Rumus integral lintasan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
k Bot: Mengganti kategori yang dialihkan Konsep fisika dasar menjadi Konsep dalam fisika |
||
(11 revisi perantara oleh 6 pengguna tidak ditampilkan) | |||
Baris 1:
{{mekanika kuantum}}
'''Rumus integral lintasan''' [[mekanika kuantum]] adalah deskripsi dari teori kuantum yang menggeneralisasi [[Aksi (fisika)|prinsip
Formulasi ini telah terbukti penting untuk perkembangan selanjutnya dari fisika
Lintasan integral juga berhubungan dengan kuantum dan proses
[[Berkas:Three_paths_from_A_to_B.png|jmpl|250x250px|Hanya tiga dari keseluruhan jalur yang berkontribusi terhadap amplitudo kuantum untuk sebuah partikel bergerak dari titik A pada waktu ''t''<sub>0</sub>{{math|''t''<sub>0</sub>}} ke titik B di lain waktu ''t''<sub>1</sub>{{math|''t''<sub>1</sub>}}.]]
== Referensi ==
Baris 18 ⟶ 11:
== Bacaan lanjutan ==
{{Columns-list|* {{cite book |author1=Feynman |first1=R. P. |author1-link=Richard Feynman |author2=Hibbs |first2=A. R. |year=1965 |title=Quantum Mechanics and Path Integrals |url=https://archive.org/details/quantummechanics0000feyn |place=New York |publisher=McGraw-Hill |isbn=0-07-020650-3}} <small>The historical reference, written by the inventor of the path integral formulation himself and one of his students.</small>
* {{cite book |authorlink=Hagen Kleinert |last=Kleinert |first=Hagen |year=2004 |title=Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets |edition=4th |place=Singapore |publisher=World Scientific |isbn=981-238-107-4 |url=http://www.physik.fu-berlin.de/~kleinert/b5}}
* {{cite book |author=Zinn Justin|first= Jean |year=2004 |title=Path Integrals in Quantum Mechanics |publisher=Oxford University Press |isbn=0-19-856674-3}}
* {{cite book |author=Schulman|first= Larry S. |year=1981 |title=Techniques & Applications of Path Integration |place=New York |publisher=John Wiley & Sons |isbn=0-486-44528-3}}
* {{cite book |author=Ahmad|first= Ishfaq |authorlink=Ishfaq Ahmad |title=Mathematical Integrals in Quantum Nature |series=The Nucleus |year=1971 |pages=189–209}}
* {{cite book |last=Inomata|first= Akira|last2= Kuratsuji|first2= Hiroshi|last3= Gerry|first3= Christopher |title=Path Integrals and Coherent States of SU(2) and SU(1,1) |url=https://archive.org/details/pathintegralscoh0000aino|place=Singapore |publisher=World Scientific |year=1992 |isbn=981-02-0656-9}}
* {{cite book |author1=Grosche|first= Christian |author2=Steiner|first2= Frank |lastauthoramp=yes |year=1998 |title=Handbook of Feynman Path Integrals |url=https://archive.org/details/handbookoffeynma0000gros|series=Springer Tracts in Modern Physics 145 |publisher=Springer-Verlag |isbn=3-540-57135-3}}
*{{cite book |authorlink= Wolfgang A. Tomé |last=Tomé|first=Wolfgang A. |year=1998 |title=Path Integrals on Group Manifolds |url= https://archive.org/details/pathintegralsong0000tome |place=Singapore|publisher=World Scientific |isbn=981-02-3355-8}} Discusses the definition of Path Integrals for systems whose kinematical variables are the generators of a real separable, connected Lie group with irreducible, square integrable representations.
* {{cite book |authorlink=John R. Klauder |last=Klauder|first=John R.|title=A Modern Approach to Functional Integration |place=New York |publisher=Birkhäuser |year=2010 |isbn=978-0-8176-4790-2}}
* {{cite book |author=Ryder|first= Lewis H. |title=Quantum Field Theory |url=https://archive.org/details/quantumfieldtheo0000ryde|publisher=Cambridge University Press |year=1985 |isbn=0-521-33859-X}} Highly readable textbook; introduction to relativistic QFT for particle physics.
* {{cite book |author=Rivers|first= R. J. |title=Path Integrals Methods in Quantum Field Theory |publisher=Cambridge University Press |year=1987 |isbn=0-521-25979-7}}
* {{cite book |author= Mazzucchi|first= S. |title=Mathematical Feynman path integrals and their applications|publisher=World Scientific |year=2009 |isbn=978-981-283-690-8}}
* {{cite book |author1=Albeverio|first= S. |author2=Hoegh-Krohn. R. |author3= Mazzucchi, S. |lastauthoramp=yes |title=Mathematical Theory of Feynman Path Integral |series=Lecture Notes in Mathematics 523 |publisher=Springer-Verlag |year=2008 |isbn=9783540769569}}
* {{cite book |author1=Glimm|first= James |author2=Jaffe, Arthur |lastauthoramp=yes |title=Quantum Physics: A Functional Integral Point of View |url=https://archive.org/details/quantumphysicsfu0000glim|place=New York |publisher=Springer-Verlag |year=1981 |isbn=0-387-90562-6}}
* {{cite book |authorlink=Barry Simon|last=Simon|first=Barry |title=Functional Integration and Quantum Phyiscs |url=https://archive.org/details/functionalintegr0000simo|place=New York |publisher=Academic Press |year=1979 |isbn=0-8218-6941-8}}
* {{cite book |first1=Gerald W. |last1=Johnson |first2=Michel L.|last2= Lapidus |title=The Feynman Integral and Feynman's Operational Calculus |series=Oxford Mathematical Monographs |publisher=Oxford University Press |year=2002 |isbn=0-19-851572-3}}
* {{cite book|first=Harald J. W.|last=Müller-Kirsten|year=2012|title=Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral| edition=2nd|place=Singapore|publisher=World Scientific}}
* {{cite web |author=Etingof|first= Pavel |title=Geometry and Quantum Field Theory |publisher=MIT OpenCourseWare |year=2002 |url=http://ocw.mit.edu/courses/mathematics/18-238-geometry-and-quantum-field-theory-fall-2002/index.htm}} This course, designed for mathematicians, is a rigorous introduction to perturbative quantum field theory, using the language of functional integrals.
* {{cite book |last=Zee |first=Anthony |authorlink=Anthony Zee |title=Quantum Field Theory in a Nutshell |year=2010 |url=https://archive.org/details/isbn_9780691140346 |edition=Second |publisher=Princeton University Press |location= |isbn=978-0-691-14034-6 }} A great introduction to Path Integrals (Chapter 1) and QFT in general.
* {{cite arXiv |last=Grosche |first=Christian |title=An Introduction into the Feynman Path Integral |year=1992 |eprint=hep-th/9302097}}
* {{cite arXiv |last=MacKenzie |first=Richard |year=2000 |title=Path Integral Methods and Applications |eprint=quant-ph/0004090}}
Baris 47 ⟶ 40:
* [https://www.youtube.com/watch?v=QTjmLBzAdAA A mathematically rigorous approach to perturbative path integrals] via animation on YouTube
▲[[Kategori:Konsep fisika dasar]]
▲[[Kategori:Mekanika statistika]]
[[Kategori:Mekanika kuantum]]
|