(z)</math> dapat dituliskan dalam deret pangkat <math>(z-z_0)</math> sebagai berikut<math display="block">p(z) = a + c_k (z-z_0)^k + c_{k+1} (z-z_0)^{k+1} + \cdots + c_n (z-z_0)^n.</math>
:<math>\left|\frac{p(z)-q(z)}{(z-z_0)^{k+1}}\right|</math>
 
dibatasiDi olehsini, beberapa<math>c_j</math> konstantaadalah positifkoefisien ''dari <math>z^j</math> pada polinomial <math>p(z+z_0)</math> jika dijabarkan, dan <math>k</math> adalah indeks dari koefisien tak nol pertama setelah suku konstan <math>p(z_0)</math>. Untuk <math>z</math> yang cukup dekat dengan <math>z_0</math>, fungsi ini memiliki perilaku yang secara asimtotik sama dengan polinomial <math>q(z)=a+c_k(z-z_0)^k</math>. Lebih tepatnya, hal ini dapat dituliskan sebagai<math display="block">\left|\frac{p(z)-q(z)}{(z-z_0)^{k+1}}\right| \leq M</math>untuk ''suatu konstanta positif <math>M</math> di beberapasuatu lingkungan ''z''dari <submath>0z_0</submath>. Oleh karena itu, jika kita mendefinisikanmisalkan <math>\theta_0theta = (\arg(a)+\pi-\arg(c_k)) /k</math> and letdan <math>z = z_0 + r e^{i \theta_0theta}</math>, kemudianmaka untuk suatu bilangan positif <math>r</math> yang cukup kecil '' r '' (sedemikian sehingga hingga batas '' <math>M ''</math> yang disebutkan di atas berlaku),<math menggunakan pertidaksamaan segitiga kita melihat bahwadisplay="block">\begin{align}
 
:<math>\begin{align}
|p(z)| &\le |q(z)| + r^{k+1} \left|\frac{p(z)-q(z)}{r^{k+1}}\right|\\[4pt]
&\le \left|a +(-1)c_k r^k e^{i(\arg(a)-\arg(c_k))}\right| + M r^{k+1} \\[4pt]
&= |a|-|c_k|r^k + M r^{k+1}.
\end{align}</math>
 
Apabila <math>r</math> cukup dekat dengan <math>0</math>, argumen di atas mengakibatkan batas atas dari <math>|p(z)|</math> lebih kecil daripada <math>|a|</math>, kontradiksi dengan asumsi <math>z_0</math> merupakan titik global minimum dari <math>|p(z)|</math> pada himpunan <math>D</math>. Secara geometris, argumen ini memberikan arah eksplisit <math>\theta_0</math> sedemikian sehingga jika <math>z</math> mendekati <math>z_0</math> dari arah tersebut, maka <math>|p(z)|<|p(z_0)|</math> untuk <math>r</math> yang cukup dekat dengan 0.
'''Lain''' bukti analitik dapat diperoleh sepanjang garis pemikiran ini mengamati itu, maka |''p''(''z'')|&nbsp;>&nbsp;|''p''(0)| outside ''D'', minimum |''p''(''z'')| di seluruh bidang kompleks dicapai di ''z''<sub>0</sub>. Jika |''p''(''z''<sub>0</sub>)|&nbsp;>&nbsp;0, lalu 1/''p'' adalah [[fungsi holomorfik]] berbatas di seluruh bidang kompleks karena, untuk setiap bilangan kompleks ''z'', |1/''p''(''z'')|&nbsp;≤&nbsp;|1/''p''(''z''<sub>0</sub>)|. Menerapkan [[Teorema Liouville (analisis kompleks)|Teorema Liouville]], yang menyatakan bahwa seluruh fungsi yang dibatasi harus konstan, ini berarti bahwa 1 / '' p '' adalah konstan. Ini memberikan kontradiksi, dan karenanya ''p''(''z''<sub>0</sub>)&nbsp;=&nbsp;0.
 
Bukti analitik lain dapat diperoleh dengan mengamati bahwa <math>|p(z)|>|p(z_0)|</math> di luar <math>D</math> mengakibatkan nilai minimum <math>|p(z)|</math> di seluruh bidang kompleks dicapai di <math>z_0</math>. Jika <math>|p(z_0)|>0</math>, maka <math>1/p(z)</math> adalah [[fungsi holomorfik]] terbatas di seluruh bidang kompleks, karena <math>|1/p(z)| \leq |1/p(z_0)|</math> untuk setiap bilangan kompleks <math>z</math>. Namun, [[Teorema Liouville (analisis kompleks)|Teorema Liouville]] menyatakan bahwa fungsi holomorfik yang terbatas pada <math>\mathbb{C}</math> haruslah merupakan fungsi konstan. Hal ini mengakibatkan <math>1/p(z)</math> adalah fungsi konstan, yang merupakan kontradiksi. Maka, <math>p(z_0)=0</math>.<ref>{{Cite book|last=Ahlfors|first=Lars|title=Complex Analysis (2nd ed.)|publisher=McGraw-Hill Book Company|pages=122|url-status=live}}</ref>
'''Dan lagi''' pembuktian analitik menggunakan [[prinsip argumen]]. Misalkan '' R '' adalah bilangan real positif yang cukup besar sehingga setiap akar ''p''(''z'') memiliki nilai absolut lebih kecil dari '' R ''; angka seperti itu harus ada karena setiap fungsi polinomial tak konstan dari derajat '' n '' memiliki paling banyak '' n '' nol. Untuk setiap ''r''&nbsp;>&nbsp;''R'', pertimbangkan bilangan nya
 
Bukti analitik lain mengandalkan [[prinsip argumen]]. Misalkan <math>R</math> adalah bilangan real positif yang cukup besar sehingga setiap akar dari <math>p(z)</math> memiliki [[nilai absolut]] lebih kecil dari <math>R</math>''. ''Bilangan <math>R</math> yang memenuhi sifat ini haruslah ada karena setiap fungsi polinomial tak konstan berderajat <math>n</math> memiliki paling banyak <math>n</math> akar. Untuk setiap <math>r>R</math>, tinjau bilangan<math display="block">N=\frac{1}{2\pi i}\int_{c(r)}\frac{p'(z)}{p(z)}\,dz,</math>dimana <math>c(r)</math> adalah lingkaran yang berpusat pada titik asal dengan jari-jari <math>r</math> berorientasi berlawanan arah jarum jam. Dari [[prinsip argumen]], <math>N</math> merepresentasikan banyaknya akar dari <math>p(z)</math> (memperhitungkan multiplisitas aljabar) di dalam bola buka berpusat di <math>0</math> dengan radius <math>r</math>. Karena <math>r>R</math>, maka bilangan <math>N</math> sama dengan banyaknya pembuat nol di <math>\mathbb{C}</math>. Di sisi lain, hasil dari pembagian integral dari <math>n/z</math> sepanjang kontur <math>c(r)</math> oleh <math>2\pi i</math> sama dengan <math>n</math>. Namun, selisih dari kedua angka tersebut adalah<math display="block">\frac{1}{2\pi i}\int_{c(r)}\left(\frac{p'(z)}{p(z)}-\frac{n}{z}\right)dz=\frac{1}{2\pi i}\int_{c(r)}\frac{zp'(z)-np(z)}{zp(z)}\,dz.</math>
:<math>\frac{1}{2\pi i}\int_{c(r)}\frac{p'(z)}{p(z)}\,dz,</math>
 
Pembilang dari bentuk rasional yang diintegralkan berderajat paling besar <math>n-1</math>, sedangkan penyebutnya berderajat <math>n+1</math>. Oleh karena itu, integral di atas cenderung mendekati <math>0</math> seiring <math>r \rightarrow +\infty</math>. Tetapi bilangan ini juga sama dengan <math>N-n</math>'', ''sehingga <math>N=n</math>.
dimana ''c''(''r'') adalah lingkaran yang berpusat pada 0 dengan jari-jari '' r '' berorientasi berlawanan arah jarum jam; kemudian [[prinsip argumen]] mengatakan bahwa bilangan ini adalah bilangan '' N '' dari nol ''p''(''z'') di bola terbuka berpusat di 0 dengan jari-jari '' r '', yang sejak ''r''&nbsp;>&nbsp;''R'', adalah jumlah total nol dari '' p '' ('' z ''). Sebaliknya, integral dari '' n '' / '' z '' sepanjang '' c '' ('' r '') dibagi 2π''i '' sama dengan '' n ''. Namun perbedaan antara kedua angka tersebut adalah
 
Bukti dengan metode [[analisis kompleks]] lain diberikan dengan mengkombinasikan [[aljabar linier]] dengan [[teorema integral Cauchy|Teorema Cauchy]]. Memperlihatkan bahwa setiap polinomial kompleks berderajat '' n ''> 0 memiliki pembuat nol dapat dilakukan dengan hanya menunjukkan bahwa setiap [[matriks persegi]] <math>n \times n</math> dengan entri kompleks memiliki [[nilai eigen]]<ref>Sebuah bukti dari fakta bahwa ini cukup dapat dilihat [[Bidang tertutup aljabar#Setiap endomorfisme Fn memiliki beberapa vektor eigen|di sini]].</ref> kompleks. Pernyataan ini dapat dibuktikan [[Bukti oleh kontradiksi|dengan kontradiksi]].
:<math>\frac{1}{2\pi i}\int_{c(r)}\left(\frac{p'(z)}{p(z)}-\frac{n}{z}\right)dz=\frac{1}{2\pi i}\int_{c(r)}\frac{zp'(z)-np(z)}{zp(z)}\,dz.</math>
 
Misalkan <math>A</math> adalah matriks persegi <math>n \times n</math> dengan entri kompleks dan <math>I_n</math> adalah [[matriks identitas]] perkalian dengan ukuran yang sama. Asumsikan <math>A</math> tidak memiliki nilai eigen, maka fungsi [[resolvent formalism|resolvent]]<math display="block"> R(z)=(zI_n-A)^{-1}</math>adalah fungsi meromorfik pada bidang kompleks dengan kodomain [[ruang vektor]] matriks dengan entri kompleks. Nilai eigen dari <math>A</math> adalah pole dari <math>R(z)</math>. Karena diasumsikan <math>A</math> tidak memiliki nilai eigen, fungsi <math>R(z)</math> adalah fungsi ''entire'' dan Teorema Cauchy mengimplikasikan bahwa<math display="block">\int_{c(r)} R(z) dz =0.</math>
Pembilang ekspresi rasional yang diintegrasikan memiliki derajat paling banyak '' n '' - 1 dan derajat penyebutnya adalah '' n '' + 1. Oleh karena itu, bilangan di atas cenderung 0 sebagai ''r'' → +∞. Tetapi jumlahnya juga sama dengan '' N '' - '' n '' dan jadi '' N '' = '' n ''.
 
Di sisi lain, ekspansi <math>R(z)</math> sebagai deret geometri memberikan<math display="block">R(z)=z^{-1}(I_n-z^{-1}A)^{-1}=z^{-1}\sum_{k=0}^{\infty}\frac{1}{z^k}A^k.</math>
'''Masih lagi''' bukti analitik kompleks dapat diberikan dengan menggabungkan [[aljabar linier]] dengan [[teorema integral Cauchy|Teorema Cauchy]]. Untuk menetapkan bahwa setiap polinomial kompleks berderajat '' n ''> 0 memiliki nol, ini cukup untuk menunjukkan bahwa setiap kompleks [[matriks persegi]] berukuran '' n ''> 0 memiliki (kompleks) [[nilai eigen]].<ref>Sebuah bukti dari fakta bahwa ini cukup dapat dilihat [[Bidang tertutup aljabar#Setiap endomorfisme Fn memiliki beberapa vektor eigen|di sini]].</ref> Bukti dari pernyataan terakhir adalah [[Bukti oleh kontradiksi|oleh kontradiksi]].
 
Rumus ini valid di luar cakram tertutup berjari-jari <math>\|A\|</math> (norm dari operator <math>A</math>). Misalkan <math>r>\|A\|</math>. Maka<math display="block">\int_{c(r)} R(z) dz=\sum_{k=0}^{\infty}\int_{c(r)} \frac{dz}{z^{k+1}}A^{k+1}=2\pi iI_n</math>
Jika ''A'' menjadi matriks persegi kompleks dengan ukuran '' n ''> 0 dan biarkan ''I<sub>n</sub>'' menjadi matriks satuan dengan ukuran yang sama. Asumsikan '' A '' tidak memiliki nilai eigen. Pertimbangkan fungsi [[resolvent formalism|resolvent]]
 
(hanya untuk <math>k=0</math> integran pada suku deret tersebut bernilai tak nol). Ini adalah kontradiksi, sehingga <math>A</math> memiliki nilai eigen.
:<math> R(z)=(zI_n-A)^{-1},</math>
<!-- [Bagian ini belum Diterjemahkan]
which is a [[meromorphic function]] on the complex plane with values in the vector space of matrices. The eigenvalues of ''A'' are precisely the poles of ''R''(''z''). Since, by assumption, ''A'' has no eigenvalues, the function ''R''(''z'') is an [[entire function]] and [[Cauchy's integral theorem|Cauchy theorem]] implies that
 
Terakhir, aplikasi Teorema Rouche memberikan bukti dari teorema dasar aljabar yang barangkali paling singkat.
:<math> \int_{c(r)} R(z) \, dz =0.</math>
 
=== Bukti topologi ===
On the other hand, ''R''(''z'') expanded as a geometric series gives:
Misalkan nilai minimal <math>|p(z)|</math> di seluruh bidang kompleks dicapai saat <math>z=z_0</math>; eksistensi nilai minimal ini terlihat pada bukti yang menggunakan teorema Liouville. Fungsi <math>p(z)</math> dapat dituliskan sebagai polinomial dengan variabel <math>(z-z_0)</math>'':'' ada suatu bilangan asli <math>k</math> dan bilangan-bilangan kompleks <math>c_k, c_{k+1}, \dots, c_n</math> dengan <math>c_k \neq 0</math> dan:<math display="block">p(z)=p(z_0)+c_k(z-z_0)^k+c_{k+1}(z-z_0)^{k+1}+ \cdots +c_n(z-z_0)^n.</math>
 
Jika <math>p(z_0)</math> tidak sama dengan nol, maka apabila <math>a</math> adalah akar pangkat <math>k</math> dari <math>-p(z_0)/c_k</math> dan jika <math>t</math> adalah konstanta positif yang cukup kecil, maka <math>|p(z_0+ta)|<|p(z_0)|</math>. Hal ini tidak mungkin, karena <math>|p(z_0)|</math> adalah minimum dari <math>|p|</math> pada <math>D</math>.
:<math>R(z)=z^{-1}(I_n-z^{-1}A)^{-1}=z^{-1}\sum_{k=0}^\infty \frac{1}{z^k}A^k\cdot</math>
 
Bukti topologi lain menggunakan kontradiksi. Misalkan polinomial <math>p(z)</math> tidak memiliki akar sehingga tidak pernah bernilai <math>0</math>. Tanpa mengurangi keumuman, asumsikan polinomial <math>p(z)</math> adalah polinomial monik. Pandang polinomial <math>p(z)</math> sebagai pemetaan dari bidang kompleks ke bidang kompleks. Pemetaan ini memetakan lingkaran <math>|z|=R</math> ke suatu gelung tertutup (''closed loop''), kurva <math>P(R)</math>. Pada argumen ini, tinjau bilangan lilit (''winding number'') dari kurva <math>P(R)</math> pada dua kondisi ekstrem, yaitu saat <math>R</math> sangatlah besar dan <math>R=0</math>. Untuk nilai <math>R</math> yang cukup besar, suku utama <math>z^n</math> mendominasi jumlahan suku-suku polinomial lainnya. Dengan kata lain, <math>|z^n|>|a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\dots+a_1z+a_0|</math>. Apabila <math>z</math> mengitari lingkaran <math>Re^{i\theta}</math> sekali berlawanan arah jarum jam <math>(0\leq \theta \leq 2\pi),</math> maka <math>z^n=R^ne^{in\theta}</math> mengitari titik pusat <math>n</math> kali secara berlawanan arah jarum jam <math>(0\leq \theta \leq 2\pi n)</math>, dan begitu pula <math>P(R)</math>. Maka, bilangan lilit dari <math>P(R)</math> adalah <math>n</math>. Pada kondisi ekstrem lain, apabila <math>|z|=0</math>, kurva <math>P(0)</math> hanyalah titik <math>p(0)</math>, yang tidak sama dengan nol, karena <math>p(z)</math> tidak pernah nol. Oleh karena itu, bilangan lilit <math>P(0)</math> haruslah <math>0</math>. Sekarang apabila nilai <math>R</math> diubah secara kontinu dari <math>R</math> yang sangat besar ke <math>R=0</math>, ini akan mendeformasi kurva gelung tertutup <math>P(R)</math> secara kontinu. Dengan demikian, bilangan lilit dari kurva gelung tertutup <math>P(R)</math> haruslah berubah. Namun, ini hanya mungkin terjadi, apabila <math>P(R)</math> melalui titik asal <math>0</math> untuk suatu <math>R</math>, yang mengimplikasikan ada <math>z_0</math> pada lingkaran itu yang membuat <math>p(z_0)=0</math>. Ini menunjukkan bahwa <math>p(z)</math> memiliki setidaknya satu akar.
This formula is valid outside the closed [[disc (mathematics)|disc]] of radius <math>\|A\|</math> (the [[operator norm]] of ''A''). Let <math>r>\|A\|.</math> Then
 
=== Bukti aljabar ===
:<math>\int_{c(r)}R(z)dz=\sum_{k=0}^{\infty}\int_{c(r)}\frac{dz}{z^{k+1}}A^k=2\pi iI_n</math>
Bukti teorema fundamental aljabar ini harus menggunakan dua fakta berikut tentang bilangan real yang bukan fakta aljabar tetapi hanya memerlukan sedikit analisis, yaitu [[teorema nilai antara]]:
* setiap polinomial berderajat ganjil dengan koefisien real memiliki setidaknya satu akar real;
* setiap bilangan riil nonnegatif memiliki [[akar kuadrat]].
 
Fakta kedua, bersama dengan [[rumus kuadrat]], membuktikan teorema dasar aljabar untuk polinomial real berderajat dua. Dengan demikian, hal ini menunjukkan bahwa jika <math>R</math> adalah [[bidang tertutup nyata|lapangan yang tertutup secara real]], maka perluasannya <math>C=R(\sqrt{-1})</math> tertutup secara aljabar.
(in which only the summand ''k''&nbsp;=&nbsp;0 has a nonzero integral). This is a contradiction, and so ''A'' has an eigenvalue.
 
==== Dengan induksi ====
'''Finally''', [[Rouché's theorem]] gives perhaps the shortest proof of the theorem.-->
Seperti yang disebutkan di atas, teorema ini cukup dibuktikan dengan memeriksa pernyataan "setiap polinomial nonkonstan <math>p(z)</math> dengan koefisien real berderajat <math>n</math> memiliki akar kompleks". Pernyataan ini dapat dibuktikan dengan induksi pada bilangan bulat nonnegatif terbesar <math>k</math> sedemikian rupa <math>2^k</math> habis membagi <math>n</math>. Misalkan <math>a</math> adalah koefisien <math>z^n</math> pada <math>p(z)</math> dan <math>F</math> adalah [[lapangan pemisahan]] dari <math>p(z)</math> terhadap <math>C</math>. Dengan kata lain, lapangan <math>F</math> memuat <math>C</math>dan ada elemen <math>z_1, z_2, \dots, z_n</math> di <math>F</math> maka<math display="block">p(z)=a(z-z_1)(z-z_2) \cdots (z-z_n).</math>
 
Jika <math>k=0</math>, maka <math>n</math> adalah bilangan ganjil, sehingga <math>p(z)</math> memiliki akar real. Sekarang, misalkan <math>n=2^{k}m</math> (dengan <math>m</math> bilangan ganjil dan <math>k>0</math>) dan asumsikan teorema ini telah dibuktikan untuk polinomial berderajat <math>2^{k-1}m'</math>, dengan <math>m'</math> adalah bilangan ganjil. Untuk setiap bilangan real <math>t</math>, definisikan polinomial <math>q_t(z)</math> sebagai berikut:<math display="block">q_t(z)=\prod_{1\le i<j\le n}\left(z-z_i-z_j-tz_iz_j\right).</math>
== Bukti topologi ==
Misalkan minimal |''p''(''z'')| di seluruh bidang kompleks dicapai di ''z''<sub>0</sub>; Hal ini terlihat pada bukti yang menggunakan teorema Liouville bahwa bilangan seperti itu pasti ada. Kita bisa menulis '' p '' ('' z '') sebagai polinomial di ''z''&nbsp;−&nbsp;''z''<sub>0</sub>: ada beberapa bilangan asli '' k '' dan ada beberapa bilangan kompleks ''c<sub>k</sub>'', ''c''<sub>''k''&nbsp;+&nbsp;1</sub>, ..., ''c<sub>n</sub>'' seperti yang ''c<sub>k</sub>''&nbsp;≠&nbsp;0 dan:
 
Maka, koefisien dari <math>q_t(z)</math> adalah polinomial simetris dalam <math>z_i</math> dengan koefisien real. Dengan demikian, koefisien-koefisien tersebut dapat dituliskan sebagai polinomial multivariabel dengan koefisien real, dengan variabelnya berupa polinomial simetris elementer. Jadi, <math>q_t(z)</math> adalah polinomial dengan koefisien real. Lebih jauh lagi, derajat dari polinomial <math>q_t(z)</math> adalah <math>n(n-1)/2=2^{k-1}m(n-1),</math> dan <math>m(n-1)</math> adalah bilangan ganjil. Dengan menggunakan hipotesis induksi, polinomial <math>q_t</math> memiliki setidaknya satu akar kompleks, sehingga ini berarti <math>z_i+z_j+tz_iz_j</math> adalah bilangan kompleks untuk dua bilangan asli <math>i, j \in \{1, 2, \dots n\}</math> yang berbeda. Karena banyaknya bilangan real lebih banyak daripada banyaknya pasangan <math>(i, j)</math> yang mungkin, terdapat dua bilangan real berbeda <math>t</math> dan <math>s</math> sehingga <math>z_i+z_j+tz_iz_j</math> dan <math>z_i+z_j+sz_iz_j</math> adalah bilangan kompleks (untuk pasangan <math>(i, j)</math> yang sama). Akibatnya, <math>z_i+z_j</math> dan <math>z_iz_j</math> keduanya adalah bilangan kompleks. Mengingat setiap bilangan kompleks memiliki akar kuadrat kompleks, maka sembarang polinomial koefisien kompleks berderajat dua memiliki akar kompleks dari rumus kuadrat. Akibatnya, <math>z_i</math> dan <math>z_j</math> adalah bilangan kompleks, karena keduanya merupakan akar dari persamaan polinomial kuadrat <math>z^2-(z_i+z_j)z+z_iz_j</math>.
:<math>p(z)=p(z_0)+c_k(z-z_0)^k+c_{k+1}(z-z_0)^{k+1}+ \cdots +c_n(z-z_0)^n.</math>
 
Pada 2007, Joseph Shipman menunjukkan bahwa asumsi polinomial berderajat ganjil selalu memiliki akar merupakan asumsi yang dapat diganti dengan asumsi yang lebih ringan. Ia menunjukkan semua lapangan dengan sifat setiap polinomial berderajat prima memiliki akar haruslah tertutup secara aljabar (sehingga derajat "ganjil" dapat diganti dengan derajat "ganjil prima" dan ini berlaku untuk lapangan dengan sembarang karakteristik)<ref>Shipman, J. [http://www.jon-arny.com/httpdocs/Gauss/Shipman%20Intellig%20Mod%20p%20FTA.pdf Improving the Fundamental Theorem of Algebra] ''The Mathematical Intelligencer'', Volume 29 (2007), Number 4. pp. 9-14</ref>. Sifat ini dapat digunakan sebagai definisi lapangan yang tertutup secara aljabar dapat didefinisikan, karena asumsi ini sudah tidak dapat diperingan lagi, mengingat terdapat contoh penyangkal apabila ada bilangan prima ganjil yang tidak dimasukkan ke asumsi. Akan tetapi, contoh-contoh penyangkal yang diberikan hanyalah berupa polinomial yang memiliki koefisien dari lapangan yang tidak memiliki akar kuadrat dari <math>-1</math>. Pada lapangan yang memiliki akar kuadrat dari <math>-1</math>, jika setiap polinomial berderajat <math>n \in I</math> memiliki akar (<math>I</math> adalah suatu himpunan tak hingga yang tidak memiliki anggota bilangan genap), maka setiap polinomial <math>f(x)</math> berderajat ganjil memiliki akar (karena <math>(x^2+1)^kf(x)</math> memiliki akar, dengan <math>k</math> dipilih sedemikian sehingga <math>\deg(f)+2k\in I</math>. Mohsen Aliabadi memperluas{{Dubious|date=July 2019}} hasil dari Shipman pada 2013, membuktikan secara independen bahwa syarat cukup untuk sembarang lapangan (dengan sembarang karakteristik) agar menjadi tertutup secara aljabar adalah dengan menunjukkan lapangan tersebut memiliki akar untuk polinomial berderajat prima.<ref>M. Aliabadi, M. R. Darafsheh, [[arxiv:1508.00937|On maximal and minimal linear matching property]], ''Algebra and discrete mathematics'', Volume 15 (2013). Number 2. pp. 174–178</ref>
Jika ''p''(''z''<sub>0</sub>) bukan nol, maka ''a'' adalah ''k''<sup>th</sup> root of −''p''(''z''<sub>0</sub>)/''c<sub>k</sub>'' dan jika '' t '' positif dan cukup kecil, maka |''p''(''z''<sub>0</sub>&nbsp;+&nbsp;''ta'')|&nbsp;<&nbsp;|''p''(''z''<sub>0</sub>)|, yang tidak mungkin, karena |''p''(''z''<sub>0</sub>)| adalah minimal |''p''| on ''D''.
<!-- [Bagian ini belum Diterjemahkan]
For another topological proof by contradiction, suppose that the polynomial ''p''(''z'') has no roots, and consequently is never equal to 0. Think of the polynomial as a map from the complex plane into the complex plane. It maps any circle |''z''|&nbsp;=&nbsp;''R'' into a closed loop, a curve ''P''(''R''). We will consider what happens to the [[winding number]] of ''P''(''R'') at the extremes when ''R'' is very large and when ''R'' = 0. When ''R'' is a sufficiently large number, then the leading term ''z<sup>n</sup>'' of ''p''(''z'') dominates all other terms combined; in other words,
 
==== Dengan teori Galois ====
:<math>\left | z^n \right | > \left | a_{n-1} z^{n-1} + \cdots + a_0 \right |.</math>
Metode lain untuk membuktikan teorema dasar ini adalah dengan menggunakan [[teori Galois]], cukup dengan menunjukkan bahwa <math>\mathbb{C}</math> tidak memiliki perluasan lapangan sejati. Misalkan <math>K/\mathbb{C}</math> adalah perluasan berhingga. Karena penutup normal dari <math>K</math> atas lapangan <math>\mathbb{R}</math> berderajat hingga atas lapangan <math>\mathbb{C}</math> (atau <math>\mathbb{R}</math>), tanpa mengurangi keumuman, asumsikan <math>K</math> adalah perluasan normal dari <math>\mathbb{R}</math> (sehingga merupakan perluasan Galois, mengingat setiap perluasan aljabar dari lapangan dengan karakteristik 0 bersifat terpisahkan). Misalkan <math>G</math> adalah grup Galois dari perluasan <math>K/\mathbb{R}</math>, dan <math>H</math> adalah subgrup-2 Sylow dari <math>G</math>, sehingga orde dari <math>H</math> adalah perpangkatan dari bilangan 2 dan indeks subgrup <math>H</math> di <math>G</math> bernilai ganjil. Dari teorema dasar teori Galois, terdapat subperluasan <math>L</math> dari <math>K/\mathbb{R}</math> sedemikian sehingga <math>\mathrm{Gal}(K/L)=H</math>. Karena <math>[L:\mathbb{R}]=[G:H]</math> bernilai ganjil dan tidak ada polinomial real nonlinear berderajat ganjil yang tidak dapat direduksi, maka <math>L=\mathbb{R}</math> , sehingga <math>[K:\mathbb{R}]</math> dan <math>[K:\mathbb{C}]</math> adalah perpangkatan dari bilangan 2. Dengan metode kontradiksi, asumsikan bahwa <math>[K:\mathbb{C}]>1</math>, sehingga orde dari grup <math>\mathrm{Gal}(K/C)</math> adalah perpangkatan dari bilangan 2, maka terdapat subperluasan <math>M</math> dari <math>K/\mathbb{C}</math> yang memiliki derajat 2. Akan tetapi, lapangan <math>\mathbb{C}</math> tidak memiliki perluasan berderajat 2, sebab setiap polinomial kompleks kuadrat memiliki akar kompleks, sebagaimana yang telah disebutkan di atas. Ini menunjukkan bahwa <math>[K:\mathbb{C}]=1</math>, sehingga <math>K=C</math>. Dengan demikian, bukti ini selesai.<!-- [Bagian ini belum Diterjemahkan]
 
When ''z'' traverses the circle <math>Re^{i\theta}</math> once counter-clockwise <math>(0\leq \theta \leq 2\pi),</math> then <math>z^n=R^ne^{in\theta}</math> winds ''n'' times counter-clockwise <math>(0\leq \theta \leq 2\pi n)</math> around the origin (0,0), and ''P''(''R'') likewise. At the other extreme, with |''z''|&nbsp;=&nbsp;0, the curve ''P''(0) is merely the single point ''p''(0), which must be nonzero because ''p''(''z'') is never zero. Thus ''p''(0) must be distinct from the origin (0,0), which denotes 0 in the complex plane. The winding number of ''P''(0) around the origin (0,0) is thus 0. Now changing ''R'' continuously will [[homotopy | deform the loop continuously]]. At some ''R'' the winding number must change. But that can only happen if the curve ''P''(''R'') includes the origin (0,0) for some ''R''. But then for some ''z'' on that circle |''z''|&nbsp;=&nbsp;''R'' we have ''p''(''z'') = 0, contradicting our original assumption. Therefore, ''p''(''z'') has at least one zero.--->
 
== Bukti aljabar ==
Bukti Teorema Fundamental Aljabar ini harus menggunakan dua fakta berikut tentang bilangan real yang bukan aljabar tetapi hanya memerlukan sedikit analisis (lebih tepatnya, [[teorema nilai menengah]] dalam kedua kasus):
* setiap polinomial dengan derajat ganjil dan koefisien nyata memiliki beberapa akar nyata;
* setiap bilangan riil non-negatif memiliki akar kuadrat.
 
Fakta kedua, bersama dengan [[rumus kuadrat]], menyiratkan teorema untuk polinomial kuadrat nyata. Dengan kata lain, bukti aljabar dari teorema fundamental sebenarnya menunjukkan bahwa jika '' R '' adalah [[bidang tertutup nyata]], maka ekstensinya ''C'' = ''R''({{radic|−1}}) ditutup secara aljabar.
 
Seperti disebutkan di atas, cukup untuk memeriksa pernyataan "setiap polinomial tidak konstan '' p '' ('' z '') dengan koefisien real memiliki akar kompleks". Pernyataan ini dapat dibuktikan dengan induksi pada bilangan bulat non-negatif terbesar '' k '' sedemikian rupa 2<sup>''k''</sup> membagi derajat ''n'' dengan ''p''(''z''). Maka ''a'' menjadi koefisien ''z<sup>n</sup>'' pafa ''p''(''z'') dan jika ''F'' menjadi [[bidang pemisahan]] dari ''p''(''z'') over ''C''; dengan kata lain, field '' F '' berisi '' C '' dan ada elemen ''z''<sub>1</sub>, ''z''<sub>2</sub>, ..., ''z<sub>n</sub>'' di '' F '' maka
 
:<math>p(z)=a(z-z_1)(z-z_2) \cdots (z-z_n).</math>
<!-- [Bagian ini belum Diterjemahkan]
If ''k''&nbsp;=&nbsp;0, then ''n'' is odd, and therefore ''p''(''z'') has a real root. Now, suppose that ''n''&nbsp;=&nbsp;2''<sup>k</sup>m'' (with ''m'' odd and ''k''&nbsp;>&nbsp;0) and that the theorem is already proved when the degree of the polynomial has the form 2<sup>''k''&nbsp;−&nbsp;1</sup>''m''′ with ''m''′ odd. For a real number ''t'', define:
 
Baris 167 ⟶ 155:
 
since the real part of an analytic function is harmonic. This proves that ''K<sub>g</sub>''&nbsp;=&nbsp;0.-->
 
== Akibat ==
Karena teorema dasar aljabar dapat dipandang sebagai pernyataan bahwa lapangan bilangan kompleks tertutup secara aljabar, maka segala teorema mengenai lapangan tertutup secara aljabar berlaku untuk lapangan bilangan kompleks. Berikut adalah beberapa akibat teorema dasar aljabar mengenai lapangan bilangan real dan hubungannya dengan lapangan bilangan kompleks.
 
* Lapangan bilangan kompleks adalah penutup aljabar lapangan bilangan real.
* Setiap polinomial variabel tunggal <math>z</math> dengan koefisien kompleks adalah hasil kali dari suatu konstanta kompleks dan faktor-faktor linear berbentuk <math>z+a</math>, dengan <math>a</math> suatu bilangan kompleks.
* Setiap polinomial variabel tunggal <math>x</math> dengan koefisien real dapat secara unik dituliskan sebagai hasil kali konstanta <math>x+a</math> dengan <math>a</math> real, dan polinomial berbentuk <math>x^2+bx+c</math> dengan <math>b, c</math> real dan <math>b^2-4c<0</math> (ini sama saja dengan <math>x^2+bx+c=0</math> tidak memiliki solusi real). Ini mengimplikasikan bahwa banyaknya akar kompleks tidak real selalu genap, baik dengan memperhitungkan multiplisitas aljabar maupun tidak.
* Setiap perluasan aljabar dari lapangan bilangan real isomorfis dengan lapangan bilangan real atau lapangan bilangan kompleks.
* Setiap fungsi rasional variabel tunggal <math>x</math> dengan koefisien real dapat dituliskan sebagai jumlah fungsi-fungsi polinomial variabel tunggal dengan variabel fungsi rasional berbentuk <math>1/(x-a)</math> (dengan <math>a</math> bilangan real) dan fungsi-fungsi polinomial variabel tunggal dengan variabel fungsi rasional berbentuk <math>ax+b/(x^2+cx+d)^n</math> (dengan <math>n</math> bilangan asli, dan <math>a, b, c, d</math> bilangan real sedemikian sehingga <math>c^2-4d<0</math>). Akibatnya, setiap fungsi rasional variabel tunggal dengan koefisien real memiliki antiderivatif yang elementer.
 
== Batas pada akar dari polinomial ==
{{Main|Sifat dari akar polinomial}}Dari perspektif teoretis ataupun perspektif praktis tertentu, lokasi dari akar-akar suatu polinomial merupakan informasi yang berharga. Sayangnya, walaupun teorema dasar aljabar telah menunjukkan adanya akar dari polinomial variabel tunggal, teorema ini tidak memberikan informasi mengenai lokasi dari akar polinomial variabel tunggal. Salah satu hasil terkait lokasi akar polinomial variabel tunggal yang relatif sederhana diberikan oleh batas pada modulus berikut: semua akar <math>\zeta</math> pada polinomial monik <math>z^n+a_{n-1}z^{n-1}+\dots+a_1z+a_0</math> memenuhi pertidaksamaan <math>|\zeta|\leq R_{\infty}</math>, dengan
 
<math>R_{\infty}=1+\max\{|a_0|, \dots, |a_{n-1}|\}.</math>
 
Perhatikan bahwa hasil ini tidak menyatakan bahwa polinomial variabel tunggal memiliki akar, namun hanyalah pernyataan jika suatu polinomial ''memiliki akar,'' maka akar tersebut terdapat pada cakram tertutup berpusat di titik asal dengan jari-jari <math>R_{\infty}</math>. Namun, hasil ini bersama-sama dengan teorema dasar aljabar menyatakan bahwa cakram tertutup tersebut memuat setidaknya satu akar. Secara lebih luas, batas pada akar polinomial dapat diberikan dengan menggunakan [[Norma-p|norma-''p'']] dari vektor koefisien polinomial <math>a:=(a_0, a_1, \dots, a_{n-1}),</math> yaitu <math>|\zeta|\leq R_p</math>, dengan <math>R_p</math> merupakan norma-''q'' dari vektor <math>(1, \|a\|_p),</math> dengan <math>q</math> adalah eksponen konjugat dari <math>p</math>, atau dengan kata lain <math>\frac{1}{p}+\frac{1}{q}=1</math>, untuk <math>1 \leq p \leq \infty</math>. Maka, modulus dari akar-akar polinomial dibatasi juga oleh<math display="block">R_1:=\max\left\{1, \sum_{0 \leq k < n}|a_k|\right\},</math><math display="block">R_p:=\left[1+\left(\sum_{0 \leq k < n}|a_k|^p\right)^{\frac{q}{p}}\right]^{\frac{1}{q}},</math>
 
dengan <math>1<p<\infty,</math> dan khususnya,<math display="block">R_2:=\sqrt{\sum_{0 \leq k \leq n}|a_k|^2}</math>(dengan <math>a_n=1</math>, yang masuk akal karena koefisien <math>z^n</math> pada polinomial adalah 1). Kasus umum untuk sembarang polinomial berderajat <math>n</math>,<math display="block">P(z)=a_nz^n+a_{n-1}z^{n-1}+\dots+a_1z+a_0,</math>tentunya dapat direduksi ke kasus polinomial monik dengan membagi semua koefisien dengan <math>a_n \neq 0</math>. Jika 0 bukan akar dari polinomial tersebut, i.e. <math>a_0 \neq 0</math>, batas bawah dari <math>\zeta</math> adalah batas atas dari <math>1/\zeta</math>, yaitu, akar-akar dari<math display="block">a_0z^n+a_1z^{n-1}+\dots+a_{n-1}z+a_n.</math>
 
Dari uraian di atas, batas atas dan batas bawah jarak <math>|\zeta-\zeta_0|</math> dari akar <math>\zeta</math> ke sembarang titik <math>\zeta_0</math> dapat ditentukan, dengan memandang <math>\zeta-\zeta_0</math> sebagai akar dari polinomial <math>P(z+\zeta_0)</math>, yang koefisiennya adalah ekspansi Taylor dari <math>P(z)</math> pada <math>z=\zeta_0</math>.
 
Untuk membuktikan <math>|\zeta|\leq R_p</math>, misalkan <math>\zeta</math> adalah akar dari polinomial<math display="block">z^n+a_{n-1}z^{n-1}+\dots+a_1z+a_0;</math>sehingga dapat diasumsikan <math>|\zeta|<1.</math> Maka,<math display="block">-\zeta^n=a_{n-1}\zeta^{n-1}+\dots+a_1\zeta+a_0;</math>dan dengan menggunakan [[pertidaksamaan Hölder]] diperoleh bahwa<math display="block">|\zeta|^n \leq \|a\|_p \|(\zeta^{n-1}, \dots, \zeta, 1)\|_q.</math>
 
Khususnya, jika <math>p=1</math>,<math display="block">|\zeta|^n \leq \|a\|_1 \max\{|\zeta|^{n-1}, \dots, |\zeta|, 1\}=\|a\|_1\|\zeta|^{n-1},</math>maka<math display="block">|\zeta|\leq\max\{1, \|a\|_1\}.</math>
 
Jika <math>1<p\leq \infty</math>, dengan menggunakan rumus deret geometri diperoleh bahwa
 
<math display="block">|\zeta|^n \leq \|a\|_p (|\zeta|^{q(n-1)}+ \dots+ |\zeta|^q+ 1)^{\frac{1}{q}}
=\|a\|_p\left(\frac{|\zeta|^{qn}-1}{|\zeta|^q-1}\right)^{\frac{1}{q}}\leq\|a\|_p\left(\frac{|\zeta|^{qn}}{|\zeta|^q-1}\right)^{\frac{1}{q}},</math>maka<math display="block">|\zeta|^{nq}\leq \|a\|_p^{q}\frac{|\zeta|^{qn}}{|\zeta|^q-1}</math>yang dapat disederhanakan menjadi<math display="block">\|\zeta\|^q \leq 1+\|a\|_p^q.</math>Maka<math display="block">|\zeta\|\leq\|(1, \|a_p\|)\|_q=R_p,</math>untuk <math>1\leq p \leq \infty.</math>
 
== Lihat pula ==
Baris 217 ⟶ 234:
 
{{DEFAULTSORT:Teorema Dasar Aljabar}}
[[Kategori:Artikel yang berisimemuat buktipembuktian]]
[[Kategori:Bidang (matematika)]]
[[Kategori:Teorema Dasar| Aljabar]]