Termometer raksa: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
Alfarizi M (bicara | kontrib) Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
(29 revisi perantara oleh 25 pengguna tidak ditampilkan) | |||
Baris 1:
{{Unreferenced|date=Januari 2023}}
{{rapikan}}
'''Termometer air raksa'''
Raksa kemudian dilanjutkan ke bagian tabung yang lebih sempit. Ruang di antara raksa dapat diisi atau dibiarkan kosong.
Sebagai pengganti air raksa, beberapa termometer keluarga mengandung alkohol dengan tambahan pewarna merah. Termometer ini lebih aman dan mudah untuk dibaca.▼
▲Sebagai pengganti
Jenis khusus termometer air raksa, disebut termometer maksimun, bekerja dengan adanya katup pada leher tabung dekat bohlam. Saat suhu naik, air raksa didorong ke atas melalui katup oleh gaya pemuaian. Saat suhu turun air raksa tertahan pada katup dan tidak dapat kembali ke bohlam membuat air raksa tetap di dalam tabung. Pembaca kemudian dapat membaca temperatur maksimun selama waktu yang telah ditentukan. Untuk mengembalikan fungsinya, termometer harus diayunkan dengan keras. Termometer ini mirip desain termometer medis.▼
▲Jenis khusus termometer
Air raksa akan membeku pada suhu -38.83 °C (-37.89 °F) dan hanya dapat digunakan pada suhu di atasnya. Air raksa, tidak seperti air, tidak mengembang saat membeku sehingga tidak memecahkan tabung kaca, membuatnya sulit diamati ketika membeku. Jika termometer mengandung nitrogen, gas mungkin mengalir turun ke dalam kolom dan terjebak di sana ketika temperatur naik. Jika ini terjadi termometer tidak dapat digunakan hingga kembali ke kondisi awal. Untuk menghindarinya, termometer air raksa sebaiknya dimasukkan ke dalam tempat yang hangat saat temperatur di bawah -37 °C (-34.6 °F). Pada area di mana suhu maksimum tidak diharapkan naik di atas - 38.83 ° C (-37.89 °F) termometer yang memakai campuran air raksa dan thallium mungkin bisa dipakai. Termometer ini mempunyai titik beku of -61.1 °C (-78 °F).▼
▲
Termometer air raksa umumnya menggunakan skala suhu Celsius dan Fahrenhait.▼
Anders Celsius merumuskan skala Celsius, yang dipaparkan pada publikasinya ”the origin of the Celsius temperature scale” pada 1742.▼
Celsius memakai dua titik penting pada skalanya: suhu saat es mencair dan suhu penguapan air. Ini bukanlah ide baru, sejak dulu Isaac Newton bekerja dengan sesuatu yang mirip. Pengukuran suhu celsius menggunakan suhu pencairan dan bukan suhu pembekuan. Eksperimen untuk mendapat kalibrasi yang lebih baik pada termometer Celsius dilakukan selama 2 minggu setelah itu. Dengan melakukan eksperimen yang sama berulang-ulang, dia menemukan es mencair pada tanda kalibrasi yang sama pada termometer. Dia menemukan titik yang sama pada kalibrasi pada uap air yang mendidih (saat percobaan dilakukan dengan ketelitian tinggi, variasi terlihat dengan variasi tekanan atmosfir). Saat dia mengeluarkan termometer dari uap air, ketinggian air raksa turun perlahan. Ini berhubungan dengan kecepatan pendinginan (dan pemuaian kaca tabung).▼
▲Anders Celsius merumuskan skala [[Celsius]], yang dipaparkan pada
▲[[Celsius]] memakai dua titik penting pada skalanya: suhu saat es mencair dan suhu penguapan air. Ini bukanlah ide baru, sejak dulu [[Isaac Newton]] bekerja dengan sesuatu yang mirip. Pengukuran suhu celsius menggunakan suhu pencairan dan bukan suhu pembekuan. Eksperimen untuk mendapat [[kalibrasi]] yang lebih baik pada termometer
Tekanan udara memengaruhi titik didih air. Celsius mengklaim bahwa ketinggian air raksa saat penguapan air sebanding dengan ketinggian barometer.▼
▲Tekanan udara memengaruhi titik didih air. Celsius mengklaim bahwa ketinggian air raksa saat penguapan air sebanding dengan ketinggian [[barometer]].
Saat Celsius memutuskan untuk menggunakan skala temperaturnya sendiri, dia menentukan titik didih pada 0 °C (212 °F) dan titik beku pada 100 °C (32 °F). Satu tahun kemudian Frenchman Jean Pierre Cristin mengusulkan versi kebalikan skala celsius dengan titik beku pada 0 °C (32 °F) dan titik didih pada 100 °C (212 °F). Dia menamakannya Centrigade.▼
▲Saat Celsius memutuskan untuk menggunakan skala
Pada akhirnya, Celsius mengusulkan metode kalibrasi termometer sbb:▼
1. Tempatkan silinder termometer pada air murni meleleh dan tandai titik saat cairan di dalam termometer sudah stabil. ini adalah titik beku air.
Baris 23 ⟶ 26:
2. Dengan cara yang sama tandai titik di mana cairan sudah stabil ketika termometer ditempatkan di dalam uap air mendidih.
3. Bagilah panjang di antara kedua titik dengan 100 bagian kecil yang sama.
Titik-titik ini ditambahkan pada kalibrasi rata-rata tetapi keduanya sangat tergantung tekanan [[udara]]. Saat ini, tiga titik air digunakan sebagai pengganti (titik ketiga terjadi pada 273.16
Hari ini termometer air raksa masih banyak digunakan dalam bidang meteorologi, tetapi pengguanaan pada bidang-bidang lain semakin berkurang, karena
Termometer dapat dibedakan menjadi 5 jenis, yaitu:
# Termometer klinis disebut juga termometer tubuh. Termometer ini digunakan untuk mengukur suhu tubuh pasien. Cairan yang digunakan untuk mengisi termometer klinis adalah raksa.
[[Kategori:Termometer|Air raksa]]▼
# Termometer dinding disebut juga termometer rentang skala. Termometer ini memggunakan raksa sebagai pengisi. Termometer ini biasanya dipasang di dinding dengan posisi tegak lurus.
# Termometer maksimum-minimum. Termometer ini digunakan untuk mengukur suhu tertinggi dan suhu terendah di suatu tempat. Termometer ini dapat mengukur suhu maksimum dan minimum sekaligus.
# Termometer laboratorium. Termometer ini digunakan untuk perlengkapan praktikum di laboratorium. Bentuknya pipa panjang dengan cairan pengisi alkohol yang diberi warna merah.
# Termometer industri. Termometer industri digunakan untuk kegiatan industri.
== Rujukan ==
<references />
▲[[Kategori:Termometer|Air raksa]]
[[Kategori:Raksa]]
[[Kategori:Peralatan dan instrumentasi meteorologi]]
|