E (konstanta matematika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bersih-bersih (via JWB) |
k benar jadi tepat |
||
(4 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 4:
{{e (konstanta matematika)}}
Bilangan <math>e</math> (atau, disebut juga sebagai '''bilangan Euler''') adalah [[konstanta matematika]] yang di mana
:<math>e = \sum\limits_{n = 0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 2\cdot 3} + \cdots</math>
[[Fungsi eksponensial]]
<math>e</math> kadang-kadang disebut '''bilangan Euler''',
Bilangan <math>e</math> sangat penting digunakan dalam bidang matematika,<ref>{{cite book|title = An Introduction to the History of Mathematics|url = https://archive.org/details/introductiontohi00eves_0|url-access = registration|author = Howard Whitley Eves|year = 1969|publisher = Holt, Rinehart & Winston|isbn =978-0-03-029558-4}}</ref> disamping 0, 1, [[Pi|<math>\pi</math>]], dan {{mvar|[[Unit imajiner|<math>\mathrm{i}</math>]]}}. Kelimanya muncul dalam satu formulasi [[identitas Euler]], dan memainkan peran penting dan berulang di seluruh bidang matematika.<ref>{{cite book |title=Euler's Pioneering Equation: The most beautiful theorem in mathematics |edition=illustrated |first1=Robinn |last1=Wilson |publisher=Oxford University Press |year=2018 |isbn=9780192514059 |page=(preface) |url=https://books.google.com/books?id=345HDwAAQBAJ}}</ref><ref>{{cite book |title=Pi: A Biography of the World's Most Mysterious Number |edition=illustrated |first1=Alfred S. |last1=Posamentier |first2=Ingmar |last2=Lehmann |publisher=Prometheus Books |year=2004 |isbn=9781591022008 |page=68 |url=https://books.google.com/books?id=QFPvAAAAMAAJ}}</ref> Seperti konstanta <math>\pi</math>, <math>e</math> adalah [[Bilangan irasional|irasional]] (yaitu, tidak dapat direpresentasikan sebagai rasio [[bilangan bulat]]) dan [[Bilangan transendental|transendental]] (yaitu bukan akar dari [[polinomial]] bukan nol dengan koefisien rasional).<ref name=":1" /> Untuk 50 tempat desimal nilai <math>e</math> adalah:
{{block indent
| {{gaps|2.71828|18284|59045|23536|02874|71352|66249|77572|47093|69995...}} {{OEIS|A001113}}.
Baris 19:
==Sejarah==
Referensi pertama untuk konstanta <math>e</math> diterbitkan pada tahun 1618 dalam tabel lampiran dari karya tentang logaritma oleh [[John Napier]].<ref name="OConnor"/> Namun,
Penemuan konstanta itu sendiri dikreditkan ke [[Jacob Bernoulli]] pada tahun 1683,<ref name = "Bernoulli, 1690">Jacob Bernoulli mempertimbangkan masalah peracikan bunga yang terus-menerus, yang menyebabkan ekspresi seri untuk ''e''. Lihat: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Beberapa pertanyaan tentang minat, dengan solusi masalah tentang permainan peluang, diusulkan dalam ''Journal des Savants'' (''Ephemerides Eruditorum Gallicanæ''), pada tahun (anno) 1685.**), ''Acta eruditorum'', hal 219–23. [https://books.google.com/books?id=s4pw4GyHTRcC&pg=PA222#v=onepage&q&f=false On page 222], Bernoulli poses the question: ''"Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?"'' (Ini adalah masalah jenis lain: Pertanyaannya adalah, jika beberapa pemberi pinjaman menginvestasikan [sebuah] sejumlah uang [dengan] bunga, biarlah itu menumpuk, sehingga setiap saat menerima bagian proporsional dari bunga tahunannya; berapa dia akan terutang [pada] akhir tahun?) Bernoulli menyusun deret pangkat untuk menghitung jawabannya, dan kemudian menulis: ''" … quæ nostra serie [ekspresi matematika untuk deret geometri] &c. major est. … si ''a''=''b'', debebitur plu quam 2½''a'' & minus quam 3''a''."'' (… yang deret kami [deret geometri] lebih besar [dari]. … jika ''a''=''b'', [pemberi pinjaman] akan berutang lebih dari 2½''a'' dan kurang dari 3''a''.) Jika ''a''=''b'', deret geometri direduksi menjadi deret untuk ''a'' × ''e'', jadi 2.5 < ''e'' < 3. (** Referensinya adalah pada masalah yang diajukan oleh Jacob Bernoulli dan yang muncul dalam "Journal des Sçavans" tahun 1685 di bagian bawah [http://gallica.bnf.fr/ark:/12148/bpt6k56536t/f307.image.langEN page 314.])</ref><ref>{{cite book|author1=Carl Boyer|author2=Uta Merzbach|author2-link= Uta Merzbach |title=A History of Mathematics|url=https://archive.org/details/historyofmathema00boye|url-access=registration|page=[https://archive.org/details/historyofmathema00boye/page/419 419]|publisher=Wiley|year=1991|isbn=9780471543978|edition=2nd}}</ref> yang mencoba mencari nilai dari ekspresi berikut (yang sama dengan <math>e</math>):
Baris 25:
:<math>\lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n.</math>
Penggunaan konstanta yang diketahui pertama kali, diawali oleh huruf <math>b</math> adalah dalam korespondensi dari [[Gottfried Leibniz]] hingga [[Christiaan Huygens]] pada tahun 1690 dan 1691.<ref>{{cite web |url=https://leibniz.uni-goettingen.de/files/pdf/Leibniz-Edition-III-5.pdf |title=Sämliche Schriften Und Briefe |last=Leibniz |first=Gottfried Wilhelm |date=2003 |language=de |quote=look for example letter nr. 6}}</ref> [[Leonhard Euler]] memperkenalkan huruf <math>e</math> sebagai dasar untuk logaritma alami, ditulis dalam surat kepada [[Christian Goldbach]] pada tanggal 25 November 1731.<ref>Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., ''Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle'' … (Korespondensi matematis dan fisik dari beberapa ahli geometri terkenal abad ke-18), vol. 1, (St. Petersburg, Rusia: 1843), hal 56–60, lihat terutama [https://books.google.com/books?id=gf1OEXIQQgsC&pg=PA58#v=onepage&q&f=false p. 58.] From p. 58: ''" … (e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … "'' (… (e menunjukkan bilangan yang logaritma hiperboliknya [yaitu, alami] sama dengan 1) …)</ref><ref>{{Cite book|last=Remmert|first=Reinhold|author-link=Reinhold Remmert|title=Theory of Complex Functions|url=https://archive.org/details/theorycomplexfun00remm_318|page=[https://archive.org/details/theorycomplexfun00remm_318/page/n156 136]|publisher=[[Springer-Verlag]]|year=1991|isbn=978-0-387-97195-7}}</ref> Euler mulai menggunakan huruf <math>e</math> untuk konstanta ini pada tahun 1727 atau 1728, dalam sebuah makalah yang tidak diterbitkan tentang kekuatan ledakan dalam meriam,<ref name="Meditatio">Euler, ''[https://scholarlycommons.pacific.edu/euler-works/853/ Meditatio in experimenta explosione tormentorum nuper instituta]''. {{lang|la|Scribatur pro numero cujus logarithmus est unitas, e, qui est 2,7182817…}} (Bahasa Indonesia: Ditulis untuk bilangan yang satuan logaritmanya e yaitu 2,7182817...")</ref> sedangkan perkenalan pertama <math>e</math> dalam sebuah publikasi adalah ''[[Mechanica]]'' Euler (1736).<ref>Leonhard Euler, ''Mechanica, sive Motus scientia analytice exposita'' (St. Petersburg (Petropoli), Rusia: Akademi Ilmu Pengetahuan, 1736), vol. 1, Bab 2, Bagian 11, paragraf 171, hal. 68. [https://books.google.com/books?id=qalsP7uMiV4C&pg=PA68#v=onepage&q&f=false Dari halaman 68:] ''Erit enim <math>\frac{dc}{c} = \frac{dy ds}{rdx}</math> seu <math>c = e^{\int\frac{dy ds}{rdx}}</math> ubi ''e'' denotat numerum, cuius logarithmus hyperbolicus est 1.'' (Jadi [yaitu, ''c'' adalah kecepatannya] sebagai <math>\frac{dc}{c} = \frac{dy ds}{rdx}</math> or <math>c = e^{\int\frac{dy ds}{rdx}}</math>, di mana ''e'' menunjukkan bilangan yang logaritma hiperboliknya [yaitu, alami] adalah 1.)</ref> Meskipun beberapa peneliti menggunakan huruf <math>c</math> pada tahun-tahun berikutnya, huruf <math>e</math> lebih umum dan akhirnya menjadi standar.{{citation needed|date=Oktober 2017}}
Dalam matematika,
==Aplikasi==
Baris 37:
{{quote|Sebuah akun dimulai dengan $1,00 dan membayar bunga 100 persen per tahun. Jika bunga dikreditkan sekali, pada akhir tahun, nilai akun di akhir tahun adalah $2,00. Apa yang terjadi jika bunga dihitung dan dikreditkan lebih sering sepanjang tahun?}}
Jika bunga dikreditkan dua kali dalam setahun, tingkat bunga untuk setiap 6 bulan akan menjadi 50%, jadi $ 1 awal dikalikan 1,5 dua kali, menghasilkan {{nowrap|1=$1.00 × 1.5<sup>2</sup> = $2.25}} di akhir tahun.
Bernoulli memperhatikan bahwa urutan ini mendekati batas ([[kekuatan minat]]) dengan
Secara lebih umum, akun yang dimulai dari $ 1 dan menawarkan tingkat bunga tahunan sebesar {{math|''R''}}, setelah itu {{math|''t''}} tahun, hasil dari {{math|''e''<sup>''Rt''</sup>}} dolar dengan
(Perhatikan di sini karena {{math|''R''}} adalah desimal yang setara dengan suku bunga yang dinyatakan sebagai ''persentase'', jadi untuk bunga 5%, {{math|1=''R'' = 5/100 = 0.05}}.)
===
[[Berkas:Bernoulli trial sequence.svg|thumb|300px|Grafik probabilitas ''P'' jika {{em|not}} mengamati peristiwa independen masing-masing probabilitas 1/''n'' sesudah ''n'' Pengadilan Bernoulli, dan 1 − ''P''  vs ''n'' ; dapat diamati bahwa ketika '' n '' meningkat, probabilitas 1/''n'' peristiwa kebetulan tidak pernah muncul setelah ''n'' mencoba dengan cepat {{nowrap|menyatu dengan 1/''e''.}}]]
Bilangan dari {{mvar|e}} itu sendiri juga memiliki aplikasi dalam [[teori probabilitas]], dengan cara yang tidak jelas terkait dengan [[pertumbuhan eksponensial]]:
:<math>\binom{10^6}{k} \left(10^{-6}\right)^k\left(1 - 10^{-6}\right)^{10^6-k}.</math>
Baris 60:
{{main|Distribusi normal}}
[[Distribusi normal]] dengan rata-rata nol dan deviasi standar satuan dikenal sebagai ''distribusi normal standar'', diberikan oleh [[fungsi kepadatan probabilitas]]
:<math>\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} x^2}.</math>
Baris 66:
===Kekacauan===
Aplikasi lain dari {{mvar|e}}, juga ditemukan sebagian oleh Jacob Bernoulli bersama dengan [[Pierre Raymond de Montmort]], Ada dalam masalah [[kekacauan]], juga dikenal sebagai ''masalah cek topi'':<ref>Grinstead, C.M. dan Snell, J.L.''[http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html Introduction to probability theory] {{Webarchive|url=https://web.archive.org/web/20110727200156/http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html |date=2011-07-27 }}'' (diterbitkan secara online di bawah [[GFDL]]), p. 85.</ref> {{math|''n''}} tamu diundang ke pesta, dan di depan pintu, semua tamu memeriksa topi mereka dengan kepala pelayan, yang pada gilirannya menempatkan topi ke dalam {{math|''n''}} kotak, masing-masing diberi label dengan nama satu tamu. Tapi kepala pelayan belum menanyakan identitas para tamu, jadi dia menempatkan topi ke dalam kotak yang dipilih secara acak. Masalah de Montmort adalah menemukan probabilitas
:<math>p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} = \sum_{k = 0}^n \frac{(-1)^k}{k!}.</math>
===Masalah perencanaan yang optimal===
Nilai maksimum dari <math display="inline">\sqrt[x]{x}</math> dapat diperoleh saat <math display="inline">x = e</math>. Selain itu, untuk nilai basis <math display="inline">b>1</math>, nilai maksimum dari <math display="inline">\frac{1}{x} \log_b{x}</math> diperoleh saat <math display="inline">x=e</math> ([[Permasalahan Steiner]]).
Sebatang panjang {{mvar|L}} dipecah menjadi {{mvar|n}} bagian yang sama. Nilai dari {{mvar|n}} yang memaksimalkan produk dari panjang adalah:<ref>{{cite book|title=Konstanta matematika|url=https://archive.org/details/mathematicalcons0000finc|url-access=registration|author=Steven Finch|year=2003|publisher=Cambridge University Press|p=[https://archive.org/details/mathematicalcons0000finc/page/14 14]}}</ref>▼
:<math>n = \left\lfloor \frac{L}{e} \right\rfloor</math> or <math>\left\lfloor \frac{L}{e} \right\rfloor + 1.</math>▼
▲
▲:<math>n = \left\lfloor \frac{L}{e} \right\rfloor</math>
===Asimtotik===
Angka {{mvar|e}} terjadi secara alami sehubungan dengan banyak masalah yang melibatkan
:<math>n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.</math>
|