Sianida: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Rachmat-bot (bicara | kontrib)
k tidy up, replaced: dimana → di mana, removed stub tag
 
(20 revisi perantara oleh 9 pengguna tidak ditampilkan)
Baris 2:
| ImageFile = Cyanide-ion-3D-vdW.png
| ImageAlt = [[Ball-and-stick model]] of the cyanide anion
| SystematicName = SianidaAnion sianida
| IUPACName =
| OtherNames =
Baris 25:
}}
 
'''Sianida''' adalah [[senyawa kimia]] yang mengandung '''gugus siano''' C ≡ NC≡N,<ref name="Britannica.com">{{cite web |url=http://www.britannica.com/science/cyanide |title=cyanide {{!}} chemical compound |trans-title= |author= |date= |work=britannica.com |publisher=Britannica.com |accessdate={{date|February 1, 2016}} |language=bahasa Inggris |quote= |archivedate= |archiveurl= |dead-url=no}}</ref> dengan [[atom]] [[karbon]] [[ikatan kimia|terikat-tiga]] ke atom [[nitrogen]].
 
Pada sianida anorganik, seperti [[natrium sianida]] dan [[kalium sianida]], gugus CN ada sebagai '''ion sianida''' [[poliatomik]] yang bermuatan negatif (CN<sup>−</sup>); senyawa ini, yang merupakan [[garam (kimia)|garam]] dari [[asam sianida]], adalah senyawa yang sangat beracun.<ref name="CMC">{{Cite web| url=http://www.cyanidecode.org/cyanide_environmental.php| title=Environmental and Health Effects of Cyanide| publisher=International Cyanide Management Institute| year=2006| accessdate=4 August 2009| archive-date=2012-11-30| archive-url=https://web.archive.org/web/20121130094124/http://www.cyanidecode.org/cyanide_environmental.php| dead-url=yes}}</ref> Ion sianida bersifat [[isoelektronik]] dengan [[karbon monoksida]] dan [[nitrogen]] molekuler.<ref>Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.{{page needed|date = July 2015}}</ref><ref>G. L. Miessler and D. A. Tarr "Inorganic Chemistry" 3rd Ed, Pearson/Prentice Hall publisher, ISBN 0-13-035471-6.{{page needed|date = July 2015}}</ref>
 
Sianida organik umumnya disebut [[nitril]]; gugus CN terhubung melalui [[ikatan kovalen]] dengan gugus bermuatan karbon, seperti [[metil]] (-CH<sub>3</sub>) pada metil sianida ([[asetonitril]]). Karena tidak melepas [[ion]] sianida, maka nitril umumnya lebih tidak beracun, atau seperti pada polimer tidak larut seperti [[serat akrilik]], maka sama sekali tidak beracun kecuali jika dibakar.<ref name="CDC">{{Cite web|url=http://www.bt.cdc.gov/Agent/cyanide/basics/facts.asp|title=Facts about cyanide:Where cyanide is found and how it is used|last=Anon|date=27 January 2004|work=CDC Emergency preparedness and response|publisher=Centers for Disease Control and Prevention|accessdate=13 April 2010|archive-date=2010-04-15|archive-url=https://web.archive.org/web/20100415140426/http://www.bt.cdc.gov/agent/cyanide/basics/facts.asp|dead-url=yes}}</ref>
 
[[Hidrogen sianida|Asam sianida]] (HCN) adalah senyawa berbentuk cairan yang mudah menguap, biasa digunakan dalam pembuatan [[asetonitril]] yang kemudian digunakan untuk produksi [[serat akrilik]], [[karet sintetis]], dan [[plastik]].<ref name="Facts About Cyanide">{{cite web |url=http://www.bt.cdc.gov/agent/cyanide/basics/facts.asp |title=CDC {{!}} Facts About Cyanide |trans-title= |author= |date= |work=bt.cdc.gov |publisher= |accessdate={{date|February 1, 2016}} |language=bahasa Inggris |quote=Cyanide is contained in cigarette smoke and the combustion products of synthetic materials such as plastics. Combustion products are substances given off when things burn. In manufacturing, cyanide is used to make paper, textiles, and plastics. |archivedate=2010-04-15 |archiveurl=https://web.archive.org/web/20100415140426/http://www.bt.cdc.gov/agent/cyanide/basics/facts.asp |dead-url=noyes }}</ref> Sianida juga digunakan dalam berbagai proses kimia, seperti [[fumigasi]], pengerasan [[besi]] dan [[baja]], [[elektroplating]], dan pemurnian [[bijih]]. Di alam, bahan - bahan yang mengandung sianida terdapat dalam beberapa biji buah, seperti lubang ceri dan biji apel.
 
== Nomenklatur dan etimologi ==
[[Berkas:Cyanide-montage.png|jmpl|lurus|Ion dari '''sianida''', CN<sup>−</sup>.<br/>
Dari atas:<br/>
1. Struktur ikatan kovalen<br/>
2. Model umum<br/>
3. Permukaan berpotensi memiliki statis<br/>
4. Pasangan [[karbon]] bebas]]
 
Dalam nomenklatur [[IUPAC]], senyawa organik yang memiliki gugus fungsi C≡N<sup>-</sup> disebut [[nitril]]. Sehingga nitril adalah senyawa organik.<ref>[[IUPAC Gold Book]] [http://goldbook.iupac.org/N04151.html ''nitriles'']</ref><ref>NCBI-MeSH [https://www.ncbi.nlm.nih.gov/mesh/68009570 ''Nitriles'']</ref> Contoh nitril adalah [[CH3CN]], [[asetonitril]] (juga dikenal sebagai ''metil sianida''). Nitril biasanya tidak melepaskan ion sianida. Gugus fungsional dimana hidroksil dan sianida terikat pada [[karbon]] yang sama disebut sianohidrin. Tidak seperti nitril, sianohidridin memang melepaskan [[hidrogen sianida]]. Dalam [[kimia anorganik]], garam yang mengandung ion C≡N<sup>−</sup> disebut sebagai '''sianida'''.
 
Kata ini berasal dari bahasa Yunani ''kyanos'', yang berarti biru tua, sebagai hasil pertama kali diperoleh dari pemanasan pigmen yang dikenal sebagai biru Prusia.
 
== Pengikatan ==
Ion sianida menjadi molekul [[isoelektronik]] jika berikatan dengan [[karbon monoksida]] dan dengan molekul [[nitrogen]].<ref>Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. {{ISBN|0-7506-3365-4}}.{{page needed|date=July 2015}}</ref><ref>G. L. Miessler and D. A. Tarr "Inorganic Chemistry" 3rd Ed, Pearson/Prentice Hall publisher, {{ISBN|0-13-035471-6}}.{{page needed|date=July 2015}}</ref>
 
== Ketersediaan ==
=== Di alam ===
[[Berkas:Removal of cyanide poison from cassava.jpg|jmpl|kiri|Pembersihan racun sianida dari Cassava di [[Nigeria]]]]
 
Sianida dapat diproduksi oleh [[bakteri]], [[jamur]], dan [[alga]] tertentu dan ditemukan di sejumlah [[tanaman]]. Sianida ditemukan dalam jumlah besar pada biji buah tertentu, mis. [[Almond|Almond pahit]], [[aprikot]], [[apel]], dan buah [[persik]].<ref>{{Cite web|url=http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=71&tid=19 |title=ToxFAQs for Cyanide |accessdate=2008-06-28 |date = July 2006|publisher=[[Agency for Toxic Substances and Disease Registry]]}}</ref> Pada tanaman, sianida biasanya terikat dengan molekul gula dalam bentuk ''[[glikosida sianogenik]]'', sebagai pencegah tanaman terhadap [[pemangsa|herbivora]] (lihat [[Simbiosis mutualisme]]). Akar [[singkong]] (ubi kayu), dan makanan penting seperti [[kentang]] yang ditanam di negara tropis, juga mengandung glikosida sianogen.<ref>{{Cite journal|first=J. |last=Vetter |title=Plant cyanogenic glycosides |journal=Toxicon |year=2000 |volume=38 |pages=11–36 |doi=10.1016/S0041-0101(99)00128-2 |pmid=10669009 |issue=1}}</ref><ref name=jones>{{Cite journal|first=D. A. |last=Jones |title= Why are so many food plants cyanogenic? |journal=[[Phytochemistry (journal)|Phytochemistry]] |year=1998 |volume=47 |pages=155–162 |doi=10.1016/S0031-9422(97)00425-1 |pmid=9431670 |issue=2}}</ref>
 
Bambu Madagaskar ([[Cathariostachys madagascariensis]]) menghasilkan sianida sebagai pencegah penebangan. Sebagai tanggapan, lemur bambu emas, pemakan bambu, telah mengembangkan sifat toleransi yang tinggi terhadap sianida.
 
=== Ruang antariksa ===
Radikal sianida ·CN telah ditemukan di ruang antariksa.<ref>{{Cite journal |last=Pieniazek |first=Piotr A. |author2=Bradforth, Stephen E. |author3=Krylov, Anna I. |title=Spectroscopy of the Cyano Radical in an Aqueous Environment |date=2005-12-07 |pages=4854–65 |issue=14 |volume=110 |url=http://www-bcf.usc.edu/~krylov/pubs/pdf/jpca-110-4854.pdf |journal=The Journal of Physical Chemistry A |pmid=16599455 |format=PDF |doi=10.1021/jp0545952 |bibcode=2006JPCA..110.4854P |access-date=2019-02-08 |archive-date=2008-09-11 |archive-url=https://web.archive.org/web/20080911131555/http://www-bcf.usc.edu/~krylov/pubs/pdf/jpca-110-4854.pdf |dead-url=yes }}</ref> Radikal sianida (disebut sianogen) digunakan untuk mengukur suhu awan gas antariksa.<ref>{{cite journal |title = Interstellar Cyanogen and the Temperature of the Cosmic Microwave Background Radiation |author1=Roth, K. C. |author2=Meyer, D. M. |author3=Hawkins, I. |journal = The Astrophysical Journal |year = 1993 |volume = 413 |issue = 2 |pages = L67–L71 |doi = 10.1086/186961 |bibcode = 1993ApJ...413L..67R |url = http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1993ApJ...413L..67R&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf |format = pdf }}</ref>
 
=== Pirolisis dan produk pembakaran ===
Hidrogen sianida dihasilkan oleh pembakaran atau mem-[[pirolisis]] bahan-bahan tertentu dalam kondisi kekurangan oksigen. Misalnya, dapat dideteksi pada knalpot mesin pembakaran internal dan asap [[tembakau]]. Plastik tertentu, terutama yang berasal dari [[akrilonitril]], melepas [[hidrogen sianida]] saat dipanaskan atau dibakar.<ref name="CDC"/>
 
=== Pada kimia koordinasi ===
Anion sianida adalah [[ligan]] untuk banyak [[logam transisi]].<ref>Sharpe, A. G. Kimia Kompleks Cyano dari Logam Transisi; Academic Press: London, 1976</ref> Afinitas tinggi logam untuk [[anion]] ini dapat dikaitkan dengan muatan negatif, kekompakan, dan kemampuan untuk ikut serta dalam ikatan π. Ikatan kompleks terkenal meliputi:
* ''heksasianida'' [M(CN)<sub>6</sub>]<sup>3−</sup> (M=Ti, V, Cr, Mn, Fe, Co), yang berbentuk [[oktahedral]].
* ''tetrasianida'', [M(CN)<sub>4</sub>]<sup>2−</sup> (M=Ni, Pd, Pt), yang merupakan bangun geometri bujur sangkar;
* ''diasida'' [M(CN)<sub>2</sub>]<sup>-</sup> (M=Cu, Ag, Au), yang memiliki bangun geometri linear.
 
Di antara senyawa koordinasi sianida, yang paling penting adalah senyawa kalium ''ferrosianida'' yang terkoordinasi secara [[oktahedral]], serta pigmen [[Biru Prusia]], yang keduanya pada dasarnya tidak [[beracun]] karena ikatan sianida yang erat dengan atom besi pusat.<ref name=Holl>{{ cite book |author1=Holleman, A. F. |author2=Wiberg, E. | title = Inorganic Chemistry | publisher = Academic Press | location = San Diego | year = 2001 | isbn = 978-0-12-352651-9 }}</ref> Biru Prusia pertama kali secara tidak sengaja dibuat sekitar tahun 1706, dengan memanaskan molekul yang mengandung [[zat besi]], [[karbon]], dan [[nitrogen]]. Kemudian sianida berbentuk lain mulai dibuat kemudian (dan dinamai menurut namanya). Di antara banyak kegunaannya, biru Prusia memberikan warna biru dalam ''blueprint'', proses pembiruan, dan ''cyanotypes''.
 
[[Enzim]] yang disebut [[hidrogenase]] mengandung [[ligan]] sianida yang menempel pada besi di pusat aktifnya. [[Biosintesis]] sianida dalam proses hidrogenase [NiFe]<sup>-</sup> berasal dari [[karbamoil fosfat]], yang diubah menjadi [[sisteinil tiosianat]], pendonor CN<sup>−</sup>.<ref>{{cite journal |last1=Reissmann |first1=Stefanie |last2=Hochleitner |first2=Elisabeth |last3=Wang |first3=Haofan |last4=Paschos |first4=Athanasios |last5=Lottspeich |first5=Friedrich |last6=Glass |first6=Richard S. |last7=Böck |first7=August |title=Taming of a Poison: Biosynthesis of the NiFe-Hydrogenase Cyanide Ligands |journal=Science |volume=299 |issue=5609 |pages=1067–70 |year=2003 |pmid=12586941 |doi=10.1126/science.1080972 |bibcode=2003Sci...299.1067R }}</ref>
 
=== Turunan organik ===
{{main|Nitril}}
Karena nukleofilisitas anion sianida yang tinggi, gugus siano mudah dikategorikan ke dalam molekul organik dengan menempatkan gugus [[halida]] (mis. [[Klorida]] pada [[metil klorida]]). Secara umum, sianida organik disebut [[nitril]]. Dengan demikian, [[CH3CN]] dapat disebut [[metil sianida]] tetapi lebih sering disebut sebagai [[asetonitril]]. Dalam sintesis organik, sianida adalah sintesis C-1; yaitu dapat digunakan untuk memperpanjang rantai karbon satu per satu, sambil mempertahankan kemampuan untuk kembali difungsikan.{{fact}}
 
:RX + CN<sup>−</sup> → RCN + X<sup>−</sup> (substitusi nukleofilik) diikuti oleh:
# RCN + 2 H<sub>2</sub>O → [[asam karboksilat|RCOOH]] + NH<sub>3</sub> (proses [[hidrolisis]] dalam refluks dengan katalis asam mineral), atau
# 2 RCN + LiAlH<sub>4</sub> + (langkah kedua) 4 H<sub>2</sub>O → [[amina|2 RCH<sub>2</sub>NH<sub>2</sub>]] + LiAl(OH)<sub>4</sub> (dibawah [[refluks]] kering oleh [[dietil eter|eter]], diikuti penambahan H<sub>2</sub>O)
 
== Produksi ==
{{main|AsamHidrogen sianida#Produksi dan sintesis}}
Proses utama yang digunakan untuk memproduksi sianida adalah [[proses Andrussow]], [[asam sianida]] diproduksi dari [[metana]] dan [[amoniak]] dengan bantuan [[oksigen]] dan [[katalis]] [[platina]].<ref>{{cite journal
|title=Über die schnell verlaufenden katalytischen Prozesse in strömenden Gasen und die Ammoniak-Oxydation (V) |trans_title=About the quicka catalytic processes in flowing gases and the ammonia oxidation (V) |language=German |authorlink1=Leonid Andrussow |first1=Leonid |last1=Andrussow |journal=Berichte der deutschen chemischen Gesellschaft |volume=60 |issue=8 |pages=2005–18 |year=1927 |doi=10.1002/cber.19270600857 }}</ref><ref>{{cite journal |title=Über die katalytische Oxydation von Ammoniak-Methan-Gemischen zu Blausäure |trans_title=About the catalytic oxidation of ammonia-methane mixtures to cyanide |language=German |first1=L. |last1=Andrussow |journal=[[Angewandte Chemie]] |volume=48 |issue=37 |pages=593–5 |year=1935 |doi=10.1002/ange.19350483702 }}</ref>
Baris 121 ⟶ 168:
|isbn=3-527-27766-8
|page=67
|url=http://books.google.com/books?id=Fo1PjKW9GpUC}} [http://books.google.com/books?id=Fo1PjKW9GpUC&pg=PA67 Extract of page 67]
}}{{Pranala mati|date=Juli 2023 |bot=InternetArchiveBot |fix-attempted=yes }} [http://books.google.com/books?id=Fo1PjKW9GpUC&pg=PA67 Extract of page 67]{{Pranala mati|date=Juli 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
</ref>
 
== Referensi ==
Baris 129 ⟶ 176:
== Pranala luar ==
* [http://www.atsdr.cdc.gov/MHMI/mmg8.html ATSDR medical management guidelines for cyanide poisoning (US)]
* [http://www.storysmith.net/Terrorism.htm Cyanide intoxication] {{Webarchive|url=https://web.archive.org/web/20060107203954/http://www.storysmith.net/Terrorism.htm |date=2006-01-07 }}, by Charles Stewart
* [http://www.hse.gov.uk/pubns/misc076.htm HSE recommendations for first aid treatment of cyanide poisoning (UK)]
* [http://www.inchem.org/documents/cicads/cicads/cicad61.htm Hydrogen cyanide and cyanides] ([[CICAD]] 61)
* [http://www.inchem.org/documents/antidote/antidote/ant02.htm#SubSectionNumber:1.13.1 IPCS/CEC Evaluation of antidotes for poisoning by cyanides]
* [http://www.npi.gov.au/database/substance-info/profiles/29.html National Pollutant Inventory - Cyanide compounds fact sheet] {{Webarchive|url=https://web.archive.org/web/20060517035532/http://www.npi.gov.au/database/substance-info/profiles/29.html |date=2006-05-17 }}
* [http://www.snopes.com/food/warnings/apples.asp#add Eating apple seeds is safe despite the small amount of cyanide]
 
{{Gugus fungsi}}
{{Authority control}}
 
[[Kategori:Anion]]
[[Kategori:Sianida| ]]
[[Kategori:ToksikologiAnion]]
[[Kategori:AnionToksin mitokondria]]
[[Kategori:Senjata kimia]]
[[Kategori:Senyawa nitrogen(−III)]]