Jaringan saraf tiruan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Wiramaswara (bicara | kontrib)
NikolasKHF (bicara | kontrib)
Fitur saranan suntingan: 2 pranala ditambahkan.
 
(17 revisi perantara oleh 10 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Artificial neural network.svg|thumb|300pxjmpl|Jaringan saraf tiruan merupakan jaringan dari unit pemroses kecil yang saling terhubung, yang dimodelkan berdasar jaringan saraf ([[neuron]]) [[manusia|jaringan saraf]].]]
'''Jaringan saraf tiruan (JST)''' ([[Bahasa Inggris]]: ''{{lang-en|artificial neural network}}; (ANN)'', atau juga disebut ''simulated neural network'' (SNN)'', atau umumnya hanya disebut ''neural network'' (NN)''), adalah [[jaringan]] dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan [[jaringansistem saraf manusia]] manusia. JST merupakan sistem adaptif yang dapat mengubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Oleh karena sifatnya yang adaptif, JST juga sering disebut dengan jaringan adaptif.<ref>{{Cite journal|last=Nasution|first=Darmeli|last2=Harumy|first2=T. Henny F.|last3=Haryanto|first3=Eko|last4=Fachrizal|first4=Ferry|last5=Julham|last6=Turnip|first6=Arjon|date=2015-10|year=2015|title=A classification method for prediction of qualitative properties of multivariate EEG-P300 signals|url=http://dx.doi.org/10.1109/icacomit.2015.7440180|journal=2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT)|publisher=IEEE|volume=|issue=|pages=|doi=10.1109/icacomit.2015.7440180|isbn=978-1-4673-7408-8}}</ref>
 
Secara sederhana, JST adalah sebuah alat pemodelan [[data]] [[statistik]] non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data. Menurut suatu teorema yang disebut "teorema penaksiran universal", JST dengan minimal sebuah lapis tersembunyi dengan fungsi aktivasi non-linear dapat memodelkan seluruh fungsi terukur Boreal apapun dari suatu dimensi ke dimensi lainnya.<ref>Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages 359-366, ISSN 0893-6080, <nowiki>http://dx.doi.org/10.1016/0893-6080(89)90020-8</nowiki>. (<nowiki>http://www.sciencedirect.com/science/article/pii/0893608089900208</nowiki>) Keywords: Feedforward networks; Universal approximation; Mapping networks; Network representation capability; Stone-Weierstrass Theorem; Squashing functions; Sigma-Pi networks; Back-propagation networks</ref>
 
== Sejarah ==
Saat ini bidang [[kecerdasan buatan]] dalam usahanya menirukan [[intelegensi]] [[manusia]], belum mengadakan pendekatan dalam bentuk fisiknya melainkan dari sisi yang lain. Pertama-tama diadakan studi mengenai teori dasar mekanisme proses terjadinya intelegensi. Bidang ini disebut ''Cognitive Science''. Dari teori dasar ini dibuatlah suatu model untuk disimulasikan pada [[komputer]], dan dalam perkembangannya yang lebih lanjut dikenal berbagai sistem kecerdasan buatan yang salah satunya adalah jaringan saraf tiruan. Dibandingkan dengan bidang ilmu yang lain, jaringan saraf tiruan relatif masih baru. Sejumlah literatur menganggap bahwa konsep jaringan saraf tiruan bermula pada makalah [[Waffen McCulloch]] dan [[Walter Pitts]] pada tahun [[1943]]. Dalam makalah tersebut mereka mencoba untuk memformulasikan model matematis [[sel]]-sel [[otak]]. Metode yang dikembangkan berdasarkan sistem [[saraf]] [[biologi]] ini, merupakan suatu langkah maju dalam industri komputer.
 
== Model ==
Model pada JST pada dasarnya merupakan fungsi model matematika yang mendefinisikan fungsi <math>f : X \rightarrow Y</math>. Istilah "jaringan" pada JST merujuk pada interkoneksi dari beberapa ''neuron'' yang diletakkan pada lapisan yang berbeda. Secara umum, lapisan pada JST dibagi menjadi tiga bagian:
* Lapis masukan (''input layer'') terdiri dari ''neuron'' yang menerima data masukan dari variabel X. Semua ''neuron'' pada lapis ini dapat terhubung ke ''neuron'' pada lapisan tersembunyi atau langsung ke lapisan luaran jika jaringan tidak menggunakan lapisan tersembunyi.
* Lapisan tersembunyi (''hidden layer'') terdiri dari ''neuron'' yang menerima data dari lapisan masukan.
* Lapisan luaran (''output layer'') terdiri dari ''neuron'' yang menerima data dari lapisan tersembunyi atau langsung dari lapisan masukan yang nilai luarannya melambangkan hasil kalkulasi dari X menjadi nilai Y.
 
Secara matematis, ''neuron'' merupakan sebuah fungsi yang menerima masukan dari lapisan sebelumnya <math>g_i(x)</math> (lapisan ke-<math>i</math>). Fungsi ini pada umumnya mengolah sebuah vektor untuk kemudian ditransformasidiubah ke nilai skalar melalui komposisi ''nonlinear weighted sum,'' dimana <math>f(x) = K(\sum_i w_i g_i(x))</math> , <math>K</math> merupakan fungsi khusus yang sering disebut dengan fungsi aktivasi dan <math>w</math> merupakan beban atau ''weight''.
 
== Definisi ==
*
 
== Lihat pula ==
{{wikibooksWikibooks|Artificial Neural Networks}}
<div style="-moz-column-count:2; column-count:2;">
* [[20Q]]
* [[Artificial life]]
Baris 32 ⟶ 28:
* [[Sistem pakar]]
* [[Logika Fuzzy]]
* [[AlgoritmaAlgoritme genetik]]
* [[Gnod]], a Kohonen network application
* [[Linear discriminant analysis]]
Baris 52 ⟶ 48:
* [[Systolic automaton]]
* [[Time delay neural network]] (TDNN)
</div>
 
== BibliografiDaftar pustaka ==
<div class="references-small">
* {{cite book|author=Bar-Yam, Yaneer|title = [http://necsi.org/publications/dcs/Bar-YamChap2.pdf Dynamics of Complex Systems, Chapter 2]|year = 2003|}}
 
* {{cite book|author=Bar-Yam, Yaneer|title = [http://necsi.org/publications/dcs/Bar-YamChap3.pdf Dynamics of Complex Systems, Chapter 3]|year = 2003|}}
 
* {{cite book|author=Bar-Yam, Yaneer|title = [http://necsi.org/publications/mtw/ Making Things Work]|year = 2005|}} Please see Chapter 3
 
* Bhagat, P.M. (2005) ''Pattern Recognition in Industry'', Elsevier. ISBN 0-08-044538-1
* Bishop, C.M. (1995) ''Neural Networks for Pattern Recognition'', Oxford: [[Oxford University Press]]. ISBN 0-19-853849-9 (hardback) or ISBN 0-19-853864-2 (paperback)
 
* Bishop, C.M. (1995) ''Neural Networks for Pattern Recognition'', Oxford: Oxford University Press. ISBN 0-19-853849-9 (hardback) or ISBN 0-19-853864-2 (paperback)
 
* Duda, R.O., Hart, P.E., Stork, D.G. (2001) ''Pattern classification (2nd edition)'', Wiley, ISBN 0-471-05669-3
 
* Gurney, K. (1997) ''An Introduction to Neural Networks'' London: Routledge. ISBN 1-85728-673-1 (hardback) or ISBN 1-85728-503-4 (paperback)
 
* Haykin, S. (1999) '' Neural Networks: A Comprehensive Foundation'', Prentice Hall, ISBN 0-13-273350-1
* Fahlman, S, Lebiere, C (1991). ''The Cascade-Correlation Learning Architecture'', created for [[National Science Foundation]], Contract Number EET-8716324, and [[Defense Advanced Research Projects Agency]] (DOD), ARPA Order No. 4976 under Contract F33615-87-C-1499. [http://www.cs.iastate.edu/~honavar/fahlman.pdf electronic version] {{Webarchive|url=https://web.archive.org/web/20130503184045/http://www.cs.iastate.edu/~honavar/fahlman.pdf |date=2013-05-03 }}
 
* Fahlman, S, Lebiere, C (1991). ''The Cascade-Correlation Learning Architecture'', created for [[National Science Foundation]], Contract Number EET-8716324, and [[Defense Advanced Research Projects Agency]] (DOD), ARPA Order No. 4976 under Contract F33615-87-C-1499. [http://www.cs.iastate.edu/~honavar/fahlman.pdf electronic version]
 
* Hertz, J., Palmer, R.G., Krogh. A.S. (1990) ''Introduction to the theory of neural computation'', Perseus Books. ISBN 0-201-51560-1
 
* Lawrence, Jeanette (1994) ''Introduction to Neural Networks'', California Scientific Software Press. ISBN 1-883157-00-5
* Masters, Timothy (1994) ''Signal and Image Processing with Neural Networks'', [[John Wiley & Sons]], Inc. ISBN 0-471-04963-8
 
* Ness, Erik. 2005. [http://www.conbio.org/cip/article61WEB.cfm SPIDA-Web] {{Webarchive|url=https://web.archive.org/web/20071211170455/http://www.conbio.org/cip/article61WEB.cfm |date=2007-12-11 }}. ''Conservation in Practice'' 6(1):35-36. On the use of artificial neural networks in species taxonomy.
* Masters, Timothy (1994) ''Signal and Image Processing with Neural Networks'', John Wiley & Sons, Inc. ISBN 0-471-04963-8
 
* Ness, Erik. 2005. [http://www.conbio.org/cip/article61WEB.cfm SPIDA-Web]. ''Conservation in Practice'' 6(1):35-36. On the use of artificial neural networks in species taxonomy.
 
* [[Brian D. Ripley|Ripley, Brian D]]. (1996) ''Pattern Recognition and Neural Networks'', Cambridge
 
* Smith, Murray (1993) ''Neural Networks for Statistical Modeling'', Van Nostrand Reinhold, ISBN 0-442-01310-8
* Wasserman, Philip (1993) ''Advanced Methods in Neural Computing'', Van Nostrand Reinhold, ISBN 0-442-00461-3
 
== Referensi ==
* Wasserman, Philip (1993) ''Advanced Methods in Neural Computing'', Van Nostrand Reinhold, ISBN 0-442-00461-3
<references />
</div>
 
== Pranala luar ==
* [http://www.learnartificialneuralnetworks.com/ Selayang pandang AlgoritmaAlgoritme Jaringan SarfSaraf Tiruan]
* [http://dmoz.org/Computers/Artificial_Intelligence/Neural_Networks/ Pranala Open Directory] {{Webarchive|url=https://web.archive.org/web/20071231085949/http://www.dmoz.org/Computers/Artificial_Intelligence/Neural_Networks/ |date=2007-12-31 }}
* [http://www.neurosecurity.com/articles.php Artikel tentang Jaringan Saraf Tiruan] {{Webarchive|url=https://web.archive.org/web/20071113143131/http://www.neurosecurity.com/articles.php |date=2007-11-13 }}
 
[[Kategori:Jaringan saraf tiruan| ]]
[[Kategori:Kecerdasan buatan]]
[[Kategori:Artikel yang perlu diperbaiki bertopik teknologi informasi]]