[[Berkas:DiffractionSingleSlit_AnimDiffractionSingleSlit Anim.gif|thumb|300pxjmpl|Prinsip Huygens.]]
[[Berkas:Two-Slit_DiffractionSlit Diffraction.png|thumb|300pxjmpl|Difraksi]]
'''Difraksi''' atau disebut juga '''lenturan''' adalah kecenderungan gelombang yang dipancarkan dari sumber melewati celah yang terbatas untuk menyebar ketika merambat. Menurut prinsip Huygens, setiap titik pada front gelombang cahaya dapat dianggap sebagai sumber sekunder gelombang bola.
[[Berkas:HuygensDiffraction.jpg|thumb|300px|Difraksi cahaya diterangkangkan oleh prinsip Huygens.]]
[[Berkas:Double slit diffraction.svg|300px|right|thumb|Difraksi pada dua celah berjarak <math>d</math>. Fraksi [[gelombang]] putih terjadi pada perpotongan antara garis-garis putih. Fraksi [[gelombang]] hitam terjadi pada perpotongan garis-garis berwarna hitam. Fraksi-fraksi [[gelombang]] terpisah sejauh sudut <math>\theta</math> dan dirunut dengan urutan <math>n</math>.]]
'''Difraksi''' adalah penyebaran [[gelombang]], contohnya [[cahaya]], karena adanya halangan.
Semakin kecil halangan, penyebaran [[gelombang]] semakin besar. Hal ini bisa diterangkan oleh [[prinsip Huygens]]. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling ber[[interferensi]] satu sama lain.
Gelombang ini merambat ke luar dengan kecepatan karakteristik gelombang. Gelombang yang dipancarkan oleh semua titik pada muka gelombang mengganggu satu sama lain untuk menghasilkan gelombang berjalan. Prinsip Huygens juga berlaku untuk gelombang elektromagnetik.
Untuk menganalisa atau mensimulasikan pola-pola tersebut, dapat digunakan [[Transformasi Fourier]] atau disebut juga dengan [[Fourier Optik]].
== [[Difraksi Fresnel ]] == ▼
'''Difraksi''' [[cahaya]] berturut-turut dipelajari antara lain oleh:
[[Berkas:Diffraction geometry.svg| thumbjmpl|350px|Geometri difraksi dengan sistem koordinat antara celah pada [[bidang halangan]] dan citra pada [[bidang pengamatan]].]] ▼
* [[Isaac Newton]] dan [[Robert Hooke]] pada tahun 1660, sebagai '''''inflexion''''' dari [[partikel]] [[cahaya]] yang sekarang dikenal sebagai [[cincin Newton]].<ref>{{cite book|author=R. Hooke|title=Micrographia: or, Some physiological descriptions of minute bodies made by magnifying glasses|place=London|publisher=J. Martyn and J. Allestry|year=1665}}</ref>
* [[Francesco Maria Grimaldi]] pada tahun 1665 dan didefinisikan sebagai [[hamburan]] [[fraksi]] [[gelombang cahaya]] ke arah yang berbeda-beda. Istilah yang digunakan saat itu mengambil bahasa Latin ''diffringere'' yang berarti ''to break into pieces''.<ref>Francesco Maria Grimaldi, ''Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo'' (Bologna ("Bonomia"), Italy: Vittorio Bonati, 1665), pages 1-11. Available on-line (in Latin) at: http://fermi.imss.fi.it/rd/bdv?/bdviewer/bid=300682#.</ref><ref>{{cite book | title = Memoires pour l'histoire des sciences et des beaux arts | author = Jean Louis Aubert | publisher = Impr. de S. A. S.; Chez E. Ganeau| location = Paris | year = 1760 | pages = 149 | url = http://books.google.com/books?id=OCLC58901501&id=3OgDAAAAMAAJ&pg=PP151&lpg=PP151&dq=grimaldi+diffraction+date:0-1800&as_brr=1 }}</ref><ref>{{cite book | title = A Treatise on Optics | author = Sir David Brewster | year = 1831 | publisher = Longman, Rees, Orme, Brown & Green and John Taylor | location = London | pages = 95 | url = http://books.google.com/books?vid=OCLC03255091&id=opYAAAAAMAAJ&pg=RA1-PA95&lpg=RA1-PA95&dq=grimaldi+diffraction+date:0-1840&as_brr=1 }}</ref>
* [[James Gregory]] pada tahun 1673 dengan mengamati pola difraksi pada bulu burung<ref>{{cite journal|author=H. W. Turnbull|title=Early Scottish Relations with the Royal Society: I. James Gregory, F.R.S. (1638-1675)|journal = Notes and Records of the Royal Society of London|year=1940–1941|volume=3|page=22|url = http://www.jstor.org/stable/531136}}</ref> yang kemudian didefinisikan sebagai '''''diffraction grating'''''.<ref>Letter from James Gregory to John Collins, dated 13 May 1673. Reprinted in: ''Correspondence of Scientific Men of the Seventeenth Century....'', ed. Stephen Jordan Rigaud (Oxford, England: Oxford University Press, 1841), vol. 2, pages 251-255; see especially page 254. Available on-line at: http://books.google.com/books?id=0h45L_66bcYC&pg=PA254&dq=Correspondence+of+Scientific+Men+feather+ovals&ei=5jlaSsLQKJnkygTi1Lz8CA&ie=ISO-8859-1&output=html</ref>
* [[Thomas Young]] pada tahun 1803 dan sebagai fenomena [[interferensi]] [[gelombang cahaya]]. Dari percobaan yang mengamati [[pola]] [[interferensi]] pada dua celah kecil yang berdekatan,<ref>{{citation|first = Thomas|last = Young|date = 1804-01-01|accessdate = 2009-08-27|url = http://rstl.royalsocietypublishing.org/content/94/1.1.full.pdf+html|title=The Bakerian Lecture: Experiments and calculations relative to physical optics|journal=Philosophical Transactions of the [[Royal Society]] of London|volume = 94|pages = 1-16}} (Note: This lecture was presented before the Royal Society on 24 November 1803.)</ref> [[Thomas Young]] menyimpulkan bahwa kedua celah tersebut lebih merupakan dua sumber [[gelombang]] yang berbeda daripada [[partikel]] (en:''corpuscles'').<ref>{{cite book|author=T. Rothman|authorlink =Tony Rothman|title=Everything's Relative and Other Fables in Science and Technology|publisher=Wiley|place=New Jersey|year=2003|isbn=0471202576}}</ref>
* [[Augustin Jean Fresnel]] pada tahun 1815<ref>Augustin-Jean Fresnel (1816) "Mémoire sur la diffraction de la lumière … ," ''Annales de la Chemie et de Physique'', 2nd series, vol. 1, pages 239-281. (Presented before ''l'Académie des sciences'' on 15 October 1815.) Available on-line (in French) at: http://www.bibnum.education.fr/physique/optique/premier-memoire-sur-la-diffraction-de-la-lumiere.</ref> dan tahun 1818<ref>Augustin-Jean Fresnel (1826) "Mémoire sur la diffraction de la lumière," ''Mémoires de l'Académie des Sciences (Paris)'', vol. 5, pages 33-475. (Summitted to ''l'Académie des sciences'' of Paris on 20 April 1818.)</ref>, dan menghasilkan perhitungan matematis yang membenarkan [[teori gelombang]] [[cahaya]] yang dikemukakan sebelumnya oleh [[Christiaan Huygens]]<ref>Christiaan Huygens, ''Traité de la lumiere'' (Leiden, Netherlands: Pieter van der Aa, 1690), Chapter 1. (Note: Huygens published his ''Traité'' in 1690; however, in the preface to his book, Huygens states that in 1678 he first communicated his book to the French Royal Academy of Sciences.)</ref> pada tahun 1690 hingga [[teori partikel]] [[Isaac Newton|Newton]] mendapatkan banyak sanggahan. [[Augustin Jean Fresnel|Fresnel]] mendefinisikan '''difraksi''' dari [[eksperimen celah ganda]] [[Thomas Young|Young]] sebagai [[interferensi]] [[gelombang]]<ref name=hecht>{{cite book|author=E. Hecht|year=1987|title=Optics|edition=2nd|publisher=Addison Wesley|isbn=020111609X}} Chapters 5 & 6.</ref> dengan persamaan:
:<math>m \lambda = d \sin \theta</math>
dimana <math>d</math> adalah jarak antara dua sumber [[muka gelombang]], <math>\theta</math> adalah sudut yang dibentuk antara [[fraksi]] [[muka gelombang]] urutan ke-<math>m</math> dengan sumbu normal [[muka gelombang]] [[fraksi]] mula-mula yang mempunyai urutan maksimum <math>m = 0</math>.<ref name=diffraction>{{cite book|title=University Physics 8e|author=H. D. Young|publisher=Addison-Wesley|year=1992|isbn=0201529815}}Chapter 38</ref>. [[Difraksi Fresnel]] kemudian dikenal sebagai '''''near-field diffraction''''', yaitu difraksi yang terjadi dengan nilai <math>m</math> relatif kecil.
* [[Richard C. MacLaurin]] pada tahun 1909, dalam ''monograph''nya yang berjudul '''''Light'''''<ref>''Light," by Richard C. MacLaurin, 1909, Columbia University Press</ref>, menjelaskan proses perambatan [[gelombang cahaya]] yang terjadi pada [[difraksi Fresnel]] jika celah difraksi disoroti dengan [[sinar]] dari jarak jauh.
* [[Joseph von Fraunhofer]] dengan mengamati bentuk [[gelombang]] difraksi yang perubahan ukuran akibat jauhnya [[bidang pengamatan]].<ref name="Hecht_optics_p396">''Hecht, E. (1987)'', p396 -- Definition of Fraunhofer diffraction and explanation of forms.</ref><ref name="Hecht_optics_p397">''Hecht, E. (1987)'', p397 -- diagram and explanation of Fraunhofer diffraction with reference to an opaque shield w/ aperture.</ref> [[Difraksi Fraunhofer]] kemudian dikenal sebagai '''''far-field diffraction'''''.
* [[Francis Weston Sears]] pada tahun 1948 untuk menentukan pola difraksi dengan menggunakan pendekatan matematis [[Augustin Jean Fresnel|Fresnel]]<ref>http://www.temf.de/Diffraction.135.0.html?&L=1#c641</ref>. Dari jarak tegak lurus antara celah pada [[bidang halangan]] dan [[bidang pengamatan]] serta dengan mengetahui besaran [[panjang gelombang]] [[sinar]] insiden, sejumlah area yang disebut [[zona Fresnel]] (en:''Fresnel zone'') atau ''half-period elements'' dapat dihitung.
▲== [[Difraksi Fresnel]] ==
▲[[Berkas:Diffraction geometry.svg|thumb|350px|Geometri difraksi dengan sistem koordinat antara celah pada [[bidang halangan]] dan citra pada [[bidang pengamatan]].]]
'''Difraksi Fresnel''' adalah pola [[gelombang]] pada titik ''(x,y,z)'' dengan persamaan:
:<math> E(x,y,z)={z \over {i \lambda}} \iint{ E(x',y',0) \frac{e^{ikr}}{r^2}}dx'dy' </math>
di mana:
dimana:
:<math> r=\sqrt{(x-x')^2+(y-y')^2+z^2} </math> , dan
:<math> i \,</math> is theadalah [[satuan imajiner]].
== [[Difraksi Fraunhofer]] ==
Dalam [[teori difraksi skalar]] (en:''scalar diffraction theory''), [[Difraksi Fraunhofer]] adalah pola [[gelombang]] yang terjadi pada [[jarak jauh]] (en:''far field'') menurut persamaan integral [[difraksi Fresnel]] sebagai berikut:
:<math>U(x,y) = \frac{e^{i k z} e^{\frac{ik}{2z} (x^2 + y^2)}}{i \lambda z} \iint_{-\infty}^{\infty} \,u(x',y') e^{-i \frac{2\pi}{\lambda z}(x' x + y' y)}dx'\,dy'.</math> <ref name="Goodman">{{cite book
| last = Goodman
| first = Joseph
| authorlink =
| coauthors =
| title = Introduction to Fourier Optics
| publisher = Roberts & Company
| date = 2005
| location = Englewood, Co
| pages =
| url =
| doi =
| id =
|isbn = 0-974707779747077-27-424}}</ref>
Persamaan di atas menunjukkan bahwa pola [[gelombang]] pada [[difraksi Fresnel]] yang [[skalar]] menjadi [[planar]] pada [[difraksi Fraunhofer]] akibat jauhnya [[bidang pengamatan]] dari [[bidang halangan]].
== [[Difraksi celah tunggal]] ==
[[Berkas:Wave Diffraction 4Lambda Slit.png|rightka|thumbjmpl|300px|Pendekatan numerik dari pola difraksi pada sebuah celah dengan lebar empat kali panjang [[gelombang planar]] insidennya.]]
[[Berkas:diffraction1.png|rightka|thumbjmpl|300px|Grafik dan citra dari sebuah difraksi celah tunggal]]
Sebuah celah panjang dengan lebar ''infinitesimal'' akan mendifraksi [[sinar]] [[cahaya]] insiden menjadi deretan [[gelombang]] ''circular'', dan [[muka gelombang]] yang lepas dari celah tersebut akan berupa [[gelombang]] silinder dengan [[intensitas]] yang ''uniform''.
:<math>r = z \left(1 + \frac{\left(x - x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}</math>
Sebuah celah dengan lebar melebihi [[panjang gelombang]] akan mempunyai banyak [[sumber titik]] (en:''point source'') yang tersebar merata sepanjang lebar celah. [[Cahaya]] difraksi pada sudut tertentu adalah hasil [[interferensi]] dari setiap [[sumber titik]] dan jika [[fasafase]] relatif dari [[interferensi]] ini bervariasi lebih dari 2π, maka akan terlihat [[minima]] dan [[maksima]] pada [[cahaya]] difraksi tersebut. [[Maksima]] dan [[minima]] adalah hasil [[interferensi]] [[gelombang]] konstruktif dan destruktif pada [[interferensi]] maksimal.
[[Difraksi Fresnel]]/[[difraksi jarak pendek]] yang terjadi pada celah dengan lebar empat kali [[panjang gelombang]], [[cahaya]] dari [[sumber titik]] pada ujung atas celah akan ber[[interferensi]] destruktif dengan [[sumber titik]] yang berada di tengah celah. Jarak antara dua [[sumber titik]] tersebut adalah <math>\lambda/2</math>. Deduksi persamaan dari pengamatan jarak antara tiap [[sumber titik]] destruktif adalah:
:<math>I(\theta) = I_0 \,\operatorname{sinc}^2 ( d \sin\theta / \lambda )</math>
dimanadi mana [[fungsi sinc]] berupa sinc(''x'') = sin(p''x'')/(p''x'') if ''x'' ? 0, and sinc(0) = 1.
== [[Difraksi celah ganda]] ==
[[Berkas:Single & double slit experiment.jpg|rightka|300px|thumbjmpl]]
[[Berkas:Young Diffraction.png|rightka|thumbjmpl|200px|Sketsa [[interferensi]] [[Thomas Young]] pada difraksi celah ganda yang diamati pada [[gelombang]] air.<ref>{{cite book|last =Rothman|first =Tony|authorlink =Tony Rothman|title =Everything's Relative and Other Fables in Science and Technology|url =https://archive.org/details/everythingsrelat0000roth|publisher =Wiley|location =New Jersey|date =2003|isbn =04712025760-471-20257-6}}</ref>]]
Pada [[mekanika kuantum]], [[eksperimen celah ganda]] yang dilakukan oleh [[Thomas Young]] menunjukkan sifat yang tidak terpisahkan dari [[cahaya]] sebagai [[gelombang]] dan [[partikel]]. Sebuah sumber [[cahaya]] koheren yang menyinari [[bidang halangan]] dengan dua celah akan membentuk pola [[interferensi]] [[gelombang]] berupa pita [[cahaya]] yang terang dan gelap pada [[bidang pengamatan]], walaupun demikian, pada [[bidang pengamatan]], [[cahaya]] ditemukan terserap sebagai [[partikel]] diskrit yang disebut [[foton]].<ref>{{cite book
| last = Feynman
| first = Richard P.
| authorlink =
| coauthors =
| title = The Feynman Lectures on Physics, Vol. 3
| publisher = Addison-Wesley
| date = 1965
| location = USA
| pages = p.1–8
| url =
| doi =
| id =
| isbn = 0201021188P}}</ref><ref>{{cite web
| last = Darling
| first = David
| authorlink =
| coauthors =
| title = Wave -– Particle Duality
| work = The Internet Encyclopedia of Science
| publisher = The Worlds of David Darling
:<math>\frac{n\lambda}{a} = \frac{x}{L} \quad\Leftrightarrow\quad{n}{\lambda}=\frac{xa}{L}\;,</math>
di mana
dimana
:''λ'' adalah [[panjang gelombang]] [[cahaya]]
:''a'' adalah jarak antar celah, jarak antara titik A dan B pada diagram di samping kanan
Persamaan ini adalah pendekatan untuk kondisi tertentu.<ref>For a more complete discussion, with diagrams and photographs, see Arnold L Reimann, ''Physics'', chapter 38.</ref> Persamaan [[matematika]] yang lebih rinci dari [[interferensi]] celah ganda dalam konteks [[mekanika kuantum]] dijelaskan pada [[dualitas Englert-Greenberger]].
== [[Difraksi celah majemuk]] ==
[[Berkas:Diffraction2vs5.jpg|rightka|framebingkai|Difraksi celah ganda (atas) dan difraksi celah 5 dari [[sinar]] [[laser]]]]
[[Berkas:Diffraction-red laser-diffraction grating PNr°0126.jpg|thumbjmpl|leftkiri|230px|Difraksi [[sinar]] [[laser]] pada celah majemuk]]
[[Berkas:Diffraction 150 slits.jpg|rightka|thumbjmpl|250px|Pola difraksi dari [[sinar]] [[laser]] dengan [[panjang gelombang]] 633 nm laser melalui 150 celah]]
[[Berkas:TwoSlitInterference.svg|rightka|thumbjmpl|Diagram dari difraksi dengan jarak antar celah setara setengah [[panjang gelombang]] yang menyebabkan [[interferensi]] destruktif]]
'''Difraksi celah majemuk''' (en:'''''Diffraction grating''''') secara matematis dapat dilihat sebagai [[interferensi]] banyak [[titik sumber]] [[cahaya]], pada kondisi yang paling sederhana, yaitu yang terjadi pada dua celah dengan pendekatan Fraunhofer, perbedaan jarak antara dua celah dapat dilihat pada [[bidang pengamatan]] sebagai berikut:
|-
|<math>\ {a} \sin \theta = n \lambda </math> || || rowspan=4 |
:di mana
:dimana
:<math>\ n</math> adalah urutan [[maksima]]
:<math>\ \lambda</math> adalah [[panjang gelombang]]
{{reflist}}
[[Kategori:Difraksi| ]]
== Pranala luar ==
[[Kategori:Optika]]
{{fisika-stub}}
* {{id}} [http://www.gurumuda.com/difraksi Difraksi]
|