Deret harmonik (matematika): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
Akuindo (bicara | kontrib)
Tag: pranala ke halaman disambiguasi
 
(3 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 3:
: <math>\sum_{n=1}^\infty\frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots.</math>
 
Namanya diturunkan dari konsep [[nada tambahan]], atau harmoinkharmonik [[Deret harmonik (musik)|dalam musik]]ː [[panjang gelombang]]<nowiki/>nya dari nada tambahan dari sebuah dawai yang bergetar adalah <math display="inline">\frac 1 2</math>, <math display="inline">\frac 1 3</math>, <math display="inline">\frac 1 4</math>, dst., dari [[Frekuensi dasar|panjang gelombang dasar]] dawai. Setiap suku dari deretnya setelah pertamanya adalah [[purata harmonik]] dari suku-suku tetangga, frasa ''purata harmonik'' juga diturunkan dari musik.
 
== Sejarah ==
Divergensi dari deret harmonik pertama kali dibuktikan dalam abad ke-14 oleh [[Nikolas Oresme|Nicole Oresme]],<ref>{{cite book|last=Oresme|first=Nicole|date=c. 1360|title=Quaestiones super Geometriam Euclidis|trans-title=Questions concerning Euclid's Geometry|authorlink=Nicole Oresme}}</ref> tetapi prestasi ini jatuh dalam ketidakjelassanketidakjelasan. Bukti-bukti diberikan dalam abad ke-17 oleh [[Pietro Mengoli]]<ref>{{cite book|last=Mengoli|first=Pietro|date=1650|title=Novae quadraturae arithmeticae, seu De additione fractionum|location=Bologna|publisher=Giacomo Monti|trans-title=New arithmetic quadrature (i.e., integration), or On the addition of fractions|chapter=Praefatio [Preface]|authorlink=Pietro Mengoli|chapter-url=https://books.google.com/books?id=f9eM5uQvRucC&pg=PP9}}Mengoli's proof is by contradiction:</ref> dan oleh [[Johann Bernoulli]],<ref>{{cite book|last=Bernoulli|first=Johann|date=1742|title=Opera Omnia|location=Lausanne & Basel|publisher=Marc-Michel Bousquet & Co.|at=vol. 4, p. 8|chapter=Corollary III of ''De seriebus varia''|authorlink=Johann Bernoulli|chapter-url=https://books.google.com/books?id=sxUOAAAAQAAJ&pg=PA6}}Johann Bernoulli's proof is also by contradiction. It uses a telescopic sum to represent each term {{sfrac|1|n}} as</ref> bukti terakhir dipublikasikan dan dipopoluerkandipopulerkan oleh saudara laki-lakinya [[Jacob Bernoulli]].<ref>{{cite book|last=Bernoulli|first=Jacob|date=1689|title=Propositiones arithmeticae de seriebus infinitis earumque summa finita|location=Basel|publisher=J. Conrad|trans-title=Arithmetical propositions about infinite series and their finite sums|authorlink=Jacob Bernoulli}}</ref><ref>{{cite book|last1=Bernoulli|first=Jacob|date=1713|url=https://books.google.com/books?id=CF4UAAAAQAAJ&pg=PA250|title=Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis|location=Basel|publisher=Thurneysen|pages=250–251|trans-title=Theory of inference, posthumous work. With the Treatise on infinite series…|authorlink=Jacob Bernoulli}}From p. 250, prop. 16:</ref>
 
Menurut sejarah, barisan harmonik memiliki popularitas tertentu dengan arsitek-arsitek. Ini sanagatsangat khusus dalam periode [[Barok]], ketika arsitek-arsitek menggunakan mereka untuk medirikan [[Proporsi (arsitektur)|proporsi]] [[Gambar arsitektur#Denah lantai|denah lantai]], [[Gambaran arsitektur#Ketinggian|ketinggian]], dan untuk membangun hubungan harmonik antara detail arsitektur interior dan eksterior gereja dan istana.<ref>{{cite book|last=Hersey|first=George L.|title=Architecture and Geometry in the Age of the Baroque|pages=11–12, 37–51}}</ref>
 
== Divergensi ==
Baris 213:
Deret harmonik bolak-balik, sementara [[Keonvergenan bersyarat|konvergen bersyarat]], tidak [[Kekonvergenan mutlak|sepenuhnya konvergen]]: jika asuku-suku dalam deret diatur ulang secara sistematis, secara umum jumlahnya menjadi berbeda dan , bergantung pada penyusunan kembali, bahkan mungkin takhingga.
 
Rumus deret harmonik bolak-balik adalah sebuah kasus spesial dari [[deret Mercator]], [[deret Taylor]] untuk [[Logaritma alami|logaritma natural]].
 
Sebuah deret berkaitan bisa diturunkan dari deret Taylor untuk [[Fungsi trigonometri invers|arctangen]]ː
Baris 235:
: <math>\sum_{n=1}^{\infty}\frac{1}{n^p}</math>
 
untuk setiap bilangan real <math>p</math>. Ketika <math>p = 1</math>, deret-''p'' adalah deret harmonik, yang divergen. Baik itu [[uji integral]] atau [[uji kondensasi Cauchy]] menunjukkan bahwa deret-''p'' konvergen untuk semua <math>p > 1</math> (dalam hal ini disebut '''deret lebih-harmonik''') dan divergen untuk semua <math>p \le 1</math>. Jika <math>p > 1</math> maka jumlah dari deret-''p'' adalah <math>\zeta(p) </math>, yaitu [[fungsi zeta Riemann]] dievaluasi sebagai <math>p</math>
 
Masalah mencari jumlah untuk <math>p = 2</math> disebut [[masalah Basel]]; [[Leonhard Euler]] menunjukkan ini bernilai <math>\frac{\pi^2}{6} </math>. Nilai dari jumlah untuk <math>p = 3</math> disebut [[konstanta Apéry]], karena [[Roger Apéry]] membuktikan bahwa itu adalah sebuah [[bilangan irasional]].
Baris 262:
: <math>\sum_{n=1}^{\infty}\frac{s_{n}}{n},</math>
 
dimana <math>s_n</math> adalah [[Independensi statistik|independen]], variabel acak terdistribusi identik yang mengambil nilai <math>+1</math> dan <math>-1</math> dengan propabilitas sama dengan <math>\frac 1 2</math>, dikenal sebagai sebuah contoh dalam teori probabilitas [[Hampir pasti|dengan probabilitas 1]]. Fakta kekonvergenan ini adalah konsekuensi mudah dari [[teorema tiga deret Kolmogorov]] atau dari [[Pertidaksamaan Kolmogorov|pertidaksamaan maksimal Kolmogorov]] yang terkait erat. Borin Schmuland dari Universitas [[Alberta]] lebih lanjut<ref>{{cite journal|last=Schmuland|first=Byron|date=May 2003|title=Random Harmonic Series|url=http://www.stat.ualberta.ca/people/schmu/preprints/rhs.pdf|journal=American Mathematical Monthly|volume=110|issue=5|pages=407–416|doi=10.2307/3647827|jstor=3647827|access-date=2020-11-25|archive-date=2011-06-08|archive-url=https://web.archive.org/web/20110608070922/http://www.stat.ualberta.ca/people/schmu/preprints/rhs.pdf|dead-url=yes}}</ref> memeriksa sifat-sifat dari deret harmonik acak, dan menunjukkan bahwa deret konvergen adalah sebuah [[variabel acak]] dengan beberapa sifat-sifat yang menarik. Khususnya, [[fungsi kepekatan probabilitas]] dari variabel acak ini dievalusi pada <math>+2</math> atau pada <math>-2</math> mengambil nilai <math>0.124\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 999\ 764\dots</math>, berbeda dari <math>\frac 1 8</math> kurang dari <math>10^{-42}</math>. Makalah Schmuland menjelaskan mengapa probabilitas ini sangat dekat, tetapi tidak persis, <math>\frac 1 8</math>. Nilai pasti dari probabilias ini diberikan oleh integral produk kosinus takhingga <math>C_2</math><ref>{{MathWorld|title=Infinite Cosine Product Integral|id=InfiniteCosineProductIntegral|access-date=November 9, 2020}}</ref> dibagi oleh <math>\pi</math>.
 
=== Deret harmonik habis ===
Baris 302:
* {{MathWorld|title=Book Stacking Problem}}
* {{Cite journal|last=Hudelson|first=Matt|date=1 October 2010|title=Proof Without Words: The Alternating Harmonic Series Sums to ln 2|url=http://www.maa.org/sites/default/files/Hudleson-MMz-201007804.pdf|journal=Mathematics Magazine|volume=83|issue=4|page=294|doi=10.4169/002557010X521831}}
 
{{Topik kalkulus}}
 
[[Kategori:Deret divergen]]