Gelanggang (matematika): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Memformat kutipan agar terhubung ke referensi
Kim Nansa (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
 
(10 revisi perantara oleh 5 pengguna tidak ditampilkan)
Baris 1:
{{short description|Struktur aljabar dengan penjumlahan dan perkalian}}
{{about|struktur aljabar|gelanggang geometris|Annulus (matematika)|konsep teori himpunan|gelanggang himpunan}}
 
{{Teori gelanggang sidebar}}
 
Dalam [[matematika]], '''gelanggang''' ({{asal kata|Inggris|ring}}) merupakan salah satu [[struktur aljabar]] yang dibahas dalam [[aljabar abstrak]]. Sebuah gelanggang terdiri dari sebuah himpunan dan dua [[operasi biner]] yang didasarkan pada [[operasi aritmetika]] [[penjumlahan]] dan [[perkalian]]. Pendasaran tersebut memudahkan teorema-teorema yang berlaku pada [[aritmetika]] diterapkan juga dalam objek-objek non-numerik, seperti [[polinomial]], [[Deret (matematika)|deret]], [[Matriks (matematika)|matriks]], dan [[Fungsi (matematika)|fungsi]].
 
Baris 8 ⟶ 13:
 
== Definisi ==
[[Berkas:Number-line.svg|alt=|jmpl|410x410px|[[Bilangan bulat]], dengan operasi [[penjumlahan]] dan [[perkalian]], membentuk contoh prototipikal dari gelanggang.]]Sebuah '''gelanggang''' adalah sebuah [[Himpunan (matematika)|himpunan]] ''R'' dengan dua [[operasi biner]] + dan '''·''' yang memenuhi ketiga aksioma berikut, juga disebut '''aksioma gelanggang'''<ref>{{cite book|author=Nicolas Bourbaki|title=Algebra|publisher=Springer-Verlag|section=§I.8|year=1970}}</ref><ref>{{cite book|title=Algebra|author1=Saunders MacLane|author2=Garrett Birkhoff|publisher=AMS Chelsea|page=85|year=1967|author1-link=Saunders MacLane}}</ref><ref>{{cite book|author=Serge Lang|title=Algebra|url=https://archive.org/details/algebra00slan_986|publisher=Springer-Verlag|page=[https://archive.org/details/algebra00slan_986/page/n97 83]|year=2002|edition=Third|author-link=Serge Lang}}</ref>
[[Berkas:Number-line.svg|alt=|jmpl|410x410px|[[Bilangan bulat]], dengan operasi [[penjumlahan]] dan [[perkalian]], membentuk contoh prototipikal dari gelanggang.]]
 
Contoh gelanggang yang paling mudah dikenali adalah himpunan semua bilangan bulat, <math>\mathbb{Z}</math>, yang terdiri dari bilangan-bilangan
 
: …&nbsp;, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5,&nbsp;…
 
Sifat-sifat penjumlahan dan perkalian bilangan bulat merupakan model untuk aksioma-aksioma gelanggang.
 
=== Definisi utama ===
Sebuah '''gelanggang''' adalah sebuah [[Himpunan (matematika)|himpunan]] ''R'' dengan dua [[operasi biner]] + dan '''·''' yang memenuhi ketiga aksioma berikut, juga disebut '''aksioma gelanggang'''<ref>{{cite book|author=Nicolas Bourbaki|title=Algebra|publisher=Springer-Verlag|section=§I.8|year=1970}}</ref><ref>{{cite book|title=Algebra|author1=Saunders MacLane|author2=Garrett Birkhoff|publisher=AMS Chelsea|page=85|year=1967|author1-link=Saunders MacLane}}</ref><ref>{{cite book|author=Serge Lang|title=Algebra|publisher=Springer-Verlag|page=83|year=2002|edition=Third|author-link=Serge Lang}}</ref>
 
# ''R'' merupakan [[grup abelian]] terhadap penjumlahan, artinya:
Baris 26 ⟶ 22:
# ''R'' merupakan [[monoid]] terhadap perkalian, artinya:
#* (''a'' · ''b'') · ''c'' = ''a'' · (''b'' · ''c'') untuk setiap ''a'', ''b'', ''c'' dalam ''R''&nbsp;&nbsp;&nbsp;(dengan kata lain, · bersifat asosiatif).
#* Terdapa sebuah unsur 1 dalam ''R'' yang menyebabkan ''a'' · 1 = ''a'' dan 1 · ''a'' = ''a'' untuk setiap ''a'' dalam ''R''&nbsp;&nbsp;&nbsp;(dengan kata lain, terdapat 1 sebagai [[identitas perkalian]]).<ref>Keberadaan 1 tidak diharuskan oleh setiap pengarang; di sini, istilah ''[[rngRng (aljabar)|rng]]'' apabila keberadaan 1 tidak diperlukan.<!-- This is the most common convention, and is adopted throughout wikipedia, please do not change --> Lihat [[Gelanggang (matematika)#Catatan mengenai definisi|subbagian berikutnya]]</ref>
# Perkalian bersifat [[distributif]] terhadap penjumlahan, artinya:
#* ''a'' ⋅ (''b'' + ''c'') = (''a'' · ''b'') + (''a'' · ''c'') untuk setiap ''a'', ''b'', ''c'' dalam ''R''&nbsp;&nbsp;&nbsp;(distributif kiri).
#* (''b'' + ''c'') · ''a'' = (''b'' · ''a'') + (''c'' · ''a'') untuk setiap ''a'', ''b'', ''c'' dalam ''R''&nbsp;&nbsp;&nbsp;(distributif kanan).
 
=== Catatan mengenai definisi ===
Seperti dijelaskan dalam bagian {{section link||Sejarah}}, sebagian penulis memakai ketentuan berbeda di mana sebuah gelanggang tidak perlu memiliki identitas perkalian. Artikel ini menggunakan ketentuan, kecuali ketika disebutkan sebaliknya, bahwa sebuah gelanggang harus memiliki identitas tersebut.<!--- This is also the convention in [[Wikipedia:Manual of Style/Mathematics]]. ---> Sebagian penulis yang menggunakan ketentuan ini menyebut struktur yang memenuhi semua aksioma ''kecuali'' syarat identitas perkalian sebagai [[rng (aljabar)|rng]] (biasa dibaca ''rung'') dan sebagian menyebutnya [[gelanggang semu]]. Contohnya, himpunan semua bilangan genap dengan operasi + dan ⋅ yang biasa merupakan sebuah rng, tapi bukan sebuah gelanggang.
 
Baris 81 ⟶ 75:
 
=== Dedekind ===
Penelitian gelanggang berawal dari teori [[gelanggang polinomial]] dan teori [[bilangan bulat aljabar]].<ref name="history">[{{Cite web |url=http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html |title=The development of Ring Theory] |access-date=2020-05-21 |archive-date=2017-04-24 |archive-url=https://web.archive.org/web/20170424234340/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html |dead-url=yes }}</ref> Pada 1871, [[Richard Dedekind]] mendefinisikan konsen gelanggang bilangan bulat dari medan bilangan.{{sfn|Kleiner|1998|p=27}} Dalam konteks ini, dia memperkenalkan istilah "ideal" (terinspirasi dari istilah angka ideal dari [[Ernst Kummer]]) dan "modul" dan mempelajari sifat-sifat mereka. Namun, Dedekind tidak mengguanakan istilah "''ring''" dan tidak mendefinisikan konsep gelanggang secara umum.
 
=== Hilbert ===
Istilah "''Zahlring''" (gelanggang angka) dibuat oleh [[David Hilbert]] pada 1892 dan diterbitkan pada 1897.{{sfn|Hilbert|1897}} Menurut Harvey Cohn, Hilbert menggunakan istilah gelanggang yang memiliki sifat "berputar kembali" ke unsur itu sendiri.<ref>{{Citation|last=Cohn|first=Harvey|title=Advanced Number Theory|publisher=Dover Publications|location=New York|year=1980|page=[https://archive.org/details/advancednumberth00cohn_0/page/49 49]|isbn=978-0-486-64023-5|url=https://archive.org/details/advancednumberth00cohn_0/page/49}}</ref> Secara khusus, dalam sebuah gelanggang bilangan bulat aljabar, semua pangkat yang tinggi dari bilangan bulat aljabar bisa ditulis sebagai kombinasi integral dari pangkat-pangkat yang rendah, jadi pangkatnya "berputar". Contohnya, jika {{nowrap|1=''a''<sup>3</sup> − 4''a'' + 1 = 0}} maka {{nowrap|1=''a''<sup>3</sup> = 4''a'' − 1}}, {{nowrap|1=''a''<sup>4</sup> = 4''a''<sup>2</sup> − ''a''}}, {{nowrap|1=''a''<sup>5</sup> = −''a''<sup>2</sup> + 16''a'' − 4}}, {{nowrap|1=''a''<sup>6</sup> = 16''a''<sup>2</sup> − 8''a'' + 1}}, {{nowrap|1=''a''<sup>7</sup> = −8''a''<sup>2</sup> + 65''a'' − 16}}, dan seterusnya; secara umum, ''a''<sup>''n''</sup> adalah [[kombinasi linear]] integral dari 1, ''a'', dan ''a''<sup>2</sup>.
 
=== Fraenkel dan Noether ===
Baris 96 ⟶ 90:
Menghadapi ambiguitas ini, sebagian penulis mencoba menekankan pandangkan mereka, sementara sebagian yang lainya mencoba memakai istilah yang lebih persis.
 
Dari kategori pertama, salah satu contohnya adalah Gardner dan Wiegandt, yang mengatakan bahwa apabila semua gelanggang harus memiliki 1, maka salah satu akibatnya adalah tidak adanya [[jumlah langsung]] tak terhingga dari gelanggang, dan yang dijumlah langsung dari gelanggang bukanlah subgelanggang. Mereka menyimpulkan bahwa "dalam banyak, mungkin kebanyakan, cabang teori gelanggang dibutuhkannya keberadaan unsur satuan tidaklah berakal sehat, dan sebab itu tidak bisa diterima."{{sfn|Gardner|Wiegandt|2003}} [[Bjorn Poonen|Poonen]] membuat argumen bantahan: gelanggang tanpa identitas perkalian tidak bersifat asosiatif secara total (hasil kali dari barisan terhingga manapun yang terdiri dari unsur-unsur gelanggang, termasuk barisan kosong, didefinisikan dengan baik, tidak tergantung urutan operasi) dan menulis "lanjutan alamiah dari sifat asosiatif memerlukan gelanggang yang mengandung hasil kali kosong, jadi wajar bila gelanggang memerlukan sebuah 1".{{sfn|Poonen|2018}}
 
Dalam kategori kedua, beberapa penulis menggunakan istilah-istilah berikut:{{sfn|Wilder|1965|p=176}}{{sfn|Rotman|1998|p=7}}
Baris 118 ⟶ 112:
Meskipun didefinisikan serupa, teori modul jauh lebih rumit daripada ruang vektor, terutama, karena, tidak seperti ruang vektor, modul tidak dikarakterisasi (hingga isomorfisme) oleh invarian tunggal ([[dimensi (ruang vektor)|dimensi ruang vektor]]). Secara khusus, tidak semua modul memiliki [[basis (aljabar linear)|basis]].
 
Aksioma modul menyiratkan bahwa {{math|1=(−1)''x'' = −''x''}}, di mana minus pertama menunjukkan [[aditif invers]] di dalam gelanggang dan minus kedua menunjukkan invers penjumlahan di modul. Menggunakan ini dan menunjukkan penambahan berulang dengan perkalian dengan [[Bilangan asli|bilangan bulat positif]] memungkinkan mengidentifikasi kelompok abelian dengan modul di atas gelanggang bilangan bulat.
 
== Lihat pula ==
Baris 137 ⟶ 131:
* [[Gelanggang Dedekind]]
* [[Gelang diferensial]]
* [[Bidang eksponensial | Gelanggang eksponensial]]
* [[Gelanggang terbatas]]
* [[Gelanggang Lie]]
* [[Gelanggang lokal]]
* [[Gelanggang Noetherian | Noetherian]] dan [[Gelanggang Artinian]]
* [[Gelanggang urutan]]
* [[Gelanggang Poisson]]
Baris 166 ⟶ 160:
| edition=2nd
| year=2018
| ref=harv
}}
* {{Cite book
Baris 171 ⟶ 166:
| first1=Michael
| author1-link=Michael Atiyah
| last2=MacdonaldMacDonald
| first2=Ian G.
| author2-link=Ian G. MacdonaldMacDonald
| title=Introduction to commutative algebra
| publisher=Addison–Wesley
| year=1969
| ref=harv
}}
* {{Cite book
Baris 185 ⟶ 181:
| year=1964
| publisher=Hermann
| ref=harv
}}
* {{Cite book
Baris 193 ⟶ 190:
| publisher=Springer
| year=1989
| ref=harv
}}
* {{Citation
Baris 207 ⟶ 205:
| author-link=David Eisenbud
| title=Commutative algebra with a view toward algebraic geometry
| url=https://archive.org/details/commutativealgeb0000eise
| publisher=Springer
| year=1995
| ref=harv
}}
}}
* {{Cite book
| last1=Gallian
| first1=Joseph A.
| title=Contemporary Abstract Algebra, Sixth Edition.
| url=https://archive.org/details/contemporaryabst0000gall
| publisher=Houghton Mifflin
| year=2006
| isbn=9780618514717
| ref=harv
}}
}}
* {{Cite book
| title=Radical Theory of Rings
Baris 227 ⟶ 229:
| year=2003
| isbn=0824750330
| ref=harv
}}
* {{Cite book
Baris 240 ⟶ 243:
| orig-year=reprint of the 1968 original
| isbn=0-88385-015-X
| ref=harv
}}
* {{Cite book
Baris 248 ⟶ 252:
| year=1997
| isbn=9780030105593
| ref=harv
}}
* {{Cite book
Baris 259 ⟶ 264:
| year=2009
| isbn=978-0-486-47189-1
| ref=harv
}}
* {{Cite journal
Baris 269 ⟶ 275:
| edition=Revised
| year=1964
| ref=harv
}}
* {{Cite journal
Baris 278 ⟶ 285:
| volume=I
| year=1943
| ref=harv
}}
* {{Citation
Baris 302 ⟶ 310:
| year=2001
| isbn=0-387-95183-0
| ref=harv
}}
* {{Cite book
Baris 313 ⟶ 322:
| year=2003
| isbn=0-387-00500-5
| ref=harv
}}
* {{Cite book
Baris 324 ⟶ 334:
| year=1999
| isbn=0-387-98428-3
| ref=harv
}}
* {{Lang Algebra|edition=3r}}.
Baris 335 ⟶ 346:
| year=1989
| isbn=978-0-521-36764-6
| ref=harv
}}
* {{Cite web
Baris 341 ⟶ 353:
| title=A primer of commutative algebra
| url=http://www.jmilne.org/math/xnotes/ca.html
| access-date=2021-02-01
}}
| archive-date=2023-05-30
| archive-url=https://web.archive.org/web/20230530132032/https://www.jmilne.org/math/xnotes/ca.html
| dead-url=no
}}
* {{Citation
| last1=Rotman
Baris 371 ⟶ 387:
| year=1965
| isbn=9780486663418
| ref=harv
}}
* {{Cite book
Baris 376 ⟶ 393:
| last1=Wilder
| title=Introduction to Foundations of Mathematics
| url=https://archive.org/details/introductiontofo0000wild_t0a3
| publisher=Wiley
| year=1965
| ref=harv
}}
}}
* {{Cite book
| last1=Zariski
Baris 388 ⟶ 407:
| publisher=Van Nostrand
| year=1958
| ref=harv
}}
{{refend}}
Baris 426 ⟶ 446:
| pages=222–227
| year=1947
| ref=harv
}}
* {{Cite book
Baris 435 ⟶ 456:
| publisher=Cambridge University Press
| year=2000
| ref=harv
}}
* {{Citation
Baris 447 ⟶ 469:
| url-access=registration
| url=https://archive.org/details/skewfieldstheory0000cohn
}}
* {{Citation
| last1=Eisenbud
Baris 472 ⟶ 494:
| doi=10.3792/pja/1195519146
| doi-access=free
| ref=harv
}}
* {{Cite book
Baris 479 ⟶ 502:
| first2=H.
| title=Handbook of Mathematics and Computational Science
| url=https://archive.org/details/handbookofmathem00harr
| publisher=Springer
| year=1998
| ref=harv
}}
}}
* {{Cite book
| last=Isaacs
Baris 489 ⟶ 514:
| isbn=978-0-8218-4799-2
| year=1994
| ref=harv
}}
* {{Citation
Baris 514 ⟶ 540:
| publisher=Addison–Wesley
| year=1998
| ref=harv
}}
* {{Cite book
Baris 525 ⟶ 552:
| isbn=9780486411477
| url=https://books.google.com/books?id=xUQc0RZhQnAC&q=ring
| ref=harv
}}
| access-date=2021-02-01
| archive-date=2023-07-29
| archive-url=https://web.archive.org/web/20230729211757/https://books.google.com/books?id=xUQc0RZhQnAC&q=ring
| dead-url=no
}}
* {{Cite web
| last=Milne
Baris 531 ⟶ 563:
| title=Class field theory
| url=http://www.jmilne.org/math/CourseNotes/cft.html
| access-date=2021-02-01
}}
| archive-date=2023-03-14
| archive-url=https://web.archive.org/web/20230314232125/https://www.jmilne.org/math/CourseNotes/cft.html
| dead-url=no
}}
* {{Citation
| last1=Nagata
Baris 555 ⟶ 591:
| isbn=0-387-90693-2
| url=https://archive.org/details/associativealgeb00pier_0
| ref=harv
}}
}}
* {{Citation
| last=Poonen
Baris 564 ⟶ 601:
| arxiv=1404.0135
| url=https://math.mit.edu/~poonen/papers/ring.pdf
| accessdate=2021-02-01
}}
| archive-date=2023-05-05
| archive-url=https://web.archive.org/web/20230505065100/https://math.mit.edu/~poonen/papers/ring.pdf
| dead-url=no
}}
* {{Citation
| last=Serre
Baris 585 ⟶ 626:
| url=https://books.google.com/books?id=pTV7CwAAQBAJ&q=ring
| isbn=9783540373704
| accessdate=2021-02-01
}}
| archive-date=2023-07-29
| archive-url=https://web.archive.org/web/20230729211758/https://books.google.com/books?id=pTV7CwAAQBAJ&q=ring
| dead-url=no
}}
* {{Cite web
| last=Weibel
Baris 591 ⟶ 636:
| title=The K-book: An introduction to algebraic K-theory
| url=http://www.math.rutgers.edu/~weibel/Kbook.html
| access-date=2021-02-01
}}
| archive-date=2017-01-05
| archive-url=https://web.archive.org/web/20170105041334/http://www.math.rutgers.edu/~weibel/Kbook.html
| dead-url=no
}}
* {{Cite book
| last1=Zariski
Baris 605 ⟶ 654:
| year=1975
| isbn=0-387-90089-6
| ref=harv
}}
{{refend}}
Baris 619 ⟶ 669:
| pages=139–176
| year=1915
| ref=harv
}}
* {{Cite journal
Baris 628 ⟶ 679:
| volume=4
| year=1897
| ref=harv
}}
* {{Cite journal
Baris 642 ⟶ 694:
| s2cid=121594471
| url=https://zenodo.org/record/1428306
| ref=harv
| access-date=2021-02-01
| archive-date=2023-05-26
| archive-url=https://web.archive.org/web/20230526213845/https://zenodo.org/record/1428306
| dead-url=no
}}
{{refend}}
Baris 647 ⟶ 704:
=== Referensi sejarah ===
{{refbegin}}
* [http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html History of ring theory at the MacTutor Archive] {{Webarchive|url=https://web.archive.org/web/20170424234340/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html |date=2017-04-24 }}
* [[Garrett Birkhoff]] anddan [[Saunders Mac Lane]] (1996) ''A Survey of Modern Algebra'', 5thedisi edke-5. New York: Macmillan.
* Bronshtein, I. N. anddan Semendyayev, K. A. (2004) [[Bronshtein and Semendyayev|Handbook of Mathematics]], 4thedisi edke-4. New York: Springer-Verlag {{isbn|3-540-43491-7}}.
* Faith, Carl (1999) ''Rings and things and a fine array of twentieth century associative algebra''. Mathematical Surveys and Monographs, 65. [[American Mathematical Society]] {{isbn|0-8218-0993-8}}.
* Itô, K. editor (1986) "Rings." §368 indalam ''Encyclopedic Dictionary of Mathematics'', 2ndedisi edke-2., Vol. 2. Cambridge, MA: [[MIT Press]].
* [[Israel Kleiner (mathematicianmatematikawan)|Israel Kleiner]] (1996) "The Genesis of the Abstract Ring Concept", [[American Mathematical Monthly]] 103: 417–424 {{doi|10.2307/2974935}}
* Kleiner, I. (1998) "From numbers to rings: the early history of ring theory", [[Elemente der Mathematik]] 53: 18–35.
* [[B. L. van der Waerden]] (1985) ''A History of Algebra'', Springer-Verlag,
{{refend}}
 
{{Aljabar}}
{{Authority control}}
 
{{DEFAULTSORT:RingGelanggang (MathematicsMatematika)}}
{{Aljabar}}
 
[[Kategori:Struktur aljabar]]
[[Kategori:Teori gelanggang]]