Stable Diffusion: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Fitur saranan suntingan: 3 pranala ditambahkan. |
Mengganti Astronaut_Riding_a_Horse_(SD_3.5).webp dengan Astronaut_Riding_a_Horse_(SD3.5).webp (berkas dipindahkan oleh CommonsDelinker; alasan: File renamed: [[: |
||
(3 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 4:
| logo =
| logo caption =
| screenshot = Astronaut Riding a Horse (
| screenshot size = 250px
| caption = Sebuah gambar yang dihasilkan oleh Stable Diffusion berdasarkan kalimat "Sebuah foto astronot mengendarai seekor kuda"
Baris 10:
| developer = Stability AI
| released = 22 Agustus 2022
| latest release version =
| latest release date =
| repo = {{url|https://github.com/Stability-AI/stablediffusion}}
| programming language = [[Python (programming language)|Python]]<ref>{{cite web |author1 = Ryan O'Connor | title = How to Run Stable Diffusion Locally to Generate Images | url = https://www.assemblyai.com/blog/how-to-run-stable-diffusion-locally-to-generate-images/ | access-date = May 4, 2023 | date = August 23, 2022}}</ref>
Baris 110:
ControlNet<ref name="controlnet-paper">{{Cite arXiv|title=Adding Conditional Control to Text-to-Image Diffusion Models|date=10 February 2023}}</ref> adalah sebuah arsitektur jaringan saraf yang dirancang untuk mengelola model difusi dengan memasukkan kondisi tambahan. Ini menduplikasi bobot blok jaringan saraf menjadi salinan "terkunci" dan salinan "dapat dilatih". Salinan "dapat dilatih" mempelajari kondisi yang diinginkan, sedangkan salinan "terkunci" mempertahankan model aslinya. Konvolusi nol" adalah konvolusi 1×1 dengan bobot dan bias diinisialisasi ke nol. Sebelum pelatihan, semua konvolusi nol menghasilkan output nol, mencegah distorsi yang disebabkan oleh ControlNet. Metode ini memungkinkan pelatihan pada perangkat berskala kecil atau bahkan perangkat pribadi.
=== LoRA (Low-Rank Adaptation) ===
== Rilis ==▼
LoRA (Low-Rank Adaptation) merupakan sebuah teknik yang digunakan dalam pelatihan model pembelajaran mesin, terutama model bahasa besar (Large Language Models/LLMs), untuk mengurangi kompleksitas komputasi dan kebutuhan penyimpanan tanpa mengorbankan performa. LoRA memanfaatkan dekomposisi matriks dengan pangkat rendah untuk memperbarui hanya sebagian dari parameter model yang besar, sehingga mempercepat proses fine-tuning dan membuatnya lebih efisien dalam hal penggunaan sumber daya.<ref>{{Cite journal|last=Yuanzhi Li|first=Edward Hu|date=2021-10-16|title=LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS|url=https://arxiv.org/pdf/2106.09685|journal=LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS|volume=Version 2|pages=26}}</ref>
Rilis model meliputi:▼
Dalam model deep learning konvensional, proses fine-tuning sering kali membutuhkan pembaruan seluruh parameter model, yang memerlukan sumber daya komputasi besar dan memori yang tinggi. LoRA mengatasi hal ini dengan memproyeksikan perubahan parameter model ke dalam ruang pangkat rendah, di mana perubahan kecil dan terarah dapat diwakili secara efisien dengan parameter yang lebih sedikit.
V1.4, Agustus 2022<ref>{{Cite web|title=CompVis/stable-diffusion-v1-4 · Hugging Face|url=https://huggingface.co/CompVis/stable-diffusion-v1-4|website=huggingface.co|access-date=2023-08-17}}</ref> ▼
Dalam praktiknya, LoRA menguraikan matriks besar dari parameter model menjadi dua matriks dengan pangkat lebih rendah, sehingga memperkecil dimensi parameter yang diperbarui. Dengan demikian, teknik ini mempertahankan performa model yang baik pada berbagai tugas, sekaligus mengurangi overhead komputasi dan memori yang diperlukan selama proses adaptasi atau fine-tuning.
V1.5, Oktober 2022<ref>{{Cite web|title=runwayml/stable-diffusion-v1-5 · Hugging Face|url=https://huggingface.co/runwayml/stable-diffusion-v1-5|website=huggingface.co|access-date=2023-08-17}}</ref> ▼
LoRA telah menjadi populer dalam aplikasi seperti penyesuaian model bahasa besar pada domain spesifik, di mana pengurangan sumber daya yang dibutuhkan sangat penting untuk penerapan yang lebih luas dan efisien.
V2.0, November 2022<ref>{{Cite web|title=stabilityai/stable-diffusion-2 · Hugging Face|url=https://huggingface.co/stabilityai/stable-diffusion-2|website=huggingface.co|access-date=2023-08-17}}</ref> ▼
▲== Rilis ==
V2.1, Desember 2022<ref>{{Cite web|title=stabilityai/stable-diffusion-2-1 · Hugging Face|url=https://huggingface.co/stabilityai/stable-diffusion-2-1|website=huggingface.co|access-date=2023-08-17}}</ref> ▼
▲Rilis model meliputi:
▲* V1.
▲* V2.0, November 2022<ref>{{Cite web|title=stabilityai/stable-diffusion-2 · Hugging Face|url=https://huggingface.co/stabilityai/stable-diffusion-2|website=huggingface.co|access-date=2023-08-17}}</ref>
▲
▲
== Penggunaan dan kontroversi ==
Baris 144 ⟶ 149:
== Referensi ==
<references
== Pranala luar ==
|