Korelasi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k bot Membuang: pl:Korelacja |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.2 |
||
(34 revisi perantara oleh 23 pengguna tidak ditampilkan) | |||
Baris 1:
Dalam [[teori probabilitas]] dan [[statistika]], '''korelasi''', juga disebut '''koefisien korelasi''', adalah nilai yang menunjukkan kekuatan dan arah hubungan linier antara dua [[peubah acak]] (''random variable'').
{|
|+'''Koefisien korelasi'''
|- ▼
| Korelasi tinggi || Tinggi || Rendah || Rendah || Tanpa korelasi || Tak ada korelasi (acak) || Tanpa korelasi || Rendah || Rendah || Tinggi || Korelasi tinggi▼
|-
▲
| −1 || < −0.9 || > −0.9 || < −0.4 || > −0.4 || 0 || < +0.4 || > +0.4 || < +0.9 || > +0.9 || +1 ▼
▲| −1 || < −0.9 || > −0.9 || < −0.4 || > −0.4 || 0 || <= +0.4 || > +0.4 || < +0.9 || > +0.9 || +1
|-
|}
Baris 15:
=== Sifat-sifat matematis ===
[[Berkas:Korelasi.png|
Korelasi ρ<sub>''X, Y''</sub> antara dua [[peubah acak]] ''X'' dan ''Y'' dengan nilai yang diharapkan μ<sub>''X''</sub> dan μ<sub>''Y''</sub> dan [[simpangan baku]] σ<sub>''X''</sub> dan σ<sub>''Y''</sub> didefinisikan sebagai:
Baris 21:
\rho_{X,Y}={\mathrm{cov}(X,Y) \over \sigma_X \sigma_Y} ={E((X-\mu_X)(Y-\mu_Y)) \over \sigma_X\sigma_Y}.</math>
Karena μ<sub>''X''</sub> = E(''X''),
σ<sub>''X''</sub><sup>2</sup> = E(''X''<sup>2</sup>) − E<sup>2</sup>(''X'') dan
demikian pula untuk ''Y'', maka dapat pula ditulis
Baris 33:
== Koefisien korelasi non-parametrik ==
Koefisien korelasi Pearson merupakan [[Statistika parametrik|statistik parametrik]], dan ia kurang begitu menggambarkan korelasi bila asumsi dasar [[Distribusi normal|normalitas]] suatu data dilanggar. Metode korelasi [[Statistika non-parametrik|non-parametrik]] seperti [[Koefisien korelasi rank Spearman|ρ Spearman]] and [[Tau Kendall|τ Kendall]] berguna ketika distribusi tidak normal. Koefisien korelasi non-parametrik masih kurang ''kuat'' bila dibandingkan dengan metode parametrik jika asumsi normalitas data terpenuhi,
== Metode pengukuran yang lain untuk mengetahui dependensi antara dua peubah acak
Untuk mendapatkan suatu pengukuran mengenai dependensi data (juga nonlinier), dapat digunakan [[rasio korelasi]]
<!--
To get a measure for more general dependencies in the data (also nonlinear) it is better to use the [[correlation ratio]] which is able to detect almost any functional dependency, or [[mutual information]] which detects even more general dependencies.
Baris 54:
Diktum konvensi bahwa "korelasi tak selalu berarti sebab-akibat" dibahas dalam artikel [[hubungan artifisial]] (''spurious relationship''). Lihat pula [[korelasi mengarah ke hubungan sebab-akibat (kekeliruan logis)]]. Bagaimanapun, korelasi tak diasumsukan selalu [[akausal]], meski penyebab tersebut bisa pula tidak diketahui.
<ref>vvv</ref>
== Pranala luar ==
* [http://www.mega.nu:8080/ampp/rummel/uc.htm Understanding Correlation] - Materi pegantar
* [http://www.statsoft.com/textbook/stathome.html Statsoft Electronic Textbook] {{Webarchive|url=https://web.archive.org/web/20090227054024/http://www.statsoft.com/textbook/stathome.html |date=2009-02-27 }}
* [http://www.vias.org/tmdatanaleng/cc_corr_coeff.html Pearson's Correlation Coefficient]
* [http://www.vias.org/simulations/simusoft_rdistri.html Learning by Simulations] - Distribusi koefisien korelasi
* [http://www.analistat.com Jasa analisis statistik penelitian] {{Webarchive|url=https://web.archive.org/web/20070514090155/http://analistat.com/ |date=2007-05-14 }} - Jasa analisis statistik penelitian
== Rujukan ==
{{references}}
[[Kategori:Statistika]]
|