Pi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler |
k Mengembalikan suntingan oleh 103.188.173.22 (bicara) ke revisi terakhir oleh WikiNgab Tag: Pengembalian |
||
(4 revisi perantara oleh 4 pengguna tidak ditampilkan) | |||
Baris 1:
{{untuk|singkatan pusat perbelanjaan di Jakarta Pusat|Plaza Indonesia}}
[[Berkas:Pi-CM.svg|ka|jmpl|200px|Simbol '''Pi''', π.]]{{Pi (konstanta matematika)}}
Bilangan '''{{pi}}''' (kadang-kadang ditulis '''pi''') adalah sebuah [[konstanta]] dalam [[matematika]] yang merupakan perbandingan keliling [[lingkaran]] dengan [[diameter]]nya. Nilai {{pi}} dalam 20 tempat desimal adalah 3,
Selama beribu-ribu tahun, matematikawan telah berusaha untuk memperluas pemahaman akan bilangan {{pi}}. Hal ini kadang-kadang dilakukan dengan menghitung nilai bilangan {{pi}} hingga keakurasian yang sangat tinggi. Sebelum abad ke-15, para matematikawan seperti [[Archimedes]] dan [[Liu Hui]] menggunakan teknik-teknik geometris yang didasarkan pada poligon untuk memperkirakan nilai {{pi}}. Mulai abad ke-15, algoritme baru yang didasarkan pada [[deret tak terhingga]] merevolusi perhitungan nilai {{pi}}. Cara ini digunakan oleh berbagai matematikawan seperti [[Madhava dari Sangamagrama]], [[Isaac Newton]], [[Leonhard Euler]], [[Carl Friedrich Gauss]], dan [[Srinivasa Ramanujan]].
Baris 19:
{{pi}} umumnya didefinisikan sebagai [[rasio]] [[keliling]] [[lingkaran]] {{math|''C''}} dengan [[diameter]]nya {{math|''d''}}:<ref name="Arndt">{{harvnb|Arndt|Haenel|2006|p=8}}</ref>
:<math> \pi = \frac{C}{d}</math>
Rasio {{math|''C''/''d''}} bernilai konstan tak tergantung pada ukuran lingkaran. Contohnya, jika suatu lingkaran memiliki diameter dua kali lipat daripada lingkaran lainnya, ia juga akan memiliki keliling yang dua kali lipat lebih besar, sehingganya nilai rasio {{math|''C''/''d''}} akan tetap sama. Definisi {{pi}} seperti ini secara implisit menggunakan [[geometri Euklides]]. Walaupun gagasan akan lingkaran juga dapat diperluas ke dalam [[geometri non-Euklides]], namun lingkaran yang baru ini tidak akan lagi memenuhi rumus {{math|{{pi}} {{=}} ''C''/''d''}}.<ref name="Arndt" /> Terdapat pula definisi {{pi}} lainnya yang tidak menyebut-nyebut lingkaran sama sekali, yakni: {{pi}} adalah bilangan yang bernilai dua kali lipat dari bilangan positif terkecil {{math|''x''}} yang mana {{math|[[Kosinus|cos]](''x'')}} sama dengan 0.<ref name="Arndt" /><ref>{{cite book|last=Rudin|first=Walter|title=Principles of Mathematical Analysis|url=https://archive.org/details/principlesofmath00rudi|publisher=McGraw-Hill|year=1976|isbn=0-07-054235-X|ref=harv}}, p 183.</ref>
=== Ciri-ciri ===
|