Tomografi keselarasan optik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Perbaikan
Cendy00 (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala
 
(16 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
{{Infobox interventions|Name=OpticalTomografi coherencekeselarasan tomographyoptik|image=Nibib 030207 105309 sarcoma.jpg|Image=Nibib 030207 105309 sarcoma.jpg|caption=Optical Coherence Tomography (OCT) menghasilkan gambar suatu [[sarkoma]]
|OPS301={{OPS301|3-300}}
}}
'''OpticalTomografi coherencekeselarasan tomographyoptik ''' atau '''tomografi koherensi optik''' ('''OCT''') adalah sebuah teknik [[pencitraan medis]] yang menggunakan cahaya untuk menangkap gambar tiga dimensi beresolusi [[mikrometer]] dari dalam media hamburan optik (misalnya, jaringan biologis). OpticalTomografi coherencekeselarasan tomographyoptik didasarkan pada [[Interferometri]] koherensibersejarah rendah, biasanya menggunakan cahaya [[Inframerah|inframerah dekat]]. Penggunaan yang cahaya dengan [[panjang gelombang]] relatif panjang memungkinkan untuk menembus ke dalam media hamburan. ConfocalMikroskopi microscopykonfokal, teknik optik yang lain, biasanya menembus kurang dalam ke dalam sampel tetapi dengan resolusi yang lebih tinggi.
 
Tergantung pada sifat dari sumber cahaya (superluminescent[[dioda]] adipendarcahaya dioda, ultrashortlaser pulsedpulsa laserultrapendek, dan supercontinuum laser adikesinambungan sudah pernah digunakan), optical coherence tomographyOCT telah mencapai resolusi sub-mikrometer (dengan sumber spektrum sangat lebar memancarkan kisaran panjang gelombang lebih dari ~100&#x20nbsp;nm).
 
== Pendahuluan ==
[[Berkas:HautFingerspitzeOCT.gif|jmpl|218x218px|Optical coherence tomogram dari ujung jari. MeungkinkanMemungkinkan untuk mengamati kelenjar keringat, yang memiliki "penampilan seperti uliran pembuka botol"]]
Mulai dari cahaya putih interferometri untuk ''in vivo'' okular mata pengukuran pencitraan dari jaringan biologis, terutama dari [[mata manusia]], diselidiki oleh beberapa kelompok di seluruh dunia. Pertama dua dimensi ''di vivo'' penggambaran manusia fundus mata manusia sepanjang meridian horizontal berdasarkan cahaya putih interferometric kedalaman scan disajikan di ICO-15 DUDUK konferensi pada tahun 1990. Selanjutnya dikembangkan pada tahun 1990 oleh Naohiro Tanno, kemudian seorang [[profesor]] di Yamagata University, dan khususnya sejak tahun 1991 oleh Huang et al., di Prof. James Fujimoto laboratorium di [[Institut Teknologi Massachusetts]], optical coherence tomography (OCT) dengan mikrometer resolusi dan cross-sectional kemampuan pencitraan telah menjadi menonjol biomedis jaringan-teknik pencitraan; hal ini sangat cocok untuk aplikasi mata dan jaringan lain pencitraan yang membutuhkan mikrometer resolusi milimeter dan kedalaman penetrasi. Gambar pertama OCT ''in vivo'' – menampilkan struktur [[retina]] – diterbitkan pada tahun 1993, dan gambar pertama endoskopi pada tahun 1997.
OCT juga telah digunakan untuk berbagai proyek pelestarian barang seni, di mana ia digunakan untuk menganalisis lapisan yang berbeda dalam sebuah lukisan. OCT telah menarik keuntungan lain dari sistem pencitraan medis.
<!--
Baris 37:
OCT delivers high resolution because it is based on light, rather than sound or radio frequency. An optical beam is directed at the tissue, and a small portion of this light that reflects from sub-surface features is collected. Note that most light is not reflected but, rather, scatters off at large angles. In conventional imaging, this diffusely scattered light contributes background that obscures an image. However, in OCT, a technique called interferometry is used to record the optical path length of received photons allowing rejection of most photons that scatter multiple times before detection. Thus OCT can build up clear 3D images of thick samples by rejecting background signal while collecting light directly reflected from surfaces of interest.
 
Within the range of noninvasive three-dimensional imaging techniques that have been introduced to the medical research community, OCT as an echo technique is similar to [[ultrasound imaging]]. Other medical imaging techniques such as computerized axial tomography, magnetic resonance imaging, or positron emission tomography do not use the echo-location principle. <ref>{{cite web |url=https://www.mastereyeassociates.com/optical-coherence-tomography-scan |title=Optical Coherence Tomography provides better resolution than an MRI and Helps Diagnose Retina & Corneal Disease and Glaucoma, Part II |last=Unknown |first=Unknown |publisher=mastereyeassociates |date=June 13, 2017 |website=mastereyeassociates.com |access-date=June 13, 2017}} </ref>
 
The technique is limited to imaging 1 to 2&nbsp;mm below the surface in biological tissue, because at greater depths the proportion of light that escapes without scattering is too small to be detected. No special preparation of a biological specimen is required, and images can be obtained ‘non-contact’ or through a transparent window or membrane. It is also important to note that the laser output from the instruments is low – eye-safe near-infra-red light is used – and no damage to the sample is therefore likely.
Baris 44:
The principle of OCT is white light or low coherence interferometry. The optical setup typically consists of an interferometer (Fig. 1, typically [[Michelson interferometer|Michelson]] type) with a low coherence, broad bandwidth light source. Light is split into and recombined from reference and sample arm, respectively.
-->
 
{|
[[Berkas:OCT B-Scan Setup.GIF|thumbjmpl|375px|Fig. 2 Typical optical setup of single point OCT. Scanning the light beam on the sample enables non-invasive cross-sectional imaging up to 3 mm in depth with micrometer resolution.]]
|
[[Berkas:Full-field OCT setup.png|thumbjmpl|375px|Fig. 1 Full-field OCT optical setup. Components include: super-luminescent diode (SLD), convex lens (L1), 50/50 beamsplitter (BS), camera objective (CO), CMOS-DSP camera (CAM), reference (REF), and sample (SMP). The camera functions as a two-dimensional detector array, and with the OCT technique facilitating scanning in depth, a non-invasive three dimensional imaging device is achieved.]]
|}
 
{|
[[Berkas:Fd-oct.PNG|thumbjmpl|375px|Fig. 4 Spectral discrimination by fourier-domain OCT. Components include: low coherence source (LCS), beamsplitter (BS), reference mirror (REF), sample (SMP), diffraction grating (DG) and full-field detector (CAM) acting as a spectrometer, and digital signal processing (DSP)]]
|
[[Berkas:Ss-oct.PNG|thumbjmpl|375px|Fig. 3 Spectral discrimination by swept-source OCT. Components include: swept source or tunable laser (SS), beamsplitter (BS), reference mirror (REF), sample (SMP), photodetector (PD), and digital signal processing (DSP)]]
|}
 
=== Time domain ===
''Time domain OCT'' berprinsip bahwa ''pathlength'' dari ''reference arm'' divariasi menurut waktu (cermin referensi ditranslasikan secara longitudinal). Suatu sifat low coherence interferometry adalah bahwa interferensi, yaitu seri fringe gelap dan terang, hanya dapat dicapai ketika perbedaan jalur terjadi di sepanjang koherensi sumber cahaya. [[Interferensi]] ini disebut ''auto correlation'' dalam suatu ''symmetric interferometer'' (kedua lengan mempunyai refleksivitas yang sama), atau ''cross-correlation'' pada kasus umum. Envelope modulasi ini berubah ketika pathlength difference divariasi, di mana puncak envelope selaras dengan pathlength matching.
 
Interferensi dua berkas cahaya yang koheren secara parsial dapat diekspresikan dengan persamaan intensitas sumber cahaya, <math>I_S</math>, sebagai
Baris 84 ⟶ 85:
|}
 
where <math> \lambda_0 </math> and <math> \Delta\lambda</math> are respectively the central wavelength and the spectral width of the light source -->.<ref name="hasilan otomatis1">{{cite book| title= Anterior & Posterior Segment OCT: Current Technology & Future Applications, 1st edition |year=2014|last1=Garg|first1=A. }}</ref>.
<!--
 
===Frequency domain===
In frequency domain OCT (FD-OCT) the broadband interference is acquired with spectrally separated detectors (either by encoding the optical frequency in time with a spectrally scanning source or with a dispersive detector, like a grating and a linear detector array). Due to the [[Fourier analysis|Fourier]] relation ([[Wiener-Khintchine theorem]] between the auto correlation and the spectral power density) the depth scan can be immediately calculated by a Fourier-transform from the acquired spectra, without movement of the reference arm.<ref>{{cite journal|doi=10.1109/2944.796348|title=Optical coherence tomography (OCT): a review|year=1999|last1=Schmitt|first1=J.M.|journal=IEEE Journal of Selected Topics in Quantum Electronics|volume=5|pages=1205–1215|issue=4}}</ref><ref name="Fercher2">{{cite journal|doi=10.1016/0030-4018(95)00119-S|title=Measurement of intraocular distances by backscattering spectral interferometry|year=1995|last1=Fercher|first1=A|last2=Hitzenberger|first2=C.K.|last3=Kamp|first3=G.|last4=El-Zaiat|first4=S.Y.|journal=Optics Communications|volume=117|pages=43–48|bibcode= 1995OptCo.117...43F }}</ref> This feature improves imaging speed dramatically, while the reduced losses during a single scan improve the signal to noise ratio proportional to the number of detection elements. The parallel detection at multiple wavelength ranges limits the scanning range, while the full spectral bandwidth sets the axial resolution.
Baris 91 ⟶ 92:
 
====Spatially encoded====
Spatially encoded frequency domain OCT (SEFD-OCT, spectral domain or Fourier domain OCT) extracts spectral information by distributing different optical frequencies onto a detector stripe (line-array CCD or CMOS) via a dispersive element (see Fig. 4). Thereby the information of the full depth scan can be acquired within a single exposure. However, the large signal to noise advantage of FD-OCT is reduced due to the lower dynamic range of stripe detectors with respect to single photosensitive diodes, resulting in an SNR ([[signal to noise ratio]]) advantage of ~10 [[decibel|dB]] at much higher speeds. This is not much of a problem when working at 1300&nbsp;nm, however, since dynamic range is not a serious problem at this wavelength range. <ref>{{cite book| titlename="hasilan Anteriorotomatis1" & Posterior Segment OCT: Current Technology & Future Applications, 1st edition |year=2014|last1=Garg|first1=A. }}</ref>
 
The drawbacks of this technology are found in a strong fall-off of the SNR, which is proportional to the distance from the zero delay and a sinc-type reduction of the depth dependent sensitivity because of limited detection linewidth. (One pixel detects a quasi-rectangular portion of an optical frequency range instead of a single frequency, the Fourier-transform leads to the sinc(z) behavior). Additionally the dispersive elements in the spectroscopic detector usually do not distribute the light equally spaced in frequency on the detector, but mostly have an inverse dependence. Therefore, the signal has to be resampled before processing, which can not take care of the difference in local (pixelwise) bandwidth, which results in further reduction of the signal quality. However, the fall-off is not a serious problem with the development of new generation CCD or photodiode array with a larger number of pixels.
Baris 146 ⟶ 147:
 
== Referensi ==
 
{{reflist}}
{{Authority control}}
 
[[Kategori:Peralatan medis]]