Notasi anak panah atas Knuth: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Zɛphyɻ (bicara | kontrib)
menambah tabel
Zɛphyɻ (bicara | kontrib)
Tidak ada ringkasan suntingan
 
(4 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 1:
Dalam [[matematika]], '''notasiNotasi anak panah atas Knuth''' adalah salah satu cara untuk melambangkanmerepresentasikan [[bilangan bulat]] denganyang nilaisangat yang[[Bilangan besar,|besar]]. Notasi ini diciptakan oleh Donald Knuth pada tahun 1976.<ref>{{Cite journal|last=Knuth|first=Donald E.|date=1976-12-17|title=Mathematics and Computer Science: Coping with Finiteness|url=http://science.sciencemag.org/content/194/4271/1235|journal=Science|language=en|volume=194|issue=4271|pages=1235–1242|doi=10.1126/science.194.4271.1235|issn=0036-8075|pmid=17797067}}</ref> Dalam makalahnya pada tahun 1947,<ref>{{cite journal|author=R. L. Goodstein|date=Dec 1947|title=Transfinite Ordinals in Recursive Number Theory|journal=Journal of Symbolic Logic|volume=12|issue=4|pages=123–129|doi=10.2307/2266486|jstor=2266486|s2cid=1318943}}</ref>  R. L. Goodstein memperkenalkan urutan operasi spesifik yang sekarang disebut [[hiperoperasi]], diyang mana contohnya [[perkalian]] dianggap sebagai iterasi atau perulangan dari [[Penambahan|penjumlahan]], [[perpangkatan]] adalah iterasi dari perkalian, iterasi selanjutnya adalah tetrasi, kemudian pentasi, dan seterusnya, di mana notasi anak panah Knuth dapat digunakan. misalnya:
 
* Anak panah tunggal <math>\displaystyle (\uparrow)</math> mewakili [[Eksponensiasi|eksponenisasi]] yang merupakan perkalian berulang.
Baris 62:
<math>3 \uparrow \uparrow 5 = 3^{3^{3^{3^3}}} = 3^{3^{3^{27}}} = 3^{3^{7625597484987}} = 3^{1,2580143 \times 10^{3638334640024}} </math>
 
Dan seterusnya, Walaupun bilangan ini sudah terlihat sangat besar. Hiperoperasi tidak berhenti disitu. Iterasi selanjutnya seperti pentasi, heksasi, dan lain-lain dilakukan dengan menambah jumlah anak panah pada notasi anak panah knuth :
 
[[Hiperoperasi|Pentasi]], mendefinisikan iterasi dari tetrasi. Direpresentasikan dengan panah tripel atau rangkap tiga <math>(\uparrow \uparrow \uparrow) </math>:
Baris 165:
== Tabel nilai bilangan ==
 
=== Menghitung 0↑<mathsup>0 \uparrow ^n b</mathsup>b ===
Menghitung <math>{\displaystyle 0\uparrow ^{n}b=H_{n+2}(0,b)=0[n+2]b}</math> akan menghasilkan:
 
Baris 174:
* 0, jika ''n'' > 1 dan ''b'' ganjil
 
=== Menghitung 1↑<mathsup>1 \uparrow ^n b</mathsup>b ===
Menghitung angka 1 dengan cara mengalikannya, memangkatkannya atau bahkan menumpuknya dengan tetrasi akan selalu menghasilkan angka 1.
 
=== Menghitung 2↑<mathsup>2 \uparrow ^n b</mathsup>b ===
Komputasi <math>2 \uparrow ^n b</math> dapat direpresentasikan dalam bentuk tabel yang berukuran tak terbatas. disini hanya ditampilan angka-angka <math>2^b</math>pada baris paling atas, dan isi kolom kiri dengan nilai 2.
 
Baris 243:
|}
 
=== Menghitung 3↑<mathsup>3 \uparrow ^n b</mathsup>b ===
Komputasi <math>3 \uparrow ^n b</math> dapat direpresentasikan dalam bentuk tabel yang berukuran tak terbatas. disini hanya ditampilan angka-angka <math>3^b</math>pada baris paling atas, dan isi kolom kiri dengan nilai 3.
 
Baris 304:
|}
 
=== Menghitung 4↑<mathsup>4 \uparrow ^n b</mathsup>b ===
Komputasi <math>4 \uparrow ^n b</math> dapat direpresentasikan dalam bentuk tabel yang berukuran tak terbatas. disini hanya ditampilan angka-angka <math>4^b</math>pada baris paling atas, dan isi kolom kiri dengan nilai 4.
 
Baris 371:
\end{matrix}</math>
| <math>4\uparrow\uparrow\uparrow\uparrow b</math>
|}
 
=== Menghitung 10↑<sup>n</sup>b ===
Komputasi <math>10 \uparrow ^n b</math> dapat direpresentasikan dalam bentuk tabel yang berukuran tak terbatas. disini hanya ditampilan angka-angka <math>10^b</math>pada baris paling atas, dan isi kolom kiri dengan nilai 10.
 
{| class="wikitable"
|+ Nilai dari <math>10\uparrow^n b</math> = [[Hyperoperation#Notations|<math>H_{n+2}(10,b)</math>]] = [[Hyperoperation#Notations|<math>10[n+2]b</math>]] = <math> 10 \to b \to n </math>
|-
! {{diagonal split header|''ⁿ''|''b''}}
! 1
! 2
! 3
! 4
! 5
! formula
|-
! 1
| 10 || 100 || 1.000 || 10.000 || 100.000 || <math>10^b</math>
|-
! 2
| 10 || 10.000.000.000 || <math>10^{10.000.000.000}</math> || <math>10^{10^{10.000.000.000}}</math> || <math>10^{10^{10^{10.000.000.000}}}</math> || <math>10\uparrow\uparrow b</math>
|-
! 3
| 10 || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>10\uparrow\uparrow\uparrow b</math>
|-
! 4
| 10 || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ sebanyak }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ sebanyak }10
\end{matrix}</math>
| <math>10\uparrow\uparrow\uparrow\uparrow b</math>
|}