Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 7 sources and tagging 0 as dead.) #IABot (v2.0.8.6
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20241213sim)) #IABot (v2.0.9.5) (GreenC bot
 
(19 revisi perantara oleh 12 pengguna tidak ditampilkan)
Baris 19:
{{portalkimia}}
 
'''Atom''' adalah suatubagian satuanyang dasarsangat kecil dari segala sesuatu di alam semesta ([[materi]]), yang terdiri atas [[inti atom]] serta awan [[elektron]]-elektron bermuatanyang negatifmengelilingi yanginti mengelilinginyaatom. Inti atom terdiri atas [[protonneutron]] yang bermuatan positif, dan [[neutronproton]] yang(di bermuatanmana netraljumlah (kecualiproton pada intidalam atom menentukan [[Hidrogen-1]],Daftar yangunsur tidakmenurut memilikinomor neutron).atom|jenis Elektron-elektron padadari sebuah atom terikat pada inti atom oleh [[gaya elektromagnetik]]., Sekumpulanmisal atom demikianoksigen pulaterdiri dapatdari berikatan8 satu sama lainnyaproton, dan membentukatom sebuahkarbon [[molekul]].terdiri Atomdari yang mengandung jumlah6 proton). dan Elektron-elektron yangpada samasebuah bersifatatom netral,terikat sedangkanpada yanginti mengandungatom jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan disebut sebagaioleh [[iongaya elektromagnetik]]. Atomdi dikelompokkan berdasarkan jumlahmana proton danyang neutronbermuatan yangpositif terdapat padadi inti atom tersebut.menarik Jumlahelektron protonyang padabermuatan atomnegatif menentukandi [[unsursekelilingnya kimia]](sama atomseperti tersebut,magnet danyang jumlahmenarik [[neutron]]magnet menentukanyang [[isotop]] unsur tersebutlain).
Inti atom juga terdiri dari [[neutron]] yang bermuatan [[wikt:netral|netral]] (kecuali pada inti atom [[Hidrogen-1]], yang tidak mempunyai neutron). Atom-atom bisa berikatan satu sama lain yang mana atom-atom berikatan itu kemudian dinamakan [[molekul]]). Sebuah molekul bisa terdiri dari atom dengan jenis yang sama (misal sebuah atom oksigen berikatan dengan satu atom oksigen lain untuk membentuk molekul oksigen / O2) atau atom-atom dengan jenis yang berbeda (misal sebuah atom oksigen dengan 2 buah atom hidrogen bergabung untuk membentuk molekul air / H2O). Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan disebut sebagai [[ion]]. Atom dikelompokkan berdasarkan jumlah proton dan neutron yang terdapat pada inti atom tersebut. Jumlah proton pada atom menentukan [[unsur kimia]] atom tersebut, dan jumlah [[neutron]] menentukan [[isotop]] unsur tersebut.
 
Istilah atom berasal dari kata sifat [[Bahasa Yunani]] ἄτομος (ἄτομος/átomos, α-τεμνω"tak terbagi”), yangsehingga atom berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dipotong atau dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf [[India]] dan [[Yunani]]. Pada abad ke-17 dan ke-18, para [[kimiawan]] meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para [[fisikawan]] berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa 'atom' tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip [[mekanika kuantum]] yang digunakan para fisikawan kemudian berhasil memodelkan atom.<ref name="unesa hhmamsotu3">{{cite web | first=Hans | last=Haubold | coauthors=Mathai, A. M. | year=1998 | url=http://www.columbia.edu/~ah297/unesa/universe/universe-chapter3.html | title=Microcosmos: From Leucippus to Yukawa | work=Structure of the Universe | publisher=Common Sense Science | accessdate=2008-01-17 | archive-date=2008-10-01 | archive-url=https://web.archive.org/web/20081001172401/http://www.columbia.edu/~ah297/unesa/universe/universe-chapter3.html | dead-url=yes }}</ref>
 
Dalam pengamatan sehari-hari, secara relatif atom dianggap sebuah objek yang sangat kecil yang memiliki massa yang secara proporsional kecil pula. Atom hanya dapat dipantau dengan menggunakan peralatan khusus seperti [[mikroskop gaya atom]]. Lebih dari 99,9% massa atom berpusat pada inti atom,<ref group="catatan">Kebanyakan isotop mempunyai jumlah nukleon lebih banyak dari jumlah elektron. Dalam kasus hydrogen-1, yang mempunyai satu elektron and satu nukleon, protonnya <math>\begin{smallmatrix}\frac{1836}{1837} \approx 0,9995\end{smallmatrix}</math>, atau 99,95% dari total massa atom.</ref> dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil, yang dapat mengalami [[peluruhan radioaktif]]. Hal ini dapat mengakibatkan [[transmutasi nuklir|transmutasi]], yang mengubah jumlah proton dan neutron pada inti.<ref>{{cite web | author=Staff | date=2007-08-01 | url=http://www2.slac.stanford.edu/vvc/theory/nuclearstability.html | title=Radioactive Decays | publisher=Stanford Linear Accelerator Center, Stanford University | accessdate=2007-01-02 | archive-date=2009-06-07 | archive-url=https://web.archive.org/web/20090607115741/http://www2.slac.stanford.edu/vvc/theory/nuclearstability.html | dead-url=no }}</ref> Elektron yang terikat pada atom mengandung sejumlah [[aras energi]], ataupun [[orbital atom|orbital]], yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan [[foton]] yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur, dan memengaruhi sifat-sifat [[magnetisme|magnetis]] atom tersebut.
 
== Sejarah ==
Baris 30 ⟶ 31:
Konsep bahwa materi terdiri dari satuan-satuan terpisah yang tidak dapat dibagi lagi menjadi satuan yang lebih kecil telah ada selama satu [[milenium]]. Namun, pemikiran tersebut masihlah bersifat abstrak dan filosofis, daripada berdasarkan pengamatan [[empiris]] dan [[eksperimen]]. Secara filosofis, deskripsi sifat-sifat atom bervariasi tergantung pada budaya dan aliran filosofi tersebut, dan sering kali pula mengandung unsur-unsur spiritual di dalamnya. Walaupun demikian, pemikiran dasar mengenai atom dapat diterima oleh para ilmuwan ribuan tahun kemudian, karena ia secara elegan dapat menjelaskan penemuan-penemuan baru pada bidang kimia.<ref name=Ponomarev>Ponomarev (1993:14-15).</ref>
 
Referensi paling awal mengenai konsep atom dapat ditilik kembali kepada zaman [[Sejarah India|India kuno]] pada tahun 800 sebelum masehi,<ref name="isbn0415179955">{{en}} {{cite book
|title = Dictionary of World Philosophy
|author = A. Pablo Iannone
Baris 37 ⟶ 38:
|year =
|page = 62
|publisher =
|url = http://books.google.com/books?id=7wBmBO3vpE4C&printsec=frontcover&dq=Dictionary+of+world+philosophy&hl=id&cd=1#v=onepage&q=The%20earliest%20version%20of%20atomism%20can%20be%20found%20in%20Jainism&f=false
|accessdate = 2010-06-09
|archive-date = 2023-03-27
}}</ref> yang dijelaskan dalam naskah filsafat [[Jainisme]] sebagai ''anu'' dan ''paramanu''.<ref name="isbn0415179955" /><ref>{{en}}{{cite book
|archive-url = https://web.archive.org/web/20230327112750/https://books.google.com/books?id=7wBmBO3vpE4C&printsec=frontcover&dq=Dictionary+of+world+philosophy&hl=id&cd=1#v=onepage&q=The%20earliest%20version%20of%20atomism%20can%20be%20found%20in%20Jainism&f=false
|dead-url = no
}}</ref> yang dijelaskan dalam naskah filsafat [[Jainisme]] sebagai ''anu'' dan ''paramanu''.<ref name="isbn0415179955" /><ref>{{en}} {{cite book
|title = A comparative history of ideas
|author = Hajime Nakamura
Baris 50 ⟶ 54:
|url = http://books.google.com/books?id=Gpulmza7BBYC&pg=PA145&dq=atomism+Indian&as_brr=3&hl=id&cd=4#v=onepage&q=atomism%20Indian&f=false
|accessdate = 2010-06-09
}}</ref> Aliran mazhab [[Nyaya]] dan [[Vaisesika]] mengembangkan teori yang menjelaskan bagaimana atom-atom bergabung menjadi benda-benda yang lebih kompleks.<ref>{{en}} {{cite book
|title = A comparative history of world philosophy: from the Upanishads to Kant
|author = Ben-Ami Scharfstein
Baris 59 ⟶ 63:
|publisher = State University of New York Press
|url = http://books.google.com/books?id=iZQy2lu70bwC&lpg=PA189&dq=Vaisheshika%20atom%20anu%20paramanu&hl=id&pg=PA189#v=onepage&q=Vaisheshika%20atom%20anu%20paramanu&f=false
|accessdate = 2010-06-09
|archive-date = 2023-03-27
|archive-url = https://web.archive.org/web/20230327112829/https://books.google.com/books?id=iZQy2lu70bwC&lpg=PA189&dq=Vaisheshika+atom+anu+paramanu&hl=id&pg=PA189#v=onepage&q=Vaisheshika%20atom%20anu%20paramanu&f=false
|dead-url = no
}}</ref> Satu abad kemudian muncul Referensi mengenai atom di dunia Barat oleh [[Leukippos]], yang kemudian oleh muridnya [[Demokritos]] pandangan tersebut disistematiskan. Kira-kira pada tahun 450&nbsp;SM, Demokritos menciptakan istilah ''átomos'' ({{lang-el|ἄτομος}}), yang berarti "tidak dapat dipotong" ataupun "tidak dapat dibagi-bagi lagi". Teori Demokritos mengenai atom bukanlah usaha untuk menjabarkan suatu fenomena fisis secara rinci, melainkan suatu filosofi yang mencoba untuk memberikan jawaban atas perubahan-perubahan yang terjadi pada alam.<ref name="unesa hhmamsotu3" /> Filosofi serupa juga terjadi di India, namun demikian ilmu pengetahuan modern memutuskan untuk menggunakan istilah "atom" yang dicetuskan oleh Demokritos.<ref name=Ponomarev/> Demokritos juga mengatakan bahwa atom dalam air sangat licin sehingga air bisa mengalir ke mana-mana sementara atom dalam garam ditutupi duri-duri tajam sehingga terasa asin dilidah.
 
Baris 67 ⟶ 74:
| work=Elements and Atoms
| publisher=Le Moyne College, Department of Chemistry
| accessdate=2007-12-18 }}</ref>
| archive-date=2007-05-01
| archive-url=https://web.archive.org/web/20070501102647/http://web.lemoyne.edu/~giunta/EA/LAVPREFann.HTML
| dead-url=no
}}</ref>
 
[[Aristoteles]] mengatakan bahwa ada 4 elemen dasar dibumi dan bila semuanya digabungkan akan menjadi senyawa-senyawa yang kita lihat. Saat itu muridnya bertanya: "Apakah bisa kita membuat emas bila menggabungkan semua elemen dasar tadi?" Aristoteles menjawab "Iya". Itu membuat penasaran para ilmuwan semana 200 tahun setelah itu. Pada tahun 1669, ahli kimia Jerman [[Hennig Brand]] menyuling 60 ember air kencing karena ia mengira didalamnyadi dalamnya ada emas betulan (karena air kencing berwarna kuning keemasan) dan hasilnya peralatan kimianya perpendar dalam gelap. Dia menamainya Fosforus ([[Fosforus|Fosfor]]) yang diambil dari kata Yunani "Fosforos" yang berarti bintang senja. Dia adalah orang pertama pada era Masehi, yang sebelumya adalah penemuan [[Arsen]]ik 300 SM.<ref>{{Cite web|url=https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?button=pre-1900+Formulations|title=Periodic Table Database {{!}} Chemogenesis|website=www.meta-synthesis.com|access-date=2019-03-25|archive-date=2019-05-02|archive-url=https://web.archive.org/web/20190502232123/https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?Button=pre-1900+Formulations|dead-url=no}}</ref>
 
[[Berkas:A New System of Chemical Philosophy fp.jpg|kiri|jmpl|Berbagai atom dan molekul yang digambarkan pada buku [[John Dalton]], ''A New System of Chemical Philosophy'' (1808).]]
Pada tahun 1803, [[John Dalton]] menggunakan konsep atom untuk menjelaskan mengapa unsur-unsur selalu bereaksi dalam perbandingan yang bulat dan tetap, serta mengapa gas-gas tertentu lebih larut dalam air dibandingkan dengan gas-gas lainnya. Ia mengajukan pendapat bahwa setiap unsur mengandung atom-atom tunggal unik, dan atom-atom tersebut selanjutnya dapat bergabung untuk membentuk senyawa-senyawa kimia.<ref>Wurtz (1881:1–2).</ref><ref>Dalton (1808).</ref>
 
Teori partikel ini kemudian dikonfirmasikan lebih jauh lagi pada tahun 1827, yaitu ketika [[botani]]wan [[Robert Brown]] menggunakan [[mikroskop]] untuk mengamati debu-debu yang mengambang di atas air dan menemukan bahwa debu-debu tersebut bergerak secara acak. Fenomena ini kemudian dikenal sebagai "[[Gerak Brown]]". Pada tahun 1877, J. Desaulx mengajukan pendapat bahwa fenomena ini disebabkan oleh gerak termal molekul air, dan pada tahun 1905 [[Albert Einstein]] membuat analisis matematika terhadap gerak ini.<ref>{{cite journal | last=Einstein | first=Albert | title=Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen | journal=Annalen der Physik | month=May | year=1905 | volume=322 | issue=8 | pages=549–560 | language=German | url=http://www.physik.uni-augsburg.de/annalen/history/papers/1905_17_549-560.pdf | format=PDF | doi=10.1002/andp.19053220806 | accessdate=2007-02-04 | archive-date=2006-03-18 | archive-url=https://web.archive.org/web/20060318060724/http://www.physik.uni-augsburg.de/annalen/history/papers/1905_17_549-560.pdf | dead-url=yes |issn = 0003-3804 }}</ref><ref>Mazo (2002:1–7).</ref><ref>{{cite web | last=Lee | first=Y. K. | coauthors=Hoon, Kelvin | year=1995 | url=http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html | title=Brownian Motion | publisher=Imperial College, London | accessdate=2007-12-18 | archive-date=2007-12-18 | archive-url=https://web.archive.org/web/20071218061408/http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html | dead-url=yes }}</ref> Fisikawan Prancis [[Jean Perrin]] kemudian menggunakan hasil kerja Einstein untuk menentukan massa dan dimensi atom secara eksperimen, yang kemudian dengan pasti menjadi verifikasi atas teori atom Dalton.<ref>{{cite journal
| last=Patterson
| first=Gary
| title=Jean Perrin and the triumph of the atomic doctrine
| journal=Endeavour
| year=2007
| volume=31
| issue=2
| pages=50–53
| url=http://www.ncbi.nlm.nih.gov/pubmed/17602746
| accessdate=2008-11-07
| doi=10.1016/j.endeavour.2007.05.003 }}</ref>
| archive-date=2008-12-18
| archive-url=https://web.archive.org/web/20081218094147/http://www.ncbi.nlm.nih.gov/pubmed/17602746
| dead-url=no
}}</ref>
 
Berdasarkan hasil penelitiannya terhadap [[sinar katode]], pada tahun 1897 [[J. J. Thomson]] menemukan elektron dan sifat-sifat subatomiknya. Hal ini meruntuhkan konsep atom sebagai satuan yang tidak dapat dibagi-bagi lagi.<ref name="nobel1096">{{cite web | author=The Nobel Foundation | year=1906 | url=http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-bio.html | title=J.J. Thomson | publisher=Nobelprize.org | accessdate=2007-12-20 | archive-date=2013-05-07 | archive-url=https://web.archive.org/web/20130507125200/http://www.nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-bio.html | dead-url=no }}</ref> Thomson percaya bahwa elektron-elektron terdistribusi secara merata di seluruh atom, dan muatan-muatannya diseimbangkan oleh keberadaan lautan muatan positif ([[model puding prem]]).
| author=The Nobel Foundation | year=1906
| url=http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-bio.html
| title=J.J. Thomson | publisher=Nobelprize.org
| accessdate=2007-12-20 }}</ref> Thomson percaya bahwa elektron-elektron terdistribusi secara merata di seluruh atom, dan muatan-muatannya diseimbangkan oleh keberadaan lautan muatan positif ([[model puding prem]]).
 
Namun pada tahun 1909, para peneliti di bawah arahan [[Ernest Rutherford]] menembakkan ion helium ke lembaran tipis emas, dan menemukan bahwa sebagian kecil ion tersebut dipantulkan dengan sudut pantulan yang lebih tajam dari yang apa yang diprediksikan oleh teori Thomson. Rutherford kemudian mengajukan pendapat bahwa muatan positif suatu atom dan kebanyakan massanya terkonsentrasi pada inti atom, dengan elektron yang mengitari inti atom seperti planet mengitari matahari. Muatan positif ion helium yang melewati inti padat ini haruslah dipantulkan dengan sudut pantulan yang lebih tajam.
Pada tahun 1913, ketika bereksperimen dengan hasil proses [[peluruhan radioaktif]], [[Frederick Soddy]] menemukan bahwa terdapat lebih dari satu jenis atom pada setiap posisi tabel periodik.<ref>{{cite web
| url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-bio.html
| title=Frederick Soddy, The Nobel Prize in Chemistry 1921
| publisher=Nobel Foundation
| accessdate=2008-01-18
| archive-date=2008-04-09
}}</ref> Istilah [[isotop]] kemudian diciptakan oleh [[Margaret Todd]] sebagai nama yang tepat untuk atom-atom yang berbeda namun merupakan satu unsur yang sama. J.J. Thomson selanjutnya menemukan teknik untuk memisahkan jenis-jenis atom tersebut melalui hasil kerjanya pada gas yang terionisasi.<ref>{{cite journal
| archive-url=https://web.archive.org/web/20080409210519/http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-bio.html
| last=Thomson | first=Joseph John
| dead-url=no
}}</ref> Istilah [[isotop]] kemudian diciptakan oleh [[Margaret Todd]] sebagai nama yang tepat untuk atom-atom yang berbeda namun merupakan satu unsur yang sama. J.J. Thomson selanjutnya menemukan teknik untuk memisahkan jenis-jenis atom tersebut melalui hasil kerjanya pada gas yang terionisasi.<ref>{{cite journal
| last=Thomson
| first=Joseph John
| title=Rays of positive electricity
| journal=Proceedings of the Royal Society
| year=1913
| volume=A 89
| pages=1–20
| url=http://web.lemoyne.edu/~giunta/canal.html
| accessdate=2007-01-18 }}</ref>
| archive-date=2019-03-08
| archive-url=https://web.archive.org/web/20190308014919/http://web.lemoyne.edu/~giunta/canal.html
| dead-url=no
}}</ref>
 
[[Berkas:Bohr Model.svg|ka|jmpl|200px|[[Model atom Bohr|Model atom hidrogen Bohr]] yang menunjukkan loncatan elektron antara orbit-orbit tetap dan memancarkan energi [[foton]] dengan frekuensi tertentu.]]
 
Sementara itu, pada tahun 1913 fisikawan [[Niels Bohr]] mengkaji ulang model atom Rutherford dan mengajukan pendapat bahwa elektron-elektron terletak pada orbit-orbit yang terkuantisasi serta dapat meloncat dari satu orbit ke orbit lainnya, meskipun demikian tidak dapat dengan bebas berputar spiral ke dalam maupun keluar dalam keadaan transisi.<ref>{{cite web
| last=Stern
| first=David P.
| date=May 16, 2005
| url=http://www-spof.gsfc.nasa.gov/stargaze/Q5.htm
| title=The Atomic Nucleus and Bohr's Early Model of the Atom
| publisher=NASA Goddard Space Flight Center
| accessdate=2007-12-20
| accessdate=2007-12-20 }}</ref> Suatu elektron haruslah menyerap ataupun memancarkan sejumlah energi tertentu untuk dapat melakukan transisi antara orbit-orbit yang tetap ini. Apabila [[cahaya]] dari materi yang dipanaskan memancar melalui prisma, ia menghasilkan suatu [[spektrum]] multiwarna. Penampakan garis-garis spektrum tertentu ini berhasil dijelaskan oleh teori transisi orbital ini.<ref>{{cite web
| archive-date=2007-08-20
| last=Bohr | first=Niels | date=December 11, 1922
| archive-url=https://web.archive.org/web/20070820084047/http://www-spof.gsfc.nasa.gov/stargaze/Q5.htm
| dead-url=yes
}}</ref> Suatu elektron haruslah menyerap ataupun memancarkan sejumlah energi tertentu untuk dapat melakukan transisi antara orbit-orbit yang tetap ini. Apabila [[cahaya]] dari materi yang dipanaskan memancar melalui prisma, ia menghasilkan suatu [[spektrum]] multiwarna. Penampakan garis-garis spektrum tertentu ini berhasil dijelaskan oleh teori transisi orbital ini.<ref>{{cite web
| last=Bohr
| first=Niels
| date=December 11, 1922
| url=http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-lecture.html
| title=Niels Bohr, The Nobel Prize in Physics 1922, Nobel Lecture
| publisher=The Nobel Foundation
| accessdate=2008-02-16 }}</ref>
| archive-date=2008-04-15
| archive-url=https://web.archive.org/web/20080415183736/http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-lecture.html
| dead-url=no
}}</ref>
 
[[Ikatan kimia]] antar atom kemudian pada tahun 1916 dijelaskan oleh [[Gilbert Newton Lewis]] sebagai interaksi antara elektron-elektron atom tersebut.<ref>{{cite journal
Baris 137 ⟶ 174:
| doi=10.1007/BF01882788 }}</ref>
 
Pada tahun 1926, dengan menggunakan pemikiran [[Louis de Broglie]] bahwa partikel berperilaku seperti gelombang, Erwin Schrödinger mengembangkan suatu model atom matematis yang menggambarkan elektron sebagai [[gelombang]] tiga dimensi daripada sebagai titik-titik partikel. Konsekuensi penggunaan bentuk gelombang untuk menjelaskan elektron ini adalah bahwa adalah tidak mungkin untuk secara matematis menghitung [[posisi]] dan [[momentum]] partikel secara bersamaan. Hal ini kemudian dikenal sebagai [[prinsip ketidakpastian]], yang dirumuskan oleh [[Werner Heisenberg]] pada 1926. Menurut konsep ini, untuk setiap pengukuran suatu posisi, seseorang hanya bisa mendapatkan kisaran nilai-nilai probabilitas momentum, demikian pula sebaliknya. Walaupun model ini sulit untuk divisualisasikan, ia dapat dengan baik menjelaskan sifat-sifat atom yang terpantau yang sebelumnya tidak dapat dijelaskan oleh teori mana pun. Oleh sebab itu, model atom yang menggambarkan elektron mengitari inti atom seperti planet mengitari matahari digugurkan dan digantikan oleh model [[orbital atom]] di sekitar inti di mana elektron paling berkemungkinan berada.<ref>{{cite web | last=Brown | first=Kevin | year=2007 | url=http://www.mathpages.com/home/kmath538/kmath538.htm | title=The Hydrogen Atom | publisher=MathPages | accessdate=2007-12-21 | archive-date=2008-05-13 | archive-url=https://web.archive.org/web/20080513082947/http://www.mathpages.com/home/kmath538/kmath538.htm | dead-url=no }}</ref><ref>{{cite web | last=Harrison | first=David M. | month=March | year=2000 | url=http://www.upscale.utoronto.ca/GeneralInterest/Harrison/DevelQM/DevelQM.html | title=The Development of Quantum Mechanics | publisher=University of Toronto | accessdate=2007-12-21 | archive-date=2007-12-25 | archive-url=https://web.archive.org/web/20071225095938/http://www.upscale.utoronto.ca/GeneralInterest/Harrison/DevelQM/DevelQM.html | dead-url=no }}</ref>
| last=Brown | first=Kevin | year=2007
| url=http://www.mathpages.com/home/kmath538/kmath538.htm
| title=The Hydrogen Atom | publisher=MathPages
| accessdate=2007-12-21
}}</ref><ref>{{cite web
| last=Harrison | first=David M. | month=March | year=2000
| url=http://www.upscale.utoronto.ca/GeneralInterest/Harrison/DevelQM/DevelQM.html
| title=The Development of Quantum Mechanics
| publisher=University of Toronto
| accessdate=2007-12-21 }}</ref>
 
[[Berkas:Mass Spectrometer Schematic.svg|kiri|jmpl|280px|Diagram skema spetrometer massa sederhana.]]
Baris 156 ⟶ 183:
| first=Francis W. | last=Aston
| volume=39 | issue=6 | pages=449–55 }}</ref> Penjelasan pada perbedaan massa isotop ini berhasil dipecahkan setelah ditemukannya [[neutron]], suatu partikel bermuatan netral dengan massa yang hampir sama dengan [[proton]], yaitu oleh [[James Chadwick]] pada tahun 1932. Isotop kemudian dijelaskan sebagai unsur dengan jumlah proton yang sama, namun memiliki jumlah neutron yang berbeda dalam inti atom.<ref>{{cite web
| last=Chadwick
| first=James
| date=December 12, 1935
| url=http://nobelprize.org/nobel_prizes/physics/laureates/1935/chadwick-lecture.html
| title=Nobel Lecture: The Neutron and Its Properties
| publisher=Nobel Foundation
| accessdate=2007-12-21 }}</ref>
| archive-date=2007-10-12
| archive-url=https://web.archive.org/web/20071012100351/http://nobelprize.org/nobel_prizes/physics/laureates/1935/chadwick-lecture.html
| dead-url=no
}}</ref>
 
Pada tahun 1950-an, perkembangan [[pemercepat partikel]] dan [[detektor partikel]] mengizinkan para ilmuwan mempelajari dampak-dampak dari atom yang bergerak dengan energi yang tinggi.<ref>{{cite web
| last=Kullander
| first=Sven
| date=August 28, 2001
| url=http://nobelprize.org/nobel_prizes/physics/articles/kullander/
| title=Accelerators and Nobel Laureates
| publisher=The Nobel Foundation
| accessdate=2008-01-31
| accessdate=2008-01-31 }}</ref> Neutron dan proton kemudian diketahui sebagai [[hadron]], yaitu komposit partikel-partikel kecil yang disebut sebagai [[kuark]]. Model-model standar fisika nuklir kemudian dikembangkan untuk menjelaskan sifat-sifat inti atom dalam hal interaksi partikel subatom ini.<ref>{{cite web
| author=Staff | archive-date=October 17, 19902008-04-13
| archive-url=https://web.archive.org/web/20080413064924/http://nobelprize.org/nobel_prizes/physics/articles/kullander/
| dead-url=no
}}</ref> Neutron dan proton kemudian diketahui sebagai [[hadron]], yaitu komposit partikel-partikel kecil yang disebut sebagai [[kuark]]. Model-model standar fisika nuklir kemudian dikembangkan untuk menjelaskan sifat-sifat inti atom dalam hal interaksi partikel subatom ini.<ref>{{cite web
| author=Staff
| date=October 17, 1990
| url=http://nobelprize.org/nobel_prizes/physics/laureates/1990/press.html
| title=The Nobel Prize in Physics 1990
| publisher=The Nobel Foundation
| accessdate=2008-01-31 }}</ref>
| archive-date=2008-05-14
| archive-url=https://web.archive.org/web/20080514100040/http://nobelprize.org/nobel_prizes/physics/laureates/1990/press.html
| dead-url=no
}}</ref>
 
Sekitar tahun 1985, [[Steven Chu]] dkk. di [[Bell Labs]] mengembangkan sebuah teknik untuk menurunkan temperatur atom menggunakan [[laser]]. Pada tahun yang sama, sekelompok ilmuwan yang diketuai oleh [[William Daniel Phillips|William D. Phillips]] berhasil memerangkap atom natrium dalam [[perangkap magnet]]. [[Claude Cohen-Tannoudji]] kemudian menggabungkan kedua teknik tersebut untuk mendinginkan sejumlah kecil atom sampai beberapa [[Kelvin|mikrokelvin]]. Hal ini mengizinkan ilmuwan mempelajari atom dengan presisi yang sangat tinggi, yang pada akhirnya membawa para ilmuwan menemukan [[kondensasi Bose-Einstein]].<ref>{{cite web
| author=Staff
| date=October 15, 1997
| url=http://nobelprize.org/nobel_prizes/physics/laureates/1997/
| title=The Nobel Prize in Physics 1997
| publisher=Nobel Foundation
| accessdate=2008-02-10 }}</ref>
| archive-date=2008-04-09
| archive-url=https://web.archive.org/web/20080409211854/http://nobelprize.org/nobel_prizes/physics/laureates/1997/
| dead-url=no
}}</ref>
 
Dalam sejarahnya, sebuah atom tunggal sangatlah kecil untuk digunakan dalam aplikasi ilmiah. Namun baru-baru ini, berbagai peranti yang menggunakan sebuah atom tunggal logam yang dihubungkan dengan [[ligan]]-ligan organik ([[transistor elektron tunggal]]) telah dibuat.<ref>{{cite journal | author=Park, Jiwoong ''et al'' | journal=Nature | year=2002 | volume=417 | issue=6890 | pages=722–25 | title=Coulomb blockade and the Kondo effect in single-atom transistors | url=http://adsabs.harvard.edu/abs/2002Natur.417..722P | doi=10.1038/nature00791 | accessdate=2008-01-03 | archive-date=2008-01-12 | archive-url=https://web.archive.org/web/20080112041123/http://adsabs.harvard.edu/abs/2002Natur.417..722P | dead-url=no }}</ref> Berbagai penelitian telah dilakukan untuk memerangkap dan memperlambat laju atom menggunakan [[pendinginan laser]] untuk mendapatkan pemahaman yang lebih baik mengenai sifat-sifat atom.<ref>{{cite journal | first=P. | last=Domokos | coauthors=Janszky, J.; Adam, P. | title=Single-atom interference method for generating Fock states | journal=Physical Review a | volume=50 | pages=3340–44 | year=1994 | doi=10.1103/PhysRevA.50.3340 | url=http://adsabs.harvard.edu/abs/1994PhRvA..50.3340D | accessdate=2008-01-03 | archive-date=2018-10-05 | archive-url=https://web.archive.org/web/20181005050018/http://adsabs.harvard.edu/abs/1994PhRvA..50.3340D | dead-url=no }}</ref>
| author=Park, Jiwoong ''et al'' | journal = Nature
| year = 2002 | volume = 417 | issue = 6890 | pages=722–25
| title = Coulomb blockade and the Kondo effect in single-atom transistors
| url=http://adsabs.harvard.edu/abs/2002Natur.417..722P
| doi=10.1038/nature00791 | accessdate=2008-01-03 }}</ref> Berbagai penelitian telah dilakukan untuk memerangkap dan memperlambat laju atom menggunakan [[pendinginan laser]] untuk mendapatkan pemahaman yang lebih baik mengenai sifat-sifat atom.<ref>{{cite journal
| first=P. | last=Domokos | coauthors=Janszky, J.; Adam, P.
| title=Single-atom interference method for generating Fock states
| journal=Physical Review a | volume=50
| pages=3340–44 | year=1994 | doi=10.1103/PhysRevA.50.3340
| url=http://adsabs.harvard.edu/abs/1994PhRvA..50.3340D
| accessdate=2008-01-03 }}</ref>
<!--
Banyak unsur lain yang diciptakan manusia, namun mereka biasanya tidak stabil dan dengan spontan berubah menjadi unsur kimia natural yang stabil melalui proses [[radioaktivitas]].
Baris 208 ⟶ 246:
 
Dalam model standar fisika, baik proton dan neutron terdiri dari [[partikel elementer]] yang disebut [[kuark]]. Kuark termasuk ke dalam golongan partikel [[fermion]] dan merupakan salah satu dari dua bahan penyusun materi dasar (yang lainnya adalah [[lepton]]). Terdapat enam jenis kuark dan tiap-tiap kuark tersebut memiliki muatan listrik pecahan sebesar +2/3 ataupun −1/3. Proton terdiri dari dua [[kuark|kuark naik]] dan satu [[kuark|kuark turun]], manakala neutron terdiri dari satu kuark naik dan dua kuark turun. Perbedaan komposisi kuark ini memengaruhi perbedaan massa dan muatan antara dua partikel tersebut. Kuark terikat bersama oleh [[gaya nuklir kuat]] yang diperantarai oleh [[gluon]]. Gluon adalah anggota dari [[boson tolok]] yang merupakan perantara gaya-gaya fisika.<ref>{{cite web
| author=Particle Data Group
| year=2002
| url=http://www.particleadventure.org/
| title=The Particle Adventure
| publisher=Lawrence Berkeley Laboratory
| accessdate=2007-01-03
| archive-date=2007-01-04
}}</ref><ref>{{cite web
| archive-url=https://web.archive.org/web/20070104075936/http://www.particleadventure.org/
| first=James | last=Schombert
| dead-url=no
}}</ref><ref>{{cite web
| first=James
| last=Schombert
| date=April 18, 2006
| url=http://abyss.uoregon.edu/~js/ast123/lectures/lec07.html
Baris 220 ⟶ 263:
| publisher=University of Oregon
| accessdate=2007-01-03
| archive-date=2011-08-30
}}</ref>
| archive-url=https://web.archive.org/web/20110830212645/http://abyss.uoregon.edu/~js/ast123/lectures/lec07.html
| dead-url=no
}}</ref>
 
=== Inti atom ===
Baris 226 ⟶ 272:
[[Berkas:Binding energy curve - common isotopes-id.svg|jmpl|350px|[[Energi pengikatan]] yang diperlukan oleh nukleon untuk lolos dari inti pada berbagai isotop.]]<!-- A brief explanation is provided here because 'binding energy' is not explained until the end of the setion. -->
 
Inti atom terdiri atas [[proton]] dan [[neutron]] yang terikat bersama pada pusat atom. Secara kolektif, proton dan neutron tersebut disebut sebagai [[nukleon]] (partikel penyusun inti). Diameter inti atom berkisar antara 10<sup>−15</sup> hingga 10<sup>−14</sup> m.<ref>{{en}} {{cite book
|last=
|first=
Baris 239 ⟶ 285:
<math>\begin{smallmatrix}1,07 \sqrt[3]{A}\end{smallmatrix}</math>&nbsp;&nbsp;[[femtometer|fm]], dengan ''A'' adalah jumlah nukleon.<ref>Jevremovic (2005:63).</ref> Hal ini sangatlah kecil dibandingkan dengan jari-jari atom. Nukleon-nukleon tersebut terikat bersama oleh gaya tarik-menarik potensial yang disebut [[gaya kuat residual]]. Pada jarak lebih kecil daripada 2,5 fm, gaya ini lebih kuat daripada [[gaya elektrostatik]] yang menyebabkan proton saling tolak menolak.<ref name=pfeffer>Pfeffer (2000:330–336).</ref>
 
Atom dari [[unsur kimia]] yang sama memiliki jumlah proton yang sama, disebut [[nomor atom]]. Inti atom yang mempunyai nomor atom, nomor massa, dan waktu paruh tertentu disebut [[nuklida]]. Suatu unsur dapat memiliki jumlah neutron yang bervariasi. Variasi ini disebut sebagai [[isotop]]. [[Isobar (nuklida)|Isobar]] adalah unsur-unsur yang mempunyai nomor massa sama tetapi nomor atom berbeda. [[Isoton]] unsur-unsur yang mempunyai jumlah elektron yang sama tetapi nomor massa dan nomor atom berbeda. Jumlah proton dan neutron suatu atom akan menentukan [[nuklida]] atom tersebut, sedangkan jumlah neutron relatif terhadap jumlah proton akan menentukan stabilitas inti atom, dengan isotop unsur tertentu akan menjalankan [[peluruhan radioaktif]].<ref>{{cite web | last=Wenner | first=Jennifer M. | date=October 10, 2007 | url=http://serc.carleton.edu/quantskills/methods/quantlit/RadDecay.html | title=How Does Radioactive Decay Work? | publisher=Carleton College | accessdate=2008-01-09 | archive-date=2008-05-11 | archive-url=https://web.archive.org/web/20080511173156/http://serc.carleton.edu/quantskills/methods/quantlit/RadDecay.html | dead-url=no }}</ref>
| last=Wenner | first=Jennifer M. | date=October 10, 2007
| url=http://serc.carleton.edu/quantskills/methods/quantlit/RadDecay.html
| title=How Does Radioactive Decay Work?
| publisher=Carleton College | accessdate=2008-01-09 }}</ref>
 
Neutron dan proton adalah dua jenis [[fermion]] yang berbeda. [[Asas pengecualian Pauli]] melarang adanya keberadaan fermion yang ''identik'' (seperti misalnya proton berganda) menduduki suatu keadaan fisik kuantum yang sama pada waktu yang sama. Oleh karena itu, setiap [[proton]] dalam inti atom harusnya menduduki keadaan kuantum yang berbeda dengan aras energinya masing-masing. Asas Pauli ini juga berlaku untuk neutron. Pelarangan ini tidak berlaku bagi proton dan neutron yang menduduki keadaan kuantum yang sama.<ref name="raymond"/>
 
Untuk atom dengan nomor atom yang rendah, inti atom yang memiliki jumlah proton lebih banyak daripada neutron berpotensi jatuh ke keadaan energi yang lebih rendah melalui peluruhan radioaktif yang menyebabkan jumlah proton dan neutron seimbang. Oleh karena itu, atom dengan jumlah proton dan neutron yang berimbang lebih stabil dan cenderung tidak meluruh. Namun, dengan meningkatnya nomor atom, gaya tolak-menolak antar proton membuat inti atom memerlukan proporsi neutron yang lebih tinggi lagi untuk menjaga stabilitasnya. Pada inti yang paling berat, rasio neutron per proton yang diperlukan untuk menjaga stabilitasnya akan meningkat menjadi 1,5.<ref name="raymond"/>
Baris 252 ⟶ 294:
 
Jumlah proton dan neutron pada inti atom dapat diubah, walaupun hal ini memerlukan energi yang sangat tinggi oleh karena gaya atraksinya yang kuat. [[Fusi nuklir]] terjadi ketika banyak partikel atom bergabung membentuk inti yang lebih berat. Sebagai contoh, pada inti Matahari, proton memerlukan energi sekitar 3–10 keV untuk mengatasi gaya tolak-menolak antar sesamanya dan bergabung menjadi satu inti.<ref>{{cite web
| last=Mihos
| first=Chris
| date=July 23, 2002
| url=http://burro.cwru.edu/Academics/Astr221/StarPhys/coulomb.html
| title=Overcoming the Coulomb Barrier
| publisher=Case Western Reserve University
| accessdate=2008-02-13
| accessdate=2008-02-13 }}</ref> [[Fisi nuklir]] merupakan kebalikan dari proses fusi. Pada fisi nuklir, inti dipecah menjadi dua inti yang lebih kecil. Hal ini biasanya terjadi melalui peluruhan radioaktif. Inti atom juga dapat diubah melalui penembakan partikel subatom berenergi tinggi. Apabila hal ini mengubah jumlah proton dalam inti, atom tersebut akan berubah unsurnya.<ref>{{cite web
| author=Staff | archive-date=March 30, 20072006-09-12
| archive-url=https://web.archive.org/web/20060912013620/http://burro.cwru.edu/Academics/Astr221/StarPhys/coulomb.html
| dead-url=no
}}</ref> [[Fisi nuklir]] merupakan kebalikan dari proses fusi. Pada fisi nuklir, inti dipecah menjadi dua inti yang lebih kecil. Hal ini biasanya terjadi melalui peluruhan radioaktif. Inti atom juga dapat diubah melalui penembakan partikel subatom berenergi tinggi. Apabila hal ini mengubah jumlah proton dalam inti, atom tersebut akan berubah unsurnya.<ref>{{cite web
| author=Staff
| date=March 30, 2007
| url=http://www.lbl.gov/abc/Basic.html
| title=ABC's of Nuclear Science
| publisher=Lawrence Berkeley National Laboratory
| accessdate=2007-01-03
| archive-date=2006-12-05
}}</ref><ref>{{cite web
| archive-url=https://web.archive.org/web/20061205215708/http://www.lbl.gov/abc/Basic.html
| first=Arjun | last=Makhijani | coauthors=Saleska, Scott
| dead-url=yes
}}</ref><ref>{{cite web
| first=Arjun
| last=Makhijani
| coauthors=Saleska, Scott
| date=March 2, 2001
| url=http://www.ieer.org/reports/n-basics.html
| title=Basics of Nuclear Physics and Fission
| publisher=Institute for Energy and Environmental Research
| accessdate=2007-01-03
| archive-date=2007-01-16
}}</ref>
| archive-url=https://web.archive.org/web/20070116045217/http://www.ieer.org/reports/n-basics.html
| dead-url=no
}}</ref>
 
Jika massa inti setelah terjadinya reaksi fusi lebih kecil daripada jumlah massa partikel awal penyusunnya, maka perbedaan ini disebabkan oleh pelepasan pancaran energi (misalnya [[sinar gama]]), sebagaimana yang ditemukan pada rumus [[E=mc²|kesetaraan massa-energi]] [[Einstein]], ''E''&nbsp;=&nbsp;''mc''<sup>2</sup>, dengan ''m'' adalah massa yang hilang dan ''c'' adalah [[kecepatan cahaya]]. Defisit ini merupakan bagian dari [[energi pengikatan]] inti yang baru.<ref>Shultis ''et al.'' (2002:72–6).</ref>
 
Fusi dua inti yang menghasilkan inti yang lebih besar dengan nomor atom lebih rendah daripada [[besi]] dan [[nikel]] (jumlah total nukleon sama dengan 60) biasanya bersifat [[eksotermik]], yang berarti bahwa proses ini melepaskan energi.<ref>{{cite journal
| last = Fewell
| first = M. P.
| title=The atomic nuclide with the highest mean binding energy
| journal=[[American Journal of Physics]]
| year=1995
| volume=63
| issue=7
| pages=653–58
| url=http://adsabs.harvard.edu/abs/1995AmJPh..63..653F
| accessdate = 2007-02-01
| doi=10.1119/1.17828
| doi=10.1119/1.17828 }}</ref> Adalah proses pelepasan energi inilah yang membuat fusi nuklir pada [[bintang]] dapat dipertahankan. Untuk inti yang lebih berat, energi pengikatan per [[nukleon]] dalam inti mulai menurun. Ini berarti bahwa proses fusi akan bersifat [[endotermik]].<ref name="raymond">{{cite web
| archive-date=2013-07-31
| archive-url=https://web.archive.org/web/20130731171738/http://adsabs.harvard.edu/abs/1995AmJPh..63..653F
| dead-url=no
}}</ref> Adalah proses pelepasan energi inilah yang membuat fusi nuklir pada [[bintang]] dapat dipertahankan. Untuk inti yang lebih berat, energi pengikatan per [[nukleon]] dalam inti mulai menurun. Ini berarti bahwa proses fusi akan bersifat [[endotermik]].<ref name="raymond">{{cite web
| last=Raymond
| first=David
Baris 311 ⟶ 376:
Tiap-tiap orbital atom berkoresponden terhadap [[aras energi]] elektron tertentu. Elektron dapat berubah keadaannya ke aras energi yang lebih tinggi dengan menyerap sebuah [[foton]]. Selain dapat naik menuju aras energi yang lebih tinggi, suatu elektron dapat pula turun ke keadaan energi yang lebih rendah dengan memancarkan energi yang berlebih sebagai foton.<ref name=Brucat/>
 
Energi yang diperlukan untuk melepaskan ataupun menambah satu elektron (energi pengikatan elektron) adalah lebih kecil daripada energi pengikatan nukleon. Sebagai contohnya, hanya diperlukan 13,6&nbsp;eV untuk melepaskan elektron dari atom hidrogen.<ref>{{cite web | last=Herter | first=Terry | year=2006 | url=http://astrosun2.astro.cornell.edu/academics/courses/astro101/herter/lectures/lec08.htm | title=Lecture 8: The Hydrogen Atom | publisher=Cornell University | accessdate=2008-02-14 | archive-date=2012-02-22 | archive-url=https://web.archive.org/web/20120222062433/http://astrosun2.astro.cornell.edu/academics/courses/astro101/herter/lectures/lec08.htm | dead-url=no }}</ref> Bandingkan dengan energi sebesar 2,3&nbsp;MeV yang diperlukan untuk memecah inti [[deuterium]].<ref>{{cite journal
| last=Herter | first=Terry | year=2006
| url=http://astrosun2.astro.cornell.edu/academics/courses/astro101/herter/lectures/lec08.htm
| title=Lecture 8: The Hydrogen Atom
| publisher=Cornell University | accessdate=2008-02-14 }}</ref> Bandingkan dengan energi sebesar 2,3&nbsp;MeV yang diperlukan untuk memecah inti [[deuterium]].<ref>{{cite journal
| last=Bell | first=R. E. | coauthors=Elliott, L. G.
| title=Gamma-Rays from the Reaction H<sup>1</sup>(n,γ)D<sup>2</sup> and the Binding Energy of the Deuteron
| url=https://archive.org/details/sim_physical-review_1950-07-15_79_2/page/n34 |journal=[[Physical Review]] | year=1950
| volume=79 | issue=2 | pages=282–285
| doi=10.1103/PhysRev.79.282 }}</ref> Atom bermuatan listrik netral oleh karena jumlah proton dan elektronnya yang sama. Atom yang kekurangan ataupun kelebihan elektron disebut sebagai [[ion]]. Elektron yang terletak paling luar dari inti dapat ditransfer ataupun dibagi ke atom terdekat lainnya. Dengan cara inilah, atom dapat saling [[ikatan kimia|berikatan]] membentuk [[molekul]].<ref>Smirnov (2003:249–72).</ref>
Baris 326 ⟶ 387:
{{Main|Isotop|Isotop stabil}}
Berdasarkan definisi, dua atom dengan jumlah ''proton'' yang identik dalam intinya termasuk ke dalam [[unsur kimia]] yang sama. Atom dengan jumlah proton sama namun dengan jumlah ''neutron'' berbeda adalah dua isotop berbeda dari satu unsur yang sama. Sebagai contohnya, semua hidrogen memiliki satu proton, namun terdapat satu isotop hidrogen yang tidak memiliki neutron ([[hidrogen|hidrogen-1]]), satu isotop yang memiliki satu neutron ([[deuterium]]), dua neutron ([[tritium]]), dll. Hidrogen-1 adalah bentuk isotop hidrogen yang paling umum. Kadang-kadang ia disebut sebagai protium.<ref>{{cite web
| last=Matis
| first=Howard S.
| date=August 9, 2000
| url=http://www.lbl.gov/abc/wallchart/chapters/02/3.html
| title=The Isotopes of Hydrogen
| work=Guide to the Nuclear Wall Chart
| publisher=Lawrence Berkeley National Lab
| accessdate=2007-12-21
| accessdate=2007-12-21 }}</ref> Semua isotop unsur yang bernomor atom lebih besar daripada 82 bersifat radioaktif.<ref name=sills>Sills (2003:131–134).</ref><ref name=dume>{{cite news
| archive-date=2007-12-18
|last=Dumé|first=Belle|date=April 23, 2003
| archive-url=https://web.archive.org/web/20071218153548/http://www.lbl.gov/abc/wallchart/chapters/02/3.html
| dead-url=yes
}}</ref> Semua isotop unsur yang bernomor atom lebih besar daripada 82 bersifat radioaktif.<ref name=sills>Sills (2003:131–134).</ref><ref name=dume>{{cite news
|last=Dumé
|first=Belle
|date=April 23, 2003
|title=Bismuth breaks half-life record for alpha decay
|publisher=Physics World
|url=http://physicsworld.com/cws/article/news/17319
|accessdate=2007-12-21 }}</ref>
|archive-date=2007-12-14
|archive-url=https://web.archive.org/web/20071214151450/http://physicsworld.com/cws/article/news/17319
|dead-url=no
}}</ref>
 
Dari sekitar 339 nuklida yang terbentuk secara alami di [[Bumi]], 269 di antaranya belum pernah terpantau meluruh.<ref>{{cite web
Baris 362 ⟶ 435:
| title=Atomic Weights and Isotopic Compositions for All Elements
| publisher=National Institute of Standards and Technology
| accessdate=2007-01-04
| accessdate=2007-01-04 }}</ref> Atom stabil yang paling berat adalah timbal-208,<ref name=sills/> dengan massa sebesar 207,9766521&nbsp;u.<ref>{{cite journal
| archive-date=2006-12-31
| last=Audi | first=G. | coauthors=Wapstra, A. H.; Thibault C.
| archive-url=https://web.archive.org/web/20061231212733/http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&ascii=html&isotype=some
| title=The Ame2003 atomic mass evaluation (II)
| dead-url=no
|journal=[[Nuclear Physics A]]
}}</ref> Atom stabil yang paling berat adalah timbal-208,<ref name=sills/> dengan massa sebesar 207,9766521&nbsp;u.<ref>{{cite journal | last=Audi | first=G. | coauthors=Wapstra, A. H.; Thibault C. | title=The Ame2003 atomic mass evaluation (II) | journal=[[Nuclear Physics A]] | year=2003 | volume=729 | pages=337–676 | url=http://www.nndc.bnl.gov/amdc/web/masseval.html | accessdate=2008-02-07 | doi=10.1016/j.nuclphysa.2003.11.003 | archive-date=2008-09-16 | archive-url=https://web.archive.org/web/20080916155656/http://www.nndc.bnl.gov/amdc/web/masseval.html | dead-url=yes }}</ref>
| year=2003 | volume=729 | pages=337–676
| url=http://www.nndc.bnl.gov/amdc/web/masseval.html
| accessdate=2008-02-07
| doi=10.1016/j.nuclphysa.2003.11.003 }}</ref>
 
Para kimiawan biasanya menggunakan satuan [[mol]] untuk menyatakan jumlah atom. Satu mol didefinisikan sebagai jumlah atom yang terdapat pada 12 gram persis karbon-12. Jumlah ini adalah sekitar 6,022{{Esp|23}}, yang dikenal pula dengan nama [[tetapan Avogadro]]. Dengan demikian suatu unsur dengan massa atom 1 u akan memiliki satu mol atom yang bermassa 0,001&nbsp;kg. Sebagai contohnya, [[Karbon]] memiliki massa atom 12 u, sehingga satu mol karbon atom memiliki massa 0,012&nbsp;kg.<ref name=iupac>Mills ''et al.'' (1993).</ref>
Baris 376 ⟶ 446:
{{Main|Jari-jari atom}}
Atom tidak memiliki batasan luar yang jelas, sehingga dimensi atom biasanya dideskripsikan sebagai jarak antara dua inti atom ketika dua atom bergabung bersama dalam [[ikatan kimia]]. Jari-jari ini bervariasi tergantung pada jenis atom, jenis ikatan yang terlibat, jumlah atom di sekitarnya, dan spin atom.<ref>{{cite journal
| last = Shannon | first = R. D. = Shannon
|first = R. D.
| title=Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
|title = Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
| journal=[[Acta Crystallographica]], Section a
|journal = [[Acta Crystallographica]], Section a
| year=1976 | volume=32 | pages=751
|year = 1976
| url=http://journals.iucr.org/a/issues/1976/05/00/issconts.html
|volume = 32
| accessdate=2007-01-03
|pages = 751
| doi=10.1107/S0567739476001551 }}</ref> Pada [[tabel periodik]] unsur-unsur, jari-jari atom akan cenderung meningkat seiring dengan meningkatnya periode (atas ke bawah). Sebaliknya jari-jari atom akan cenderung meningkat seiring dengan menurunnya nomor golongan (kanan ke kiri).<ref>{{cite web
|url = http://journals.iucr.org/a/issues/1976/05/00/issconts.html
|accessdate = 2007-01-03
|doi = 10.1107/S0567739476001551
|archive-date = 2007-09-30
|archive-url = https://web.archive.org/web/20070930224738/http://journals.iucr.org/a/issues/1976/05/00/issconts.html
|dead-url = no
}}</ref> Pada [[tabel periodik]] unsur-unsur, jari-jari atom akan cenderung meningkat seiring dengan meningkatnya periode (atas ke bawah). Sebaliknya jari-jari atom akan cenderung meningkat seiring dengan menurunnya nomor golongan (kanan ke kiri).<ref>{{cite web
| last=Dong
| first=Judy
Baris 413 ⟶ 490:
Setiap unsur mempunyai satu atau lebih isotop berinti tak stabil yang akan mengalami peluruhan radioaktif, menyebabkan inti melepaskan partikel ataupun radiasi elektromagnetik. Radioaktivitas dapat terjadi ketika jari-jari inti sangat besar dibandingkan dengan jari-jari gaya kuat (hanya bekerja pada jarak sekitar 1 fm).<ref name=splung>{{cite web
| url=http://www.splung.com/content/sid/5/page/radioactivity
| title=Radioactivity
| publisher=Splung.com
| accessdate=2007-12-19 }}</ref>
| archive-date=2007-12-04
| archive-url=https://web.archive.org/web/20071204135150/http://www.splung.com/content/sid/5/page/radioactivity
| dead-url=no
}}</ref>
 
Bentuk-bentuk peluruhan radioaktif yang paling umum adalah:<ref>L'Annunziata (2003:3–56).</ref><ref>{{cite web
Baris 438 ⟶ 520:
=== Momen magnetik ===
{{Main|Momen dipol magnetik elektron|Momen magnetik nuklir}}
Setiap partikel elementer mempunyai sifat mekanika kuantum intrinsik yang dikenal dengan nama [[spin]]. Spin beranalogi dengan [[momentum sudut]] suatu objek yang berputar pada [[pusat massa]]nya, walaupun secara kaku partikel tidaklah berperilaku seperti ini. Spin diukur dalam satuan [[tetapan Planck]] tereduksi (ħ), dengan elektron, proton, dan neutron semuanya memiliki spin ½&nbsp;ħ, atau "spin-½". Dalam atom, elektron yang bergerak di sekitar [[inti atom]] selain memiliki [[spin]] juga memiliki [[momentum sudut orbital]], manakala inti atom memiliki momentum sudut pula oleh karena spin nuklirnya sendiri.<ref>{{cite web | last=Hornak | first=J. P. | year=2006 | url=http://www.cis.rit.edu/htbooks/nmr/chap-3/chap-3.htm | title=Chapter 3: Spin Physics | work=The Basics of NMR | publisher=Rochester Institute of Technology | accessdate=2007-01-07 | archive-date=2007-02-03 | archive-url=https://web.archive.org/web/20070203044312/http://www.cis.rit.edu/htbooks/nmr/chap-3/chap-3.htm | dead-url=no }}</ref>
| last=Hornak | first=J. P. | year=2006
| url=http://www.cis.rit.edu/htbooks/nmr/chap-3/chap-3.htm
| title=Chapter 3: Spin Physics | work=The Basics of NMR
| publisher=Rochester Institute of Technology
| accessdate=2007-01-07 }}</ref>
 
[[Medan magnet]] yang dihasilkan oleh suatu atom (disebut [[momen magnetik]]) ditentukan oleh kombinasi berbagai macam momentum sudut ini. Namun, kontribusi yang terbesar tetap berasal dari spin. Oleh karena elektron mematuhi [[asas pengecualian Pauli]], yakni tiada dua elektron yang dapat ditemukan pada [[keadaan kuantum]] yang sama, pasangan elektron yang terikat satu sama lainnya memiliki spin yang berlawanan, dengan satu berspin naik, dan yang satunya lagi berspin turun. Kedua spin yang berlawanan ini akan saling menetralkan, sehingga momen dipol magnetik totalnya menjadi nol pada beberapa atom berjumlah elektron genap.<ref name=schroeder>{{cite web
Baris 459 ⟶ 536:
 
Pada atom berelektron ganjil seperti [[besi]], adanya keberadaan elektron yang tak berpasangan menyebabkan atom tersebut bersifat [[feromagnetik]]. Orbital-orbital atom di sekeliling atom tersebut saling bertumpang tindih dan penurunan keadaan energi dicapai ketika spin elektron yang tak berpasangan tersusun saling berjajar. Proses ini disebut sebagai [[interaksi pertukaran]]. Ketika momen magnetik atom feromagnetik tersusun berjajaran, bahan yang tersusun oleh atom ini dapat menghasilkan medan makroskopis yang dapat dideteksi. Bahan-bahan yang bersifat [[paramagnetisme|paramagnetik]] memiliki atom dengan momen magnetik yang tersusun acak, sehingga tiada medan magnet yang dihasilkan. Namun, momen magnetik tiap-tiap atom individu tersebut akan tersusun berjajar ketika diberikan medan magnet.<ref name=schroeder/><ref>{{cite web
| last=Goebel
| first=Greg
| date=September 1, 2007
| url=http://www.vectorsite.net/tpqm_04.html
Baris 466 ⟶ 544:
| publisher=In The Public Domain website
| accessdate=2007-01-07
| archive-date=2011-09-07
}}</ref>
| archive-url=https://web.archive.org/web/20110907083207/http://www.vectorsite.net/tpqm_04.html
| dead-url=no
}}</ref>
 
Inti atom juga dapat memiliki spin. Biasanya spin inti tersusun secara acak oleh karena [[kesetimbangan termal]]. Namun, untuk unsur-unsur tertentu (seperti [[xenon|xenon-129]]), adalah mungkin untuk memolarisasi keadaan spin nuklir secara signifikan sehingga spin-spin tersebut tersusun berjajar dengan arah yang sama. Kondisi ini disebut sebagai hiperpolarisasi. Fenomena ini memiliki aplikasi yang penting dalam [[pencitraan resonansi magnetik]].<ref>{{cite journal
| last=Yarris
| first=Lynn
| title=Talking Pictures
| journal=Berkeley Lab Research Review
| date=Spring 1997
| url=http://www.lbl.gov/Science-Articles/Research-Review/Magazine/1997/story1.html
| accessdate=2008-01-09
| archive-date=2008-01-13
}}</ref><ref>Liang and Haacke (1999:412–26).</ref>
| archive-url=https://web.archive.org/web/20080113104939/http://www.lbl.gov/Science-Articles/Research-Review/Magazine/1997/story1.html
| dead-url=yes
}}</ref><ref>Liang and Haacke (1999:412–26).</ref>
 
=== Aras-aras energi ===
Baris 481 ⟶ 567:
 
Agar suatu elektron dapat meloncat dari satu keadaan ke keadaan lainnya, ia haruslah menyerap ataupun memancarkan [[foton]] pada energi yang sesuai dengan perbedaan energi potensial antar dua aras tersebut. Energi foton yang dipancarkan adalah sebanding dengan [[frekuensi]]nya.<ref>Fowles (1989:227–233).</ref> Tiap-tiap unsur memiliki spektrum karakteristiknya masing-masing. Hal ini bergantung pada muatan inti, subkelopak yang terisi dengan elektron, interaksi elektromagnetik antar elektron, dan faktor-faktor lainnya.<ref>{{cite web
| last=Martin
| first=W. C.
| coauthors=Wiese, W. L.
| month=May
| year=2007
| url=http://physics.nist.gov/Pubs/AtSpec/
| title=Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas
| publisher=National Institute of Standards and Technology
| accessdate=2007-01-08 }}</ref>
| archive-date=2007-02-08
| archive-url=https://web.archive.org/web/20070208113156/http://physics.nist.gov/Pubs/AtSpec/
| dead-url=no
}}</ref>
 
[[Berkas:Fraunhofer lines-id.svg|ka|jmpl|300px|Contoh garis absorpsi spektrum.]]
Baris 501 ⟶ 594:
 
Pemantauan cermat pada garis-garis spektrum menunjukkan bahwa beberapa memperlihatkan adanya pemisahan halus. Hal ini terjadi karena [[kopling spin-orbit]] yang merupakan interaksi antara spin dengan gerak elektron terluar.<ref>{{cite web
| last=Fitzpatrick
| first=Richard
| date=February 16, 2007
| url=http://farside.ph.utexas.edu/teaching/qm/lectures/node55.html
| title=Fine structure
| publisher=University of Texas at Austin
| accessdate=2008-02-14
| accessdate=2008-02-14 }}</ref> Ketika suatu atom berada dalam medan magnet eksternal, garis-garis spektrum terpisah menjadi tiga atau lebih komponen. Hal ini disebut sebagai [[efek Zeeman]]. Efek Zeeman disebabkan oleh interaksi medan magnet dengan momen magnetik atom dan elektronnya. Beberapa atom dapat memiliki banyak [[konfigurasi elektron]] dengan aras energi yang sama, sehingga akan tampak sebagai satu garis spektrum. Interaksi medan magnet dengan atom akan menggeser konfigurasi-konfigurasi elektron menuju aras energi yang sedikit berbeda, menyebabkan garis spektrum berganda.<ref>{{cite web
| archive-date=2011-09-27
| last=Weiss | first=Michael | year=2001
| archive-url=https://web.archive.org/web/20110927021402/http://farside.ph.utexas.edu/teaching/qm/lectures/node55.html
| dead-url=no
}}</ref> Ketika suatu atom berada dalam medan magnet eksternal, garis-garis spektrum terpisah menjadi tiga atau lebih komponen. Hal ini disebut sebagai [[efek Zeeman]]. Efek Zeeman disebabkan oleh interaksi medan magnet dengan momen magnetik atom dan elektronnya. Beberapa atom dapat memiliki banyak [[konfigurasi elektron]] dengan aras energi yang sama, sehingga akan tampak sebagai satu garis spektrum. Interaksi medan magnet dengan atom akan menggeser konfigurasi-konfigurasi elektron menuju aras energi yang sedikit berbeda, menyebabkan garis spektrum berganda.<ref>{{cite web
| last=Weiss
| first=Michael
| year=2001
| url=http://math.ucr.edu/home/baez/spin/node8.html
| title=The Zeeman Effect
| publisher=University of California-Riverside
| accessdate=2008-02-06
| archive-date=2008-02-02
}}</ref> Keberadaan [[medan listrik]] eksternal dapat menyebabkan pemisahan dan pergeseran garis spektrum dengan mengubah aras energi elektron. Fenomena ini disebut sebagai [[efek Stark]].<ref>Beyer (2003:232–236).</ref>
| archive-url=https://web.archive.org/web/20080202143147/http://math.ucr.edu/home/baez/spin/node8.html
| dead-url=no
}}</ref> Keberadaan [[medan listrik]] eksternal dapat menyebabkan pemisahan dan pergeseran garis spektrum dengan mengubah aras energi elektron. Fenomena ini disebut sebagai [[efek Stark]].<ref>Beyer (2003:232–236).</ref>
 
=== Valensi dan perilaku ikatan ===
Baris 527 ⟶ 630:
| archive-url=https://web.archive.org/web/20071029211245/http://www.cem.msu.edu/~reusch/VirtualText/intro1.htm
| dead-url=yes
}}</ref> Ikatan kimia dapat dilihat sebagai transfer elektron dari satu atom ke atom lainnya, seperti yang terpantau pada [[natrium klorida]] dan garam-garam ionik lainnya. Namun, banyak pula unsur yang menunjukkan perilaku valensi berganda, atau kecenderungan membagi elektron dengan jumlah yang berbeda pada senyawa yang berbeda. Sehingga, [[ikatan kimia]] antara unsur-unsur ini cenderung berupa pembagian elektron daripada transfer elektron. Contohnya meliputi unsur karbon dalam [[senyawa organik]].<ref>{{cite web |url=http://www.chemguide.co.uk/atoms/bonding/covalent.html |title=Covalent bonding - Single bonds |publisher=chemguide |year=2000 |access-date=2009-07-27 |archive-date=2018-09-25 |archive-url=https://web.archive.org/web/20180925033058/http://chemguide.co.uk/atoms/bonding/covalent.html |dead-url=no }}</ref>
 
[[Unsur kimia|Unsur-unsur kimia]] sering ditampilkan dalam [[tabel periodik]] yang menampilkan sifat-sifat kimia suatu unsur yang berpola. Unsur-unsur dengan jumlah elektron valensi yang sama dikelompokkan secara vertikel (disebut golongan). Unsur-unsur pada bagian terkanan tabel memiliki kelopak terluarnya terisi penuh, menyebabkan unsur-unsur tersebut cenderung bersifat inert ([[gas mulia]]).<ref>{{cite web
| author=Husted, Robert et al.
| date=December 11, 2003
| url=http://periodic.lanl.gov/default.htm
| title=Periodic Table of the Elements
| publisher=Los Alamos National Laboratory
| accessdate=2008-01-11 }}
| archive-date=2008-01-10
</ref><ref>{{cite web
| archive-url=https://web.archive.org/web/20080110103232/http://periodic.lanl.gov/default.htm
| first=Rudy | last=Baum | year=2003
| dead-url=no
}}</ref><ref>{{cite web
| first=Rudy
| last=Baum
| year=2003
| url=http://pubs.acs.org/cen/80th/elements.html
| title=It's Elemental: The Periodic Table
| publisher=Chemical & Engineering News
| accessdate=2008-01-11 }}</ref>
| archive-date=2011-04-06
| archive-url=https://web.archive.org/web/20110406121140/http://pubs.acs.org/cen/80th/elements.html
| dead-url=no
}}</ref>
 
=== Keadaan ===
Baris 604 ⟶ 717:
 
Spektrum [[keadaan tereksitasi]] dapat digunakan untuk menganalisis komposisi atom [[bintang]] yang jauh. Panjang gelombang cahaya tertentu yang dipancarkan oleh bintang dapat dipisahkan dan dicocokkan dengan transisi terkuantisasi atom gas bebas. Warna bintang kemudian dapat direplikasi menggunakan [[lampu lucutan gas]] yang mengandung unsur yang sama.<ref>{{cite web
| last=Lochner
| first=Jim
| coauthors=Gibb, Meredith; Newman, Phil
| date=April 30, 2007
Baris 610 ⟶ 724:
| title=What Do Spectra Tell Us?
| publisher=NASA/Goddard Space Flight Center
| accessdate=2008-01-03
| accessdate=2008-01-03 }}</ref> [[Helium]] pada Matahari ditemukan dengan menggunakan cara ini 23 tahun sebelum ia ditemukan di Bumi.<ref>{{cite web
| archive-date=2008-01-16
| last=Winter | first=Mark | year=2007
| archive-url=https://web.archive.org/web/20080116035542/http://imagine.gsfc.nasa.gov/docs/science/how_l1/spectral_what.html
| url=http://www.webelements.com/webelements/elements/text/He/hist.html
| dead-url=no
| title=Helium | publisher=WebElements
}}</ref> [[Helium]] pada Matahari ditemukan dengan menggunakan cara ini 23 tahun sebelum ia ditemukan di Bumi.<ref>{{cite web | last=Winter | first=Mark | year=2007 | url=http://www.webelements.com/webelements/elements/text/He/hist.html | title=Helium | publisher=WebElements | accessdate=2008-01-03 | archive-date=2007-12-30 | archive-url=https://web.archive.org/web/20071230182148/http://www.webelements.com/webelements/elements/text/He/hist.html | dead-url=no }}</ref>
| accessdate=2008-01-03 }}</ref>
 
== Asal usul dan kondisi sekarang ==
Atom menduduki sekitar 4% densitas energi total yang ada dalam [[alam semesta]] terpantau, dengan densitas rata-rata sekitar 0,25&nbsp;atom/m<sup>3</sup>.<ref>{{cite web
| last=Hinshaw
| first=Gary
| date=February 10, 2006
| url=http://map.gsfc.nasa.gov/m_uni/uni_101matter.html
| title=What is the Universe Made Of?
| publisher=NASA/WMAP
| publisher=NASA/WMAP | accessdate=2008-01-07 }}</ref> Dalam galaksi [[Bima Sakti]], atom memiliki konsentrasi yang lebih tinggi, dengan densitas materi dalam [[medium antarbintang]] berkisar antara 10<sup>5</sup> sampai dengan 10<sup>9</sup> atom/m<sup>3</sup>.<ref>Choppin ''et al.'' (2001).</ref> Matahari sendiri dipercayai berada dalam [[Gelembung Lokal]], yaitu suatu daerah yang mengandung banyak gas ion, sehingga densitas di sekelilingnya adalah sekitar 10<sup>3</sup> atom/m<sup>3</sup>.<ref>{{cite journal
| accessdate=2008-01-07
| last=Davidsen | first=Arthur F.
| archive-date=2007-12-31
| archive-url=https://web.archive.org/web/20071231143948/http://map.gsfc.nasa.gov/m_uni/uni_101matter.html
| dead-url=no
}}</ref> Dalam galaksi [[Bima Sakti]], atom memiliki konsentrasi yang lebih tinggi, dengan densitas materi dalam [[medium antarbintang]] berkisar antara 10<sup>5</sup> sampai dengan 10<sup>9</sup> atom/m<sup>3</sup>.<ref>Choppin ''et al.'' (2001).</ref> Matahari sendiri dipercayai berada dalam [[Gelembung Lokal]], yaitu suatu daerah yang mengandung banyak gas ion, sehingga densitas di sekelilingnya adalah sekitar 10<sup>3</sup> atom/m<sup>3</sup>.<ref>{{cite journal
| last=Davidsen
| first=Arthur F.
| title=Far-Ultraviolet Astronomy on the Astro-1 Space Shuttle Mission
| journal=[[Science]]
| year=1993
| volume=259
| issue=5093
| pages=327–34
| url=http://www.sciencemag.org/cgi/content/abstract/259/5093/327
| accessdate=2008-01-07
| doi=10.1126/science.259.5093.327
| pmid=17832344
| pmid=17832344 }}</ref> Bintang membentuk awan-awan padat dalam medium antarbintang, dan proses evolusioner bintang akan menyebabkan peningkatan kandungan unsur yang lebih berat daripada hidrogen dan helium dalam medium antarbintang. Sampai dengan 95% atom Bima Sakti terkonsentrasi dalam bintang-bintang, dan massa total atom ini membentuk sekitar 10% massa galaksi.<ref>Lequeux (2005:4).</ref> Massa sisanya adalah [[materi gelap]] yang tidak diketahui dengan jelas.<ref>{{cite web
| archive-date=2008-01-11
| first=Nigel | last=Smith | date=January 6, 2000
| archive-url=https://web.archive.org/web/20080111171045/http://www.sciencemag.org/cgi/content/abstract/259/5093/327
| url=http://physicsworld.com/cws/article/print/809
| dead-url=no
| title=The search for dark matter
}}</ref> Bintang membentuk awan-awan padat dalam medium antarbintang, dan proses evolusioner bintang akan menyebabkan peningkatan kandungan unsur yang lebih berat daripada hidrogen dan helium dalam medium antarbintang. Sampai dengan 95% atom Bima Sakti terkonsentrasi dalam bintang-bintang, dan massa total atom ini membentuk sekitar 10% massa galaksi.<ref>Lequeux (2005:4).</ref> Massa sisanya adalah [[materi gelap]] yang tidak diketahui dengan jelas.<ref>{{cite web | first=Nigel | last=Smith | date=January 6, 2000 | url=http://physicsworld.com/cws/article/print/809 | title=The search for dark matter | publisher=Physics World | accessdate=2008-02-14 | archive-date=2008-02-16 | archive-url=https://web.archive.org/web/20080216185952/http://physicsworld.com/cws/article/print/809 | dead-url=no }}</ref>
| publisher=Physics World | accessdate = 2008-02-14 }}</ref>
 
=== Nukleosintesis ===
{{Main|Nukleosintesis}}
Proton dan elektron yang stabil muncul satu detik setelah kejadian [[Dentuman Besar]]. Dalam masa waktu tiga menit sesudahnya, [[nukleosintesis Dentuman Besar]] kebanyakan menghasilkan [[helium]], [[litium]], dan [[deuterium]], dan mungkin juga beberapa [[berilium]] dan [[boron]].<ref>{{cite journal | last=Croswell | first=Ken | title=Boron, bumps and the Big Bang: Was matter spread evenly when the Universe began? Perhaps not; the clues lie in the creation of the lighter elements such as boron and beryllium | journal=New Scientist | year=1991 | issue=1794 | pages=42 | url=http://space.newscientist.com/article/mg13217944.700-boron-bumps-and-the-big-bang-was-matter-spread-evenly-whenthe-universe-began-perhaps-not-the-clues-lie-in-the-creation-of-thelighter-elements-such-as-boron-and-beryllium.html | accessdate=2008-01-14 | archive-date=2008-02-07 | archive-url=https://web.archive.org/web/20080207065342/http://space.newscientist.com/article/mg13217944.700-boron-bumps-and-the-big-bang-was-matter-spread-evenly-whenthe-universe-began-perhaps-not-the-clues-lie-in-the-creation-of-thelighter-elements-such-as-boron-and-beryllium.html | dead-url=yes }}</ref><ref>{{cite journal | last=Copi | first=Craig J. | coauthors=Schramm, David N.; Turner, Michael S. | title=Big-Bang Nucleosynthesis and the Baryon Density of the Universe | journal=[[Science]] | year=1995 | volume=267 | pages=192–99 | url=http://www.sciencemag.org/cgi/reprint/267/5195/192.pdf | doi=10.1126/science.7809624 | format=PDF | accessdate=2008-01-13 | pmid=7809624 | archive-date=2008-02-27 | archive-url=https://web.archive.org/web/20080227082508/http://www.sciencemag.org/cgi/reprint/267/5195/192.pdf | dead-url=no }}</ref><ref>{{cite web | last=Hinshaw | first=Gary | date=December 15, 2005 | url=http://map.gsfc.nasa.gov/m_uni/uni_101bbtest2.html | title=Tests of the Big Bang: The Light Elements | publisher=NASA/WMAP | accessdate=2008-01-13 | archive-date=2008-01-17 | archive-url=https://web.archive.org/web/20080117021252/http://map.gsfc.nasa.gov/m_uni/uni_101bbtest2.html | dead-url=no }}</ref> Atom pertama (dengan elektron yang terikat dengannya) secara teoretis tercipta 380.000 tahun sesudah Dentuman Besar, yaitu ketika alam semesta yang mengembang cukup dingin untuk mengizinkan elektron-elektron terikat pada inti atom.<ref>{{cite web | last=Abbott | first=Brian | date=May 30, 2007 | url=http://www.haydenplanetarium.org/universe/duguide/exgg_wmap.php | title=Microwave (WMAP) All-Sky Survey | publisher=Hayden Planetarium | accessdate=2008-01-13 | archive-date=2013-02-13 | archive-url=https://web.archive.org/web/20130213023246/http://www.haydenplanetarium.org/universe/duguide/exgg_wmap.php | dead-url=no }}</ref> Sejak saat itulah, inti atom mulai bergabung dalam [[bintang]]-bintang melalui proses [[fusi nuklir]] dan menghasilkan unsur-unsur yang lebih berat sampai dengan besi.<ref>{{cite journal
| last=Copi | first=Craig J.
| coauthors=Schramm, David N.; Turner, Michael S.
| title=Big-Bang Nucleosynthesis and the Baryon Density of the Universe
|journal=[[Science]] | year=1995 | volume=267 | pages=192–99
| url=http://www.sciencemag.org/cgi/reprint/267/5195/192.pdf
| doi = 10.1126/science.7809624
| format=PDF | accessdate=2008-01-13 |pmid=7809624
}}</ref><ref>{{cite web
| last=Hinshaw | first=Gary | date=December 15, 2005
| url=http://map.gsfc.nasa.gov/m_uni/uni_101bbtest2.html
| title=Tests of the Big Bang: The Light Elements
| publisher=NASA/WMAP | accessdate=2008-01-13
}}</ref> Atom pertama (dengan elektron yang terikat dengannya) secara teoretis tercipta 380.000 tahun sesudah Dentuman Besar, yaitu ketika alam semesta yang mengembang cukup dingin untuk mengizinkan elektron-elektron terikat pada inti atom.<ref>{{cite web
| last=Abbott | first=Brian | date=May 30, 2007
| url=http://www.haydenplanetarium.org/universe/duguide/exgg_wmap.php
| title=Microwave (WMAP) All-Sky Survey
| publisher=Hayden Planetarium | accessdate=2008-01-13
}}</ref> Sejak saat itulah, inti atom mulai bergabung dalam [[bintang]]-bintang melalui proses [[fusi nuklir]] dan menghasilkan unsur-unsur yang lebih berat sampai dengan besi.<ref>{{cite journal
| title=The synthesis of the elements from hydrogen
| author = F. Hoyle
| journal = [[Monthly Notices of the Royal Astronomical Society]]
| volume = 106
| pages = 343–83
| year=1946
| url=http://adsabs.harvard.edu/abs/1946MNRAS.106..343H
| accessdate=2008-01-13 }}</ref>
| archive-date=2008-03-05
| archive-url=https://web.archive.org/web/20080305013326/http://adsabs.harvard.edu/abs/1946MNRAS.106..343H
| dead-url=no
}}</ref>
 
Isotop seperti litium-6 dihasilkan di ruang angkasa melalui [[spalasi sinar kosmis]].<ref>{{cite journal
Baris 669 ⟶ 781:
| title=Newly synthesized lithium in the interstellar medium
|journal=[[Nature (journal)|Nature]] | year=2000 | volume=405 | pages=656–58
| doi=10.1038/35015028 }}</ref> Hal ini terjadi ketika sebuah proton berenergi tinggi menumbuk inti atom, menyebabkan sejumlah besar nukleon berhamburan. Unsur yang lebih berat daripada besi dihasilkan di [[supernova]] melalui [[proses r]] dan di [[cabang raksasa asimtotik|bintang-bintang AGB]] melalui [[proses s]]. Kedua-duanya melibatkan penangkapan neutron oleh inti atom.<ref>{{cite web | last=Mashnik | first=Stepan G. | title=On Solar System and Cosmic Rays Nucleosynthesis and Spallation Processes | url=http://arxiv.org/abs/astro-ph/0008382 | month=August | year=2000 | publisher=Cornell University | accessdate=2008-01-14 | archive-date=2015-03-19 | archive-url=https://web.archive.org/web/20150319085109/http://arxiv.org/abs/astro-ph/0008382 | dead-url=no }}</ref> Unsur-unsur seperti [[timbal]] kebanyakan dibentuk melalui peluruhan radioaktif unsur-unsur lain yang lebih berat.<ref>{{cite web | author=Kansas Geological Survey | date=May 4, 2005 | url=http://www.kgs.ku.edu/Extension/geotopics/earth_age.html | title=Age of the Earth | publisher=University of Kansas | accessdate=2008-01-14 | archive-date=2008-07-05 | archive-url=https://web.archive.org/web/20080705052359/http://www.kgs.ku.edu/Extension/geotopics/earth_age.html | dead-url=yes }}</ref>
| last=Mashnik | first=Stepan G.
| title=On Solar System and Cosmic Rays Nucleosynthesis and Spallation Processes
| url=http://arxiv.org/abs/astro-ph/0008382
| month=August | year=2000 | publisher=Cornell University
| accessdate=2008-01-14 }}</ref> Unsur-unsur seperti [[timbal]] kebanyakan dibentuk melalui peluruhan radioaktif unsur-unsur lain yang lebih berat.<ref>{{cite web | author=Kansas Geological Survey | date=May 4, 2005 | url=http://www.kgs.ku.edu/Extension/geotopics/earth_age.html | title=Age of the Earth | publisher=University of Kansas | accessdate=2008-01-14 | archive-date=2008-07-05 | archive-url=https://web.archive.org/web/20080705052359/http://www.kgs.ku.edu/Extension/geotopics/earth_age.html | dead-url=yes }}</ref>
 
=== Bumi ===
Kebanyakan atom yang menyusun [[Bumi]] dan termasuk pula seluruh makhluk hidupnya pernah berada dalam bentuk yang sekarang di [[nebula]] yang runtuh dari [[awan molekul]] dan membentuk [[Tata Surya]]. Sisanya merupakan akibat dari peluruhan radioaktif dan proporsinya dapat digunakan untuk menentukan [[usia Bumi]] melalui [[penanggalan radiometrik]].<ref name = "Manuel_2001">Manuel (2001:407–430,511–519).</ref><ref>{{cite journal
| last=Dalrymple
| first=G. Brent
| title=The age of the Earth in the twentieth century: a problem (mostly) solved
| journal=Geological Society, London, Special Publications
| year=2001
| volume=190
| pages=205–21
| doi=10.1144/GSL.SP.2001.190.01.14
| url=http://sp.lyellcollection.org/cgi/content/abstract/190/1/205
| accessdate=2008-01-14
| accessdate=2008-01-14 }}</ref> Kebanyakan [[helium]] dalam kerak Bumi merupakan produk [[peluruhan alfa]].<ref>{{cite web
| archive-date=2007-11-11
| last=Anderson | first=Don L.
| archive-url=https://web.archive.org/web/20071111141237/http://sp.lyellcollection.org/cgi/content/abstract/190/1/205
| dead-url=no
}}</ref> Kebanyakan [[helium]] dalam kerak Bumi merupakan produk [[peluruhan alfa]].<ref>{{cite web
| last=Anderson
| first=Don L.
| authorlink=Don L. Anderson
| coauthors=Foulger, G. R.; Meibom, Anders
Baris 691 ⟶ 806:
| url=http://www.mantleplumes.org/HeliumFundamentals.html
| title=Helium: Fundamental models
| publisher=MantlePlumes.org
| accessdate=2007-01-14 }}</ref>
| archive-date=2007-02-08
| archive-url=https://web.archive.org/web/20070208194933/http://www.mantleplumes.org/HeliumFundamentals.html
| dead-url=no
}}</ref>
 
Terdapat sekelumit atom di Bumi yang pada awal pembentukannya tidak ada dan juga bukan merupakan akibat dari peluruhan radioaktif. [[Karbon-14]] secara berkesinambungan dihasilkan oleh sinar kosmik di atmosfer.<ref>{{cite news
|last=Pennicott
|first=Katie
|date=May 10, 2001
|title=Carbon clock could show the wrong time
|publisher=PhysicsWeb
|url=http://physicsworld.com/cws/article/news/2676
|accessdate=2008-01-14
|accessdate=2008-01-14 }}</ref> Beberapa atom di Bumi secara buatan dihasilkan oleh reaktor ataupun senjata nuklir.<ref>{{cite news
|archive-date=2007-12-15
|archive-url=https://web.archive.org/web/20071215103132/http://physicsworld.com/cws/article/news/2676
|dead-url=no
}}</ref> Beberapa atom di Bumi secara buatan dihasilkan oleh reaktor ataupun senjata nuklir.<ref>{{cite news
|last=Yarris
|first=Lynn
Baris 706 ⟶ 832:
|url=http://enews.lbl.gov/Science-Articles/Archive/elements-116-118.html
|accessdate=2008-01-14
|archive-date=2008-01-09
|archive-url=https://web.archive.org/web/20080109103538/http://enews.lbl.gov/Science-Articles/Archive/elements-116-118.html
|dead-url=no
}}</ref><ref>{{cite journal
| author=Diamond, H. ''et al.''
| title=Heavy Isotope Abundances in Mike Thermonuclear Device
| journal=[[Physical Review]]
| year=1960
| volume=119
| pages=2000–04
Baris 715 ⟶ 845:
| accessdate=2008-01-14
| doi=10.1103/PhysRev.119.2000
| format=subscription required
| archive-date=2011-11-12
| archive-url=https://web.archive.org/web/20111112043731/http://prola.aps.org/abstract/PR/v119/i6/p2000_1
| dead-url=no
}}</ref> Dari semua [[Unsur transuranium|Unsur-unsur transuranium]] yang bernomor atom lebih besar daripada 92, hanya [[plutonium]] dan [[neptunium]] sajalah yang terdapat di Bumi secara alami.<ref>{{cite web
| author=Poston Sr., John W.
| date=March 23, 1998
| title=Do transuranic elements such as plutonium ever occur naturally?
| publisher=Scientific American
| url=http://www.sciam.com/chemistry/article/id/do-transuranic-elements-s/topicID/4/catID/3
| accessdate=2008-01-15
| archive-date=2008-10-01
}}</ref><ref>{{cite journal
| archive-url=https://web.archive.org/web/20081001205737/http://www.sciam.com/chemistry/article/id/do-transuranic-elements-s/topicID/4/catID/3
| last=Keller | first=C.
| dead-url=no
| title=Natural occurrence of lanthanides, actinides, and superheavy elements
}}</ref><ref>{{cite journal | last=Keller | first=C. | title=Natural occurrence of lanthanides, actinides, and superheavy elements | journal=Chemiker Zeitung | year=1973 | volume=97 | issue=10 | pages=522–30 | url=http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4353086 | accessdate=2008-01-15 | archive-date=2008-10-01 | archive-url=https://web.archive.org/web/20081001171525/http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4353086 | dead-url=no }}</ref> Unsur-unsur transuranium memiliki waktu paruh radioaktif yang lebih pendek daripada umur Bumi,<ref>Marco (2001:17).</ref> sehingga unsur-unsur ini telah lama meluruh. Pengecualian terdapat pada [[plutonium-244]] yang kemungkinan tersimpan dalam debu kosmik.<ref name = "Manuel_2001"/> Kandungan alami plutonium dan neptunium dihasilkan dari penangkapan neutron dalam bijih uranium.<ref>{{cite web
| journal=Chemiker Zeitung
| year=1973 | volume=97 | issue=10 | pages=522–30
| url=http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4353086
| accessdate=2008-01-15 }}</ref> Unsur-unsur transuranium memiliki waktu paruh radioaktif yang lebih pendek daripada umur Bumi,<ref>Marco (2001:17).</ref> sehingga unsur-unsur ini telah lama meluruh. Pengecualian terdapat pada [[plutonium-244]] yang kemungkinan tersimpan dalam debu kosmik.<ref name = "Manuel_2001"/> Kandungan alami plutonium dan neptunium dihasilkan dari penangkapan neutron dalam bijih uranium.<ref>{{cite web
| url=http://www.oklo.curtin.edu.au/index.cfm
| title=Oklo Fossil Reactors
Baris 738 ⟶ 870:
 
Bumi mengandung sekitar 1,33{{Esp|50}}atom.<ref>{{cite web
| last=Weisenberger
| first=Drew
| url=http://education.jlab.org/qa/mathatom_05.html
| title=How many atoms are there in the world?
| publisher=Jefferson Lab
| accessdate=2008-01-16
| accessdate=2008-01-16 }}</ref> Pada atmosfer planet, terdapat sejumlah kecil atom [[gas mulia]] seperti [[argon]] dan [[neon]]. Sisa 99% atom pada atmosfer bumi terikat dalam bentuk molekul, misalnya [[karbon dioksida]], [[oksigen]] [[molekul diatomik|diatomik]], dan [[nitrogen]] diatomik. Pada permukaan Bumi, atom-atom saling berikatan membentuk berbagai macam senyawa, meliputi [[air]], [[garam]], [[silikat]], dan [[oksida]]. Atom juga dapat bergabung membentuk bahan-bahan yang tidak terdiri dari molekul, contohnya [[kristal]] dan [[logam]] padat ataupun cair.<ref>{{cite web
| archive-date=2007-10-22
| last=Pidwirny | first=Michael
| archive-url=https://web.archive.org/web/20071022185850/http://education.jlab.org/qa/mathatom_05.html
| dead-url=no
}}</ref> Pada atmosfer planet, terdapat sejumlah kecil atom [[gas mulia]] seperti [[argon]] dan [[neon]]. Sisa 99% atom pada atmosfer bumi terikat dalam bentuk molekul, misalnya [[karbon dioksida]], [[oksigen]] [[molekul diatomik|diatomik]], dan [[nitrogen]] diatomik. Pada permukaan Bumi, atom-atom saling berikatan membentuk berbagai macam senyawa, meliputi [[air]], [[garam]], [[silikat]], dan [[oksida]]. Atom juga dapat bergabung membentuk bahan-bahan yang tidak terdiri dari molekul, contohnya [[kristal]] dan [[logam]] padat ataupun cair.<ref>{{cite web
| last=Pidwirny
| first=Michael
| url=http://www.physicalgeography.net/fundamentals/contents.html
| title=Fundamentals of Physical Geography
| publisher=University of British Columbia Okanagan
| accessdate=2008-01-16
| archive-date=2008-01-21
}}</ref><ref>{{cite journal
| archive-url=https://web.archive.org/web/20080121080709/http://www.physicalgeography.net/fundamentals/contents.html
| dead-url=no
}}</ref><ref>{{cite journal
| last=Anderson | first=Don L.
| title=The inner inner core of Earth
Baris 761 ⟶ 902:
Manakala isotop dengan nomor atom yang lebih tinggi daripada [[timbal]] (62) bersifat radioaktif, terdapat suatu "[[pulau stabilitas]]" yang diajukan untuk beberapa unsur dengan nomor atom di atas 103. Unsur-unsur super berat ini kemungkinan memiliki inti yang secara relatif stabil terhadap peluruhan radioaktif.<ref>{{cite journal
| title=Second postcard from the island of stability
| author=Anonymous
| journal=CERN Courier
| date=October 2, 2001
| url=http://cerncourier.com/cws/article/cern/28509
| accessdate=2008-01-14
| accessdate=2008-01-14 }}</ref> Atom super berat yang stabil ini kemungkinan besar adalah [[unbiheksium]], dengan 126 proton 184 neutron.<ref>{{cite journal
| archive-date=2008-02-03
| last=Jacoby | first=Mitch
| archive-url=https://web.archive.org/web/20080203031237/http://cerncourier.com/cws/article/cern/28509
| title=As-yet-unsynthesized superheavy atom should form a stable diatomic molecule with fluorine
| dead-url=no
| journal=[[Chemical & Engineering News]]
}}</ref> Atom super berat yang stabil ini kemungkinan besar adalah [[unbiheksium]], dengan 126 proton 184 neutron.<ref>{{cite journal | last=Jacoby | first=Mitch | title=As-yet-unsynthesized superheavy atom should form a stable diatomic molecule with fluorine | journal=[[Chemical & Engineering News]] | year=2006 | volume=84 | issue=10 | pages=19 | url=http://pubs.acs.org/cen/news/84/i10/8410notw9.html | accessdate=2008-01-14 | archive-date=2012-07-15 | archive-url=https://archive.today/20120715094148/http://pubs.acs.org/cen/news/84/i10/8410notw9.html | dead-url=no }}</ref>
| year=2006 | volume=84 | issue=10 | pages=19
| url=http://pubs.acs.org/cen/news/84/i10/8410notw9.html
| accessdate=2008-01-14 }}</ref>
 
Tiap-tiap partikel materi memiliki partikel [[antimateri]]nya masing-masing dengan muatan listrik yang berlawanan. Sehingga, [[positron]] adalah antielektron yang bermuatan positif, dan antiproton adalah proton yang bermuatan negatif, Ketika materi dan antimateri bertemu, keduanya akan saling memusnahkan. Terdapat ketidakseimbangan antara jumlah partikel materi dan antimateri. Ketidakseimbangan ini masih belum dipahami secara menyeluruh, walaupun terdapat teori [[bariogenesis]] yang memberikan penjelasan yang memungkinkan. Antimateri tidak pernah ditemukan secara alami.<ref>{{cite news
|last=Koppes
|first=Steve
|date=March 1, 1999
|title=Fermilab Physicists Find New Matter-Antimatter Asymmetry
|publisher=University of Chicago
|url=http://www-news.uchicago.edu/releases/99/990301.ktev.shtml
|accessdate=2008-01-14
|archive-date=2008-07-19
|archive-url=https://web.archive.org/web/20080719211849/http://www-news.uchicago.edu/releases/99/990301.ktev.shtml
|dead-url=no
}}</ref><ref>{{cite news
|last=Cromie
|first=William J.
|date=August 16, 2001
|title=A lifetime of trillionths of a second: Scientists explore antimatter
|publisher=Harvard University Gazette
|url=http://news.harvard.edu/gazette/2001/08.16/antimatter.html
|accessdate=2008-01-14
|archive-date=2016-03-03
|archive-url=https://web.archive.org/web/20160303223719/http://news.harvard.edu/gazette/2001/08.16/antimatter.html
|dead-url=no
}}</ref> Namun, pada tahun 1996, [[antihidrogen]] berhasil disintesis di laboratorium [[CERN]] di [[Jenewa]].<ref>{{cite journal
| last=Hijmans | first=Tom W.
Baris 790 ⟶ 940:
| pages=439–40 | doi=10.1038/419439a
}}</ref><ref>{{cite news
|author=Staff
|date=October 30, 2002
|title=Researchers 'look inside' antimatter
|publisher=BBC News
|url=http://news.bbc.co.uk/2/hi/science/nature/2375717.stm
|accessdate=2008-01-14 }}</ref>
|archive-date=2007-02-22
|archive-url=https://web.archive.org/web/20070222204339/http://news.bbc.co.uk/2/hi/science/nature/2375717.stm
|dead-url=no
}}</ref>
 
Terdapat pula atom-atom langka lainnya yang dibuat dengan menggantikan satu proton, neutron, ataupun elektron dengan partikel lain yang bermuatan sama. Sebagai contoh, elektron dapat digantikan dengan [[muon]] yang lebih berat, membentuk [[muon|atom muon]]. Jenis atom ini dapat digunakan untuk menguji prediksi fisika.<ref>{{cite journal
Baris 814 ⟶ 970:
| year=2004 | volume=T112 | pages=20–26
| doi=10.1238/Physica.Topical.112a00020 }}
</ref><ref>{{cite web | last=Ripin | first=Barrett H. | month=July | year=1998 | url=http://www.aps.org/publications/apsnews/199807/experiment.cfm.html | title=Recent Experiments on Exotic Atoms | publisher=American Physical Society | accessdate=2008-02-15 | archive-date=2012-07-23 | archive-url=https://archive.today/20120723135110/http://www.aps.org/publications/apsnews/199807/experiment.cfm.html | dead-url=no }}</ref>
</ref><ref>{{cite web
| last=Ripin | first=Barrett H. | month=July | year=1998
| url=http://www.aps.org/publications/apsnews/199807/experiment.cfm.html
| title=Recent Experiments on Exotic Atoms
| publisher=American Physical Society
| accessdate=2008-02-15 }}</ref>
 
== Lihat pula ==
{{PortalkimiaPortal|kimia}}
* [[Massa atom#Massa atom relatif|Massa atom relatif]]
* [[Molekul]]
Baris 843 ⟶ 994:
|first=Michael F.
|year=2003|title=Handbook of Radioactivity Analysis
|url=https://archive.org/details/handbookofradioa0000unse_n3o4|publisher=Academic Press|isbn=0124366031
|oclc=162129551 }}
* {{cite book
Baris 897 ⟶ 1.048:
|isbn=0521773512
|oclc=50441595 }}
* {{cite book|last= Iannone|first= A. Pablo|3= |year= 2001|title= Dictionary of World Philosophy|url= https://archive.org/details/dictionaryofworl0000iann|publisher= Routledge|isbn= 0415179955|oclc= 44541769}}
* {{cite book
|last= Iannone|first= A. Pablo|
|year=2001
|title= Dictionary of World Philosophy
|publisher= Routledge|isbn=0415179955
|oclc= 44541769 }}
* {{cite book
|last=Jevremovic|first=Tatjana|year=2005
|title=Nuclear Principles in Engineering
|url=https://archive.org/details/nuclearprinciple0000jevr|publisher=Springer|isbn=0387232842
|oclc=228384008 }}
* {{cite book
|last=Lequeux|first=James|year=2005
|title=The Interstellar Medium
|url=https://archive.org/details/interstellarmedi0000lequ|publisher=Springer|isbn=3540213260
|oclc=133157789 }}
* {{cite book|last = Levere|first = Trevor, H.|year = 2001|title = Transforming Matter – A History of Chemistry for Alchemy to the Buckyball|url = https://archive.org/details/transformingmatt0000leve|publisher = The Johns Hopkins University Press|isbn = 0-8018-6610-3}}
* {{cite book
|last = Levere|first = Trevor, H.|year=2001
|title= Transforming Matter – A History of Chemistry for Alchemy to the Buckyball
|publisher=The Johns Hopkins University Press
|isbn=0-8018-6610-3 }}
* {{cite book|last=Liang|first=Z.-P.|coauthors=Haacke, E. M.|editor=Webster, J. G.|year=1999|volume=vol. 2|pages=412–26|title=Encyclopedia of Electrical and Electronics Engineering: Magnetic Resonance Imaging|publisher=John Wiley & Sons|url=http://ieeexplore.ieee.org/iel5/8734/27658/01233976.pdf?arnumber=1233976|format=PDF|accessdate=2008-01-09|isbn=0471139467}}
* {{cite book
Baris 927 ⟶ 1.069:
|last=Manuel|first=Oliver|year=2001
|title=Origin of Elements in the Solar System: Implications of Post-1957 Observations
|url=https://archive.org/details/isbn_9780306465628|publisher=Springer|isbn=0306465620
|oclc=228374906 }}
* {{cite book
Baris 938 ⟶ 1.080:
|coauthors=Cvitaš, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo
|title=Quantities, Units and Symbols in Physical Chemistry
|url=https://archive.org/details/quantitiesunitss0000unse|publisher=[[International Union of Pure and Applied Chemistry]], Commission on Physiochemical Symbols Terminology and Units, Blackwell Scientific Publications
|location=Oxford|edition=2nd|year=1993
|isbn=0-632-03583-8
Baris 945 ⟶ 1.087:
|first=Bruce T.|last=Moran|year=2005
|title=Distilling Knowledge: Alchemy, Chemistry, and the Scientific Revolution
|url=https://archive.org/details/distillingknowle0000mora|publisher=[[Harvard University Press]]
|isbn=0674014952
}}
Baris 972 ⟶ 1.114:
|last=Scerri|first=Eric R.|year=2007
|title=The Periodic Table
|url=https://archive.org/details/periodictableits0000scer|publisher=Oxford University Press
|isbn=0195305736
}}
Baris 990 ⟶ 1.132:
|title=Physics of Atoms and Ions
|publisher=Springer|id=ISBN 0-387-95550-X }}
* {{cite book|last=Teresi|first=Dick|publisher=Simon & Schuster|title=Lost Discoveries: The Ancient Roots of Modern Science|year=2003|isbn=074324379X|url=http://books.google.com/books?id=pheL_ubbXD0C&dq|pages=213–214|access-date=2009-07-28|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327112832/https://books.google.com/books?id=pheL_ubbXD0C&dq=&hl=en|dead-url=no}}
* {{cite book
|last=Various
Baris 1.009 ⟶ 1.151:
|last=Woan|first=Graham|year=2000
|title=The Cambridge Handbook of Physics
|url=https://archive.org/details/cambridgehandboo0000woan|publisher=Cambridge University Press|isbn=0521575079
|oclc=224032426 }}
* {{cite book|first=Charles Adolphe|last=Wurtz|year=1881|title=The Atomic Theory|url=https://archive.org/details/atomictheory02wurtgoog|publisher=D. Appleton and company|location=New York}}
Baris 1.065 ⟶ 1.207:
 
[[Kategori:Atom| ]]
[[Kategori:Kimia]]