Pemetaan harmonik: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Penambahan pranala dalam dan perbaikan ejaan. |
kTidak ada ringkasan suntingan |
||
Baris 2:
Pemetaan (halus) φ:''M''→''N'' antara [[manifold Riemannian]] ''M'' dan ''N'' disebut '''harmonik''' jika ia adalah [[Kalkulus variasi|titik kritis]] dari [[fungsional energi]] ''E''(φ).
Fungsional ''E'' ini akan didefinisikan secara [[presisidi]] bawah - satu cara memahaminya adalah membayangkan bahwa ''M'' dibuat dari [[karet]] dan ''N'' dibuat dari pualam (bentuk mereka diberikan oleh masing-masing mereka [[Tensor metrik|metrik]]), dan bahwasannya pemetaan φ:''M''→''N'' menentukan bagaimana kita "menerapkan" karet ke pualam: ''E''(φ) kemudian mewakili jumlah total [[energi potensial elastik]] yang dihasilkan dari tegangan dalam karet. Dalam
Pemetaan harmonik diperkenalkan pada tahun [[1964]] oleh [[J. Eells]] dan [[J.H. Sampson]].<ref>J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, ''Amer. J. Math.'' '''86''' (1964), 109–160</ref><ref>J. Eells and L. Lemaire, A report on harmonic maps, ''Bull. London Math. Soc.'' '''10''' (1978), 1–68</ref><ref>J. Eells and L. Lemaire, Another report on harmonic maps, ''Bull. London Math. Soc.'' '''20''' (1988), 385–524</ref>
|