Transistor efek–medan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k r2.7.2+) (bot Menambah: jv:Transistor efek–medan |
SabitAprido (bicara | kontrib) Membalikkan revisi 26552097 oleh 103.148.200.205 (bicara) Tag: Pembatalan Suntingan perangkat seluler Suntingan peramban seluler |
||
(15 revisi perantara oleh 10 pengguna tidak ditampilkan) | |||
Baris 10:
|simbol=
|susunan_kaki=3 pin, gerbang, sumber, cerat}}
'''Transistor efek–medan''' (FET) adalah salah satu jenis [[transistor]] yang menggunakan [[medan listrik]] untuk mengendalikan [[Konduktivitas & resistivitas elektrik|konduktifitas]] suatu kanal dari jenis pembawa muatan tunggal dalam bahan [[semikonduktor]]. FET kadang-kadang disebut sebagai transistor ekakutub untuk membedakan operasi pembawa muatan tunggal yang dilakukannya dengan operasi dua pembawa muatan pada [[transistor dwikutub]] (BJT).
== Sejarah ==
Transistor efek–medan diciptakan oleh [[Julius Edgar Lilienfeld]] pada tahun 1925 dan oleh [[Oskar Heil]] pada tahun 1934, tetapi peranti praktis tidak dibuat secara
== Saluran ==
Semua FET mempunyai sebuah saluran gerbang (gate), cerat (drain) dan sumber (source) yang kira-kira sama dengan basis, kolektor dan emitor pada BJT. Selain [[JFET]], semua FET juga mempunyai saluran keempat yang dinamakan badan, dasar atau substrat. Saluran keempat ini melayani kegunaan teknis dalam [[pemanjaran transistor]]
[[Berkas:Lateral_mosfet.svg|
Nama-nama saluran pada FET mengacu pada fungsinya. Saluran gerbang dapat dianggap sebagai pengontrol buka-tutup dari gerbang sesungguhnya. Gerbang ini mengizinkan [[elektron]] untuk mengalir atau mencegahnya dengan membuat dan mengikangkan sebuah kanal di antara sumber dan cerat. Elektron mengalir dari sumber menuju ke saluran cerat jika ada tegangan yang diberikan. Badan merupakan seluruh semikonduktor dasar dimana gerbang, sumber dan cerat diletakkan. Biasanya saluran badan disambungkan ke tegangan tertinggi atau terendah pada sirkuit, tergantung pada tipenya. Saluran badan dan saluran sumber biasanya disambungkan karena sumber biasanya disambungkan ke tegangan tertinggi atau terendah dari sirkuit, tetapi ada beberapa penggunaan dari FET yang tidak seperti demikian, seperti sirkuit [[gerbang transmisi]] dan [[kaskoda]].
== Komposisi ==
FET dapat dibuat dari beberapa semikonduktor, silikon menjadi yang paling umum. FET pada umumnya dibuat dengan proses pembuatan semikonduktor borongan, menggunakan lapik semikonduktor kristal tunggal sebagai daerah aktif, atau kanal. Di antara bahan badan yang tidak lazim adalah [[amorphous silicon]], [[polycrystalline silicon]] dan [[OFET]] yang dibuat dari [[semikonduktor organik]] dan sering menggunakan isolator gerbang dan elektrode organik.
Baris 24 ⟶ 25:
Dengan menganggap sebuah '''peranti salur-n ''moda pemiskinan'''''. Sebuah tegangan negatif gerbang-ke-sumber menyebabkan daerah pemiskinan untuk bertambah lebar dan menghalangi kanal dari kedua sisi, mempersempit kanal konduktif. Jika daerah pemiskinan menutup kanal sepenuhnya, resistansi kanal dari sumber ke cerat menjadi besar, dan FET dimatikan seperti sakelar yang terbuka. Sebaliknya, sebuah tegangan positif gerbang-ke-sumber menambah lebar kanal dan memungkinkan elektron mengalir dengan mudah.
Sekarang menganggap sebuah '''peranti salur-n ''moda pengayaan'''''. Sebuah tegangan positif gerbang-ke-sumber dibutuhkan untuk membuat kanal konduktif karena ini tidak terdapat secara alami di dalam transistor. Tegangan positif menarik elektron bebas pada badan menuju ke gerbang, membuat sebuah kanal konduktif. Tetapi elektron yang cukup harus ditarik dekat ke gerbang untuk melawan ion doping yang ditambahkan ke badan FET, ini membentuk sebuah daerah yang bebas dari pembawa bergerak yang dinamakan daerah pemiskinan, dan fenomena ini disebut sebagai tegangan tahan dari FET. Peningkatan tegangan gerbang-ke-sumber yang lebih lanjut akan menarik lebih banyak lagi elektron menuju ke garbang yang memungkinkannya untuk membuat sebuah kanal konduktif dari sumber ke cerat, proses ini disebut ''pembalikan''.
Baik pada peranti moda pengayaan ataupun pemiskinan, jika tegangan cerat-ke-sumber jauh lebih rendah dari tegangan gerbang-ke-sumber, mengubah tegangan gerbang akan mengubah resistansi kanal, dan arus cerat akan sebanding dengan tegangan cerat terhadap sumber. Pada moda ini, FET berlaku seperti sebuah resistor variabel dan FET dikatakan beroperasi pada ''moda linier'' atau ''moda ohmik''<ref name=Schneider>{{cite book
Bahkan jika kanal konduktif yang dibentuk oleh tegangan gerbang-ke-sumber tidak lagi menghubungkan sumber ke cerat saat moda penjenuhan, [[Pembawa muatan]] tidak dihalangi untuk mengalir. Dengan menganggap peranti salur-n, sebuah daerah pemiskinan terdapat pada badan tipe-p, mengelilingi kanal konduktif, daerah cerat dan daerah sumber. Elektron yang mencakupi kanal bebas untuk bergerak keluar dari kanal melalui daerah pemiskinan jika ditarik ke cerat oleh tegangan cerat-ke-sumber. Daerah pemiskinan ini bebas dari pembawa dan memiliki resistansi seperti [[silikon]]. Penambahan apapun pada tegangan cerat-ke-sumber akan menambah jarak dari cerat ke titik kurus, menambah resistansi dikarenakan daerah pemiskinan sebanding dengan tegangan
tegangan cerat-ke-sumber. Perubahan yang sebanding ini menyebabkan arus cerat-ke-sumber untuk tetap relatif tetap tak terpengaruh oleh perubahan tegangan cerat-ke-sumber dan benar-benar berbeda dari operasi moda linier. Dengan demikian, pada moda penjenuhan, FET lebih berlaku seperti sebuah sumber arus konstan daripada sebagai sebuah resistor variabel dan dapat digunakan secara efektif sebagai penguat tegangan. Pada situasi ini, tegangan gerbang-ke-sumber menentukan besarnya arus konstan yang melewati kanal.
== Jenis-jenis transistor efek medan ==
Kanal pada FET telah didoping untuk membuat baik [[semikonduktor tipe-n]] maupun [[semikonduktor tipe-p]]. Pada FET moda pengayaan, cerat dan sumber dibuat berbeda tipe dengan kanal, sedangkan pada FET moda pemiskinan dibuat setipe dengan kanal. FET juga dibeda-bedakan berdasarkan
Jenis-jenis dari FET adalah:
* '''[[MOSFET]]''' (''Metal–Oxide–Semiconductor FET'', FET [[Semikonduktor]]–[[Oksida]]–[[Logam]]) menggunakan [[isolator]] (biasanya [[silikon dioksida|SiO<sub>2</sub>]]) di antara gerbang dan badan.
Baris 35 ⟶ 36:
* '''[[HEMT]]''' (''High Electron Mobility Transistor'', Transistor Pergerakan [[Elektron]] Tinggi), juga disebut HFET (''heterostructure FET'', FET Struktur Campur). Material celah-jalur-lebar yang dikurangi penuh membentuk isolasi antara gerbang dan badan.
* '''[[IGBT]]''' (''Insulated-Gate Bipolar Transistor'', Transistor Dwikutub Gerbang-Terisolasi) adalah peranti untuk pengendali daya tinggi. Ini mempunyai struktur mirip sebuah [[MOSFET]] yang digandengkan dengan kanal konduksi utama yang mirip [[transistor dwikutub]]. Ini sering digunakan pada tegangan operasi cerat-ke-sumber antara 200-3000 V. [[MOSFET daya]] masih merupakan peranti pilihan utama untuk tegangan cerat-ke-sumber antara 1-200 V.
* '''[[FREDFET]]''' (''Fast Reverse/Recovery Epitaxial Diode FET'', FET [[
* '''[[ISFET]]''' (''Ion-Sensitive FET'', FET Sensitif-Ion) digunakan untuk mengukur konsentrasi [[ion]] pada larutan, ketika konsentrasi ion (seperti [[pH]]) berubah, arus yang mengalir melalui transistor juga berubah.
* '''[[DNAFET]]''' adalah FET khusus yang berfungsi sebagai sebuah [[biosensor]], dengan menggunakan gerbang yang dibuat dari [[molekul]] salah satu helai [[DNA]] untuk mendeteksi helaian DNA yang cocok.
Baris 42 ⟶ 43:
FET yang paling sering digunakan adalah [[MOSFET]]. Teknologi proses [[CMOS]] (complementary-symmetry metal oxide semiconductor) adalah dasar dari sirkuit terpadu digital modern.
Lapisan isolasi tipis antara gerbang dan kanal membuat FET rawan terhadap kerusakan akibat [[pengosongan elektrostatik]] selama penanganan. Biasanya ini bukanlah sebuah masalah setelah peranti terpasang.
Pada FET, elektron dapat mengalir pada kedua arah melalui kanal ketika dioperasikan pada moda linier, dan konvensi penamaan antara saluran sumber dan saluran cerat agak merupakan keputusan sendiri, karena peranti FET biasanya (tetapi tidak selalu) dibuat simetris dari sumber ke cerat. Ini membuat FET cocok untuk
== Referensi ==
{{reflist}}
Baris 52 ⟶ 53:
{{Commonscat|Field-effect Transistors}}
* [http://www.pbs.org/transistor/science/info/transmodern.html PBS The Field Effect Transistor]
* [http://www.onr.navy.mil/sci%5Ftech/31/312/ncsr/devices/jfet.asp Junction Field Effect Transistor] {{Webarchive|url=https://web.archive.org/web/20090414152553/http://www.onr.navy.mil/sci_tech/31/312/ncsr/devices/jfet.asp |date=2009-04-14 }}
* [http://www.play-hookey.com/semiconductors/enhancement_mode_mosfet.html The Enhancement Mode MOSFET] {{Webarchive|url=https://web.archive.org/web/20100109095643/http://www.play-hookey.com/semiconductors/enhancement_mode_mosfet.html |date=2010-01-09 }}
* [http://www.allaboutcircuits.com/vol_4/chpt_3/7.html CMOS gate circuitry]
* [http://www.analog.com/library/analogDialogue/archives/35-05/latchup/ Winning the Battle Against Latchup in CMOS Analog Switches]
* [http://www.research.ibm.com/nanoscience/fet.html Nanotube FETs at IBM Research] {{Webarchive|url=https://web.archive.org/web/20110410104046/http://www.research.ibm.com/nanoscience/fet.html |date=2011-04-10 }}
* [http://www.freescale.com/files/rf_if/doc/app_note/AN211A.pdf Field Effect Transistors in Theory and Practice] {{Webarchive|url=https://web.archive.org/web/20120302150645/http://www.freescale.com/files/rf_if/doc/app_note/AN211A.pdf |date=2012-03-02 }}
{{Transistor}}
[[Kategori:
|