Gelanggang (matematika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Fitur saranan suntingan: 3 pranala ditambahkan. |
||
(6 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 13:
== Definisi ==
[[Berkas:Number-line.svg|alt=|jmpl|410x410px|[[Bilangan bulat]], dengan operasi [[penjumlahan]] dan [[perkalian]], membentuk contoh prototipikal dari gelanggang.]]Sebuah '''gelanggang''' adalah sebuah [[Himpunan (matematika)|himpunan]] ''R'' dengan dua [[operasi biner]] + dan '''·''' yang memenuhi ketiga aksioma berikut, juga disebut '''aksioma gelanggang'''<ref>{{cite book|author=Nicolas Bourbaki|title=Algebra|publisher=Springer-Verlag|section=§I.8|year=1970}}</ref><ref>{{cite book|title=Algebra|author1=Saunders MacLane|author2=Garrett Birkhoff|publisher=AMS Chelsea|page=85|year=1967|author1-link=Saunders MacLane}}</ref><ref>{{cite book|author=Serge Lang|title=Algebra|url=https://archive.org/details/algebra00slan_986|publisher=Springer-Verlag|page=[https://archive.org/details/algebra00slan_986/page/n97 83]|year=2002|edition=Third|author-link=Serge Lang}}</ref>▼
▲Sebuah '''gelanggang''' adalah sebuah [[Himpunan (matematika)|himpunan]] ''R'' dengan dua [[operasi biner]] + dan '''·''' yang memenuhi ketiga aksioma berikut, juga disebut '''aksioma gelanggang'''<ref>{{cite book|author=Nicolas Bourbaki|title=Algebra|publisher=Springer-Verlag|section=§I.8|year=1970}}</ref><ref>{{cite book|title=Algebra|author1=Saunders MacLane|author2=Garrett Birkhoff|publisher=AMS Chelsea|page=85|year=1967|author1-link=Saunders MacLane}}</ref><ref>{{cite book|author=Serge Lang|title=Algebra|url=https://archive.org/details/algebra00slan_986|publisher=Springer-Verlag|page=[https://archive.org/details/algebra00slan_986/page/n97 83]|year=2002|edition=Third|author-link=Serge Lang}}</ref>
# ''R'' merupakan [[grup abelian]] terhadap penjumlahan, artinya:
Baris 31 ⟶ 22:
# ''R'' merupakan [[monoid]] terhadap perkalian, artinya:
#* (''a'' · ''b'') · ''c'' = ''a'' · (''b'' · ''c'') untuk setiap ''a'', ''b'', ''c'' dalam ''R'' (dengan kata lain, · bersifat asosiatif).
#* Terdapa sebuah unsur 1 dalam ''R'' yang menyebabkan ''a'' · 1 = ''a'' dan 1 · ''a'' = ''a'' untuk setiap ''a'' dalam ''R'' (dengan kata lain, terdapat 1 sebagai [[identitas perkalian]]).<ref>Keberadaan 1 tidak diharuskan oleh setiap pengarang; di sini, istilah ''[[
# Perkalian bersifat [[distributif]] terhadap penjumlahan, artinya:
#* ''a'' ⋅ (''b'' + ''c'') = (''a'' · ''b'') + (''a'' · ''c'') untuk setiap ''a'', ''b'', ''c'' dalam ''R'' (distributif kiri).
#* (''b'' + ''c'') · ''a'' = (''b'' · ''a'') + (''c'' · ''a'') untuk setiap ''a'', ''b'', ''c'' dalam ''R'' (distributif kanan).
Seperti dijelaskan dalam bagian {{section link||Sejarah}}, sebagian penulis memakai ketentuan berbeda di mana sebuah gelanggang tidak perlu memiliki identitas perkalian. Artikel ini menggunakan ketentuan, kecuali ketika disebutkan sebaliknya, bahwa sebuah gelanggang harus memiliki identitas tersebut.<!--- This is also the convention in [[Wikipedia:Manual of Style/Mathematics]]. ---> Sebagian penulis yang menggunakan ketentuan ini menyebut struktur yang memenuhi semua aksioma ''kecuali'' syarat identitas perkalian sebagai [[rng (aljabar)|rng]] (biasa dibaca ''rung'') dan sebagian menyebutnya [[gelanggang semu]]. Contohnya, himpunan semua bilangan genap dengan operasi + dan ⋅ yang biasa merupakan sebuah rng, tapi bukan sebuah gelanggang.
Baris 86 ⟶ 75:
=== Dedekind ===
Penelitian gelanggang berawal dari teori [[gelanggang polinomial]] dan teori [[bilangan bulat aljabar]].<ref name="history">
=== Hilbert ===
Istilah "''Zahlring''" (gelanggang angka) dibuat oleh [[David Hilbert]] pada 1892 dan diterbitkan pada 1897.{{sfn|Hilbert|1897}} Menurut Harvey Cohn, Hilbert menggunakan istilah gelanggang yang memiliki sifat "berputar kembali" ke unsur itu sendiri.<ref>{{Citation|last=Cohn|first=Harvey|title=Advanced Number Theory|publisher=Dover Publications|location=New York|year=1980|page=[https://archive.org/details/advancednumberth00cohn_0/page/49 49]|isbn=978-0-486-64023-5|url=https://archive.org/details/advancednumberth00cohn_0/page/49}}</ref> Secara khusus, dalam sebuah gelanggang bilangan bulat aljabar, semua pangkat yang tinggi dari bilangan bulat aljabar bisa ditulis sebagai kombinasi integral dari pangkat-pangkat yang rendah, jadi pangkatnya "berputar". Contohnya, jika {{nowrap|1=''a''<sup>3</sup> − 4''a'' + 1 = 0}} maka {{nowrap|1=''a''<sup>3</sup> = 4''a'' − 1}}, {{nowrap|1=''a''<sup>4</sup> = 4''a''<sup>2</sup> − ''a''}}, {{nowrap|1=''a''<sup>5</sup> = −''a''<sup>2</sup> + 16''a'' − 4}}, {{nowrap|1=''a''<sup>6</sup> = 16''a''<sup>2</sup> − 8''a'' + 1}}, {{nowrap|1=''a''<sup>7</sup> = −8''a''<sup>2</sup> + 65''a'' − 16}}, dan seterusnya; secara umum, ''a''<sup>''n''</sup> adalah [[kombinasi linear]] integral dari 1, ''a'', dan ''a''<sup>2</sup>.
=== Fraenkel dan Noether ===
Baris 101 ⟶ 90:
Menghadapi ambiguitas ini, sebagian penulis mencoba menekankan pandangkan mereka, sementara sebagian yang lainya mencoba memakai istilah yang lebih persis.
Dari kategori pertama, salah satu contohnya adalah Gardner dan Wiegandt, yang mengatakan bahwa apabila semua gelanggang harus memiliki 1, maka salah satu akibatnya adalah tidak adanya [[jumlah langsung]] tak terhingga dari gelanggang, dan yang dijumlah langsung dari gelanggang bukanlah subgelanggang. Mereka menyimpulkan bahwa "dalam banyak, mungkin kebanyakan, cabang teori gelanggang dibutuhkannya keberadaan unsur satuan tidaklah berakal sehat, dan sebab itu tidak bisa diterima."{{sfn|Gardner|Wiegandt|2003}} [[Bjorn Poonen|Poonen]] membuat argumen bantahan: gelanggang tanpa identitas perkalian tidak bersifat asosiatif secara total (hasil kali dari barisan terhingga manapun yang terdiri dari unsur-unsur gelanggang, termasuk barisan kosong, didefinisikan dengan baik, tidak tergantung urutan operasi) dan menulis "lanjutan alamiah dari sifat asosiatif memerlukan gelanggang yang mengandung hasil kali kosong, jadi wajar bila gelanggang memerlukan sebuah 1".{{sfn|Poonen|2018}}
Dalam kategori kedua, beberapa penulis menggunakan istilah-istilah berikut:{{sfn|Wilder|1965|p=176}}{{sfn|Rotman|1998|p=7}}
Baris 123 ⟶ 112:
Meskipun didefinisikan serupa, teori modul jauh lebih rumit daripada ruang vektor, terutama, karena, tidak seperti ruang vektor, modul tidak dikarakterisasi (hingga isomorfisme) oleh invarian tunggal ([[dimensi (ruang vektor)|dimensi ruang vektor]]). Secara khusus, tidak semua modul memiliki [[basis (aljabar linear)|basis]].
Aksioma modul menyiratkan bahwa {{math|1=(−1)''x'' = −''x''}}, di mana minus pertama menunjukkan [[aditif invers]] di dalam gelanggang dan minus kedua menunjukkan invers penjumlahan di modul. Menggunakan ini dan menunjukkan penambahan berulang dengan perkalian dengan [[Bilangan asli|bilangan bulat positif]] memungkinkan mengidentifikasi kelompok abelian dengan modul di atas gelanggang bilangan bulat.
== Lihat pula ==
Baris 142 ⟶ 131:
* [[Gelanggang Dedekind]]
* [[Gelang diferensial]]
* [[Bidang eksponensial
* [[Gelanggang terbatas]]
* [[Gelanggang Lie]]
* [[Gelanggang lokal]]
* [[Gelanggang Noetherian
* [[Gelanggang urutan]]
* [[Gelanggang Poisson]]
Baris 216 ⟶ 205:
| author-link=David Eisenbud
| title=Commutative algebra with a view toward algebraic geometry
| url=https://archive.org/details/commutativealgeb0000eise
| publisher=Springer
| year=1995
| ref=harv
}}
* {{Cite book
| last1=Gallian
| first1=Joseph A.
| title=Contemporary Abstract Algebra, Sixth Edition.
| url=https://archive.org/details/contemporaryabst0000gall
| publisher=Houghton Mifflin
| year=2006
| isbn=9780618514717
| ref=harv
}}
* {{Cite book
| title=Radical Theory of Rings
Baris 362 ⟶ 353:
| title=A primer of commutative algebra
| url=http://www.jmilne.org/math/xnotes/ca.html
| access-date=2021-02-01
}}▼
| archive-date=2023-05-30
| archive-url=https://web.archive.org/web/20230530132032/https://www.jmilne.org/math/xnotes/ca.html
| dead-url=no
▲ }}
* {{Citation
| last1=Rotman
Baris 402 ⟶ 397:
| year=1965
| ref=harv
}}
* {{Cite book
| last1=Zariski
Baris 474 ⟶ 469:
| url-access=registration
| url=https://archive.org/details/skewfieldstheory0000cohn
}}
* {{Citation
| last1=Eisenbud
Baris 511 ⟶ 506:
| year=1998
| ref=harv
}}
* {{Cite book
| last=Isaacs
Baris 558 ⟶ 553:
| url=https://books.google.com/books?id=xUQc0RZhQnAC&q=ring
| ref=harv
| access-date=2021-02-01
}}▼
| archive-date=2023-07-29
| archive-url=https://web.archive.org/web/20230729211757/https://books.google.com/books?id=xUQc0RZhQnAC&q=ring
| dead-url=no
▲ }}
* {{Cite web
| last=Milne
Baris 564 ⟶ 563:
| title=Class field theory
| url=http://www.jmilne.org/math/CourseNotes/cft.html
| access-date=2021-02-01
}}▼
| archive-date=2023-03-14
| archive-url=https://web.archive.org/web/20230314232125/https://www.jmilne.org/math/CourseNotes/cft.html
| dead-url=no
▲ }}
* {{Citation
| last1=Nagata
Baris 589 ⟶ 592:
| url=https://archive.org/details/associativealgeb00pier_0
| ref=harv
}}
* {{Citation
| last=Poonen
Baris 598 ⟶ 601:
| arxiv=1404.0135
| url=https://math.mit.edu/~poonen/papers/ring.pdf
| accessdate=2021-02-01
}}▼
| archive-date=2023-05-05
| archive-url=https://web.archive.org/web/20230505065100/https://math.mit.edu/~poonen/papers/ring.pdf
| dead-url=no
▲ }}
* {{Citation
| last=Serre
Baris 619 ⟶ 626:
| url=https://books.google.com/books?id=pTV7CwAAQBAJ&q=ring
| isbn=9783540373704
| accessdate=2021-02-01
}}▼
| archive-date=2023-07-29
| archive-url=https://web.archive.org/web/20230729211758/https://books.google.com/books?id=pTV7CwAAQBAJ&q=ring
| dead-url=no
▲ }}
* {{Cite web
| last=Weibel
Baris 625 ⟶ 636:
| title=The K-book: An introduction to algebraic K-theory
| url=http://www.math.rutgers.edu/~weibel/Kbook.html
| access-date=2021-02-01
}}▼
| archive-date=2017-01-05
| archive-url=https://web.archive.org/web/20170105041334/http://www.math.rutgers.edu/~weibel/Kbook.html
| dead-url=no
▲ }}
* {{Cite book
| last1=Zariski
Baris 680 ⟶ 695:
| url=https://zenodo.org/record/1428306
| ref=harv
| access-date=2021-02-01
| archive-date=2023-05-26
| archive-url=https://web.archive.org/web/20230526213845/https://zenodo.org/record/1428306
| dead-url=no
}}
{{refend}}
Baris 685 ⟶ 704:
=== Referensi sejarah ===
{{refbegin}}
* [http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html History of ring theory at the MacTutor Archive] {{Webarchive|url=https://web.archive.org/web/20170424234340/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html |date=2017-04-24 }}
* [[Garrett Birkhoff]] dan [[Saunders Mac Lane]] (1996) ''A Survey of Modern Algebra'', edisi ke-5. New York: Macmillan.
* Bronshtein, I. N. dan Semendyayev, K. A. (2004) [[Bronshtein and Semendyayev|Handbook of Mathematics]], edisi ke-4. New York: Springer-Verlag {{isbn|3-540-43491-7}}.
|