Analisis struktur: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
Sultan23081993 (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
 
(9 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
{{Two other uses|studi struktural di bidang teknik|penggunaan ilmu sosial|strukturalisme}}
<ref name=":0" />'''Analisis struktur''' merupakan ilmu untuk menentukan efek dari beban pada struktur fisik dan komponennya. Adapun cabang pemakaiannya meliputi analisis bangunan, [[jembatan]], [[perkakas]], [[mesin]], tanah, dll. Analisis struktur menggabungkan bidang [[mekanika teknik]], [[teknik material]] dan [[matematika teknik]] untuk menghitung [[deformasi]] struktur, [[gaya (fisika)|kekuatan]] internal, tegangan, [[tekanan]], reaksi tumpuan, percepatan, dan [[stabilitas]]. Hasil analisis tersebut digunakan untuk memverifikasi kekuatan struktur yang akan maupun telah dibangun. Dengan demikian analisis struktur merupakan bagian penting dari [[teknik struktural|desain rekayasa struktur]].
 
== Sejarah ==
[[Berkas:Discorsi Festigkeitsdiskussion.jpg|leftkiri|thumbjmpl|Tulisan Galileo Gallilei mengenai lentur balok kantilever.]]
Sejarah analisis struktur lahir dari ilmu [[mekanika]] yang merupakan cabang dari [[fisika]]. Tulisan tertua yang berisi ilmu ini dibuat oleh [[Archimedes]] (287-212 SM) yang membahas prinsip pengungkit dan prinsip kemampuan mengapung. Kemajuan yang besar diawali oleh hukum kombinasi vektor gaya oleh Stevinus (1548-1620), yang juga merumuskan sebagian besar dari prinsip-prinsip statika. Penyelidikan tentang lentur pertama kali dilakukan [[Galileo Galilei]] (1564-1642) namun baru dipecahkan dengan baik oelh [[Auguste Coloumb]] (1736-1806). Robert Hooke (1635 - 1703) menemukan kelakuan material yang dikenal dengan [[hukum Hooke]] sebagai dasar dari ilmu elastisitas. Metode kerja maya dikembangkan awalnya oleh Leibnitz untuk menyelesaikan masalah mekanika biasa. Selanjutnya pendekatan ini benar-benar sangat berguna dan penggunaannya diperluas dalam berbagai kasus. Berbeda dengan ilmuwan lain yang menekankan persamaan analitik, Christian Otto Mohr (1835–1918) mengembangkan metode grafis yang antara lain lingkaran Mohr (untuk menentukan tegangan), dan diagram Williot-Mohr (untuk menentukan perpindahan truss). Tokoh lain yang terlibat dalam perkembangan ilmu analisis struktur awal diantaranya, Marotte, D'Alembert, [[Euler]] (teori balok dan tekuk), Navier, Bernoulli (teori balok), [[Maxwell]] (Prinsip Maxwell), Betti (hukum Betti), St. Venant (torsi), Rayleigh, dan Castigliano (teori defleksi). Teori balok Euler-Bernoulli dibuktikan kebenarannya dengan diselesaikannya pembangunan [[Menara Eiffel]] di Paris. Sebelumnya teori itu hanya dibahas oleh para ilmuwan semata.
 
Pada abad modern, perkembangan besar ilmu bahan dilakukan oleh ilmuwan [[Rusia]]-[[AS]] Stephen P. Timoshenko. Maha karyanya ''Strength of Material'' merupakan buku wajib mahasiswa [[teknik sipil]] hampir diseluruh [[dunia]]. Penemuan penting lain adalah metode distribusi momen oleh Hardy Cross pada tahun [[1930]] dalam tulisannya di jurnal ASCE. Kontribusi lain Cross adalah metode [[analogi]] kolom. Namun metode klasik yang mulai digantikan seiring dengan berkembangnya kemampuan dan kecepatan komputer. Maka dari itu penggunaan [[metode elemen hingga]] semakin meluas oleh insinyur struktur. Analisis yang sebelumnya memakan banyak kertas dengan ketelitian semakin berkurang dengan banyaknya variabel berhasil diatasi. Metode ini pertama kali dipakai dalam menganalisis gedung [[Sydney Opera House|Opera Sydney]] oleh firma konsultan kenamaan Ove Arup. Bisa dikatakan metode elemen hingga merupakan penemuan terpenting dalam bidang analisis struktur.
 
== Elemen struktur ==
Sebuah sistem struktur merupakan gabungan antara elemen struktur dengan bahannya. Sangat penting bagi insinyur untuk mengklasifikasi struktur baik bentuk maupun fungsi dengan mengenali berbagai elemen yang menyusun struktur tersebut. Elemen struktur diantaranya :
 
=== Elemen lentur: Balok sederhana ===
[[Berkas:Beam bending.png|thumbjmpl|Lentur balok]]
Sebuah balok langsing yang diberi perletakan sederhana akan menghasilkan lenturan. Sebutan masalah lentur diartikan pada studi mengenai tegangan dan deformasi yang timbul pada elemen yang mengalami aksi gaya. Umumnya tegak lurus pada sumbu elemen sehingga salah satu tepi serat mengalami perpanjangan dan tepi serat lainnya mengalami penyusutan.
Persamaan sederhana untuk menentukan tegangan lentur pada balok dengan perletakan sederhana adalah :<ref name=":0">Gere, J. M. and Timoshenko, S.P., 1997, '''Mechanics of Materials''', PWS Publishing Company.</ref>
:<math>{\sigma}= \frac{M y}{I_x}</math>
dimana
Baris 20:
* ''M'' - momen pada sumbu netral
* ''y'' - jarak tegak lurus sumbu netral ke tepi
* ''I''<sub>''x''</sub> - [[momen inersia]] luasan pada sumbu netral ''x''.
 
=== Elemen tekan: Kolom ===
Baris 26:
 
=== Pelat ===
PlatPelat adalah struktur palanarplanar kaku yang secara khas terbuat dari material monolit yang tingginya yang kecil dibandingkan dengan dimensi lainnya. Umumnya dapat dikatakan bahwa pelat yang terbuat dari material homogen mempunyai sifat yang sama pada segala arah.
 
=== Membran ===
Baris 36:
== Tipe struktur ==
 
Kombinasi elemen struktur dan material yang menyusunnya disebut sebagai suatu sistem struktur. Setiap sistem dibangun dari satu atau lebih dari keempat tipe dasar struktur.<ref>Hibbeller, R.C, 1999, '''AnalisaAnalisis Struktur''', PT. Prenhallindo.</ref>
[[Berkas:Hancock tower 2006.jpg|jmpl|leftkiri|Gedung John Hancock Center, merupakan gabungan struktur kerangka kotak (''tube'') sebagai penahan beban gravitasi dan truss-x sebagai pengaku lateral.]]
=== Truss ===
 
Truss terdiri dari ikatan elemen balok tegangan tarik dan elemen kolom pendek dan biasanya berbentuk segitiga. Truss bidang disusun dari elemen-elemen yang berada pada bidang yang sama (2 matra) dan seringkalisering kali digunakan untuk jembatan-jembatan, penopang atap. Sebaliknya, truss ruang memiliki elemen-elemen yang dapat mengembang ke dalam tiga matra dan cocok untuk derek dan menara. Kemampuan bentangnya mulai dari 10 [[meter|m]] hingga 125 m. Untuk kasus jembatan di Indonesia, kemampuan bentang truss tipe Warren bisa mencapai 60 m dibandingkan dengan jembatan balok prategang sederhana yang hanya mampu membentang sepanjang 30 m.
 
=== Kabel ===
Baris 48:
 
=== Lengkungan ===
Lengkungan atau busur (''Arch'') mencapai kekuatannya dalam tegangan mampat, karena ia memiliki suatu bentuk kurva yang berlawanan dibandingkan dengan kabel. Lengkungan meskipun harus dimampatkan agar dapat menjaga bentuknya dan akibatnya pembebanan sekunder seperti gaya geser dan momen, harus dipertimbangkan dalam desainnya. Lengkungan seringkalisering kali digunakan dalam struktur jembatan, kubah, dan untuk pintu masuk dinding bangunan batu.
 
=== Kerangka ===
Baris 55:
 
=== Struktur bidang permukaan ===
Struktur bidang permukaan dibuat dari suatu bahan yang memiliki ketebalan yang sangat tipis dibandingkan dengan ukuran dimensi lainnya. KadangkalaKadang kala material ini sangat lentur dan dapat mengambil bentuk suatu tenda atau struktur gelembung udara. Pada kasus ini material bekerja sebagai suatu struktur membran yang dibebankan oleh tegangan tarik murni.
 
Struktur bidang permukaan bisa juga dibuat dari bahan kaku seperti beton pratekan atau ''ferro-semen''. Sebagaimana mereka bisa dibentuk sebagai pelat lipatan, silinder, atau parabola hiperbolik dan disebut pelat tipis atau cangkang. Struktur ini bekerja menyerupai kabel atau lengkungan karena mereka pada pokoknya menopang beban-beban dalam bentung tegangan tarik atau mampatan (tekanan) dengan pembengkokan yang sangat kecil. Struktur ini rumit dianalisis kecuali dengan bantuan komputer dengan metode elemen hingga.
 
== Beban ==
[[Berkas:Jembatan Truss Dutch Leupung.JPG|thumbjmpl|Jembatan tipe Warren Truss di Leupung, [[Aceh]]. Disini beban mati adalah berat rangka baja dan perkerasan jalan. Sedang beban hidupnya adalah beban kendaraan, angin, dan gempa.]]
Setelah dimensi dari struktur itu diketahui, sangat penting kemudian menentukan beban apa saja yang ditanggung dari struktur. Beban disain biasanya dispesifikasi oleh peraturan bangunan yang berlaku. Untuk wilayah hukum Indonesia digunakan [[SNI]] 03 1727 19892013 ''PerencanaanBeban Pembebanandesain Untukminimum Rumahdan kriteria terkait untuk bangunan gedung dan Gedungstruktur lain''.
Ada dua jenis beban pada struktur yang harus dipertimbangkan dalam desain. Tipe pertama ini disebut dengan '''Beban mati''' yang merupakan berat dari kumpulan setiap anggota struktur maupun berat objek benda yang ditempatkan secara permanen. Sebagai contoh, kolom, balok, balok penopang (girder), pelat lantai, dinding, jendela, ''plumbing'', alat listrik, dan lain sebagainya.
Kedua adalah '''Beban hidup''', yang mana beban yang bergerak atau bervariasi dalam ukuran maupun lokasi. Contohnya adalah beban kendaraan pada jembatan, beban pengunjung pada gedung, beban hujan, beban salju, beban ledakan, beban gempa, dan beban alami lainnya.
 
=== Beban angin ===
Bila struktur merintangi aliran angin, [[energi kinetik]] angin dikonversikan ke dalam energi potensial tekanan, yang menyebabkan terjadinya suatu pembebanan angin. Efek angin pada struktur bergantung pada kerapatan dan kecepatan udara, sudut datang angin, bentuk dan kekakuan struktur dan kekesaran permukaannya. Pembebanan angin bisa ditinjau dari pendekatan [[statik]] maupun [[dinamik]].
 
=== Beban gempa ===
[[Gempa bumi]] menghasilkan pembebanan pada suatu struktur melalui interaksi gerakan [[tanah]] dan karakteristik respon struktur. Pembebanan ini merupakan hasil dari distorsi struktur yang disebabkan oleh gerakan tanah dan kekakuan struktur. Besarnya bergantung pada banyak dan tipe percepatan gerak tanah, masa dan kekakuan struktur. Pembebanan dan analisis gempa di Indonesia merujuk pada SNI 03 1726 20102019 Standar Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung.
 
=== Tekanan Hidrostatik dan Tekanan Tanah ===
Baris 75:
 
== Stabilitas struktur ==
Pada struktur stabil, deformasi yang diakibatkan beban pada umumnya kecil dan gaya dakhil (internal) yang timbul dalam struktur mempunyai kecenderugankecenderungan mengembalikan bentuk semula apabila bebannya dihilangkan. Pada struktur tidak stabil, deformasi yang diakibatkan oleh beban pada umumnya mempunyai kecenderungan untuk terus bertambah selama struktur dibebani. Struktur yang tidak stabil mudah mengalami keruntuhan secara menyeluruh dan seketika begitu dibebani.
Sebagai contoh, bayangkan tiga buah balok disusun membentuk rangka segiempat. Berikan gaya horizontal diujung rangka atas balok tersebut. Maka lama kelamaan rangka itu roboh. Salah satu cara untuk membuatnya lebih stabil dengan ''bracing'' atau mengisinya dengan dinding. Selain dengan yang disebutkan tadi, ketidakstabilitas struktur bisa diakibatkan juga oleh kelemahan kolom yang diakibatkan tekuk maupun efek ''P-Delta''.
 
== Metode analisis ==
[[Berkas:Cremona triangle simple.svg|ka|thumbjmpl|Analisis Cremona untuk truss sederhana.]]
Untuk bisa menghasilkan analisis yang akurat, insinyur struktur harus memperoleh informasi mengenai beban struktur, [[geometri]], kondisi tumpuan, dan sifat bahan. Hasil dari analisis biasanya berupa reaksi tumpuan, [[tegangan]], geser, momen, puntir, dan perpindahan. Informasi ini kemudian dibandingkan dengan kriteria kondisi kegagalan. Analisis struktur lanjutan menyertakan respon [[dinamika]], stabilitas dan perilaku non-linier. Ada dua pendekatan analisis yang umum yang : pendekatan analitik dan grafis. Pendekatan analitik menerapkan mekanika bahan, teori elastisitas dengan jalan analisis matematika seperti [[vektor]], [[matrik]] ataupun elemen hingga. Pendekatan grafis menerapkan prinsip-prinsip geometri struktur dan garis sebagai beban untuk menganalisis. Bagaimanapun terkadang prinsip [[mekanika klasik]] tetap diterapkan seperti untuk mengecek kesetimbangan dan untuk menganalisis balok statis tertentu.
 
Pendekatan analitik untuk menganalisis kerangka atau balok elastis diantaranya adalah :
* Metode Cross
* Metode Takabeya
Baris 91:
* Metode defleksi kemiringan(''slope deflection'').
 
Sedangkan untuk menganalisis kestabilitas struktur (kemantapan kolom) diantaranya :
* Metode [[tekuk]] Euler
* Teori modulus ganda
Baris 98:
* Metode energi
 
Analisis pelat :
* Teori Khirchoff-Love
* Teori Mindlin-Reissner
* Teori Reissner–Stein
 
Dengan pendekatan grafis :
* Metode Cremona
* Diagram defleksi Williot-Mohr
Baris 109:
 
=== Analisis dengan bantuan komputer ===
[[Berkas:3d.JPG|thumbjmpl|ka|STAAD.Pro adalah salah satu program analisis struktur.]]
Hingga akhir tahun 1950an, analisis beberapa tipe struktur tak-tentu panjang dan rumit. Analisis struktur dengan banyak sambungan dan anggota (truss ruang, contohnya) memerlukan beberapa bulan perhitungan oleh tim insinyur berpengalaman. Itupun perlu banyak asumsi yang disederhanakan sehingga hasilnya kadang justru menimbulkan keraguan. Sekarang, program komputer yang tersedia bisa membuat pekerjaan lebih cepat dan akurat. Beberapa pengecuali tetap ada. Jika struktur memiliki bentuk yang tidak lazim dan komplek seperti dinding tebal wadah nuklir atau lambung kapal selam, analisis komputer akan lebih rumit dan memakan waktu yang banyak.