Rumus Heron: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
||
(8 revisi perantara oleh 4 pengguna tidak ditampilkan) | |||
Baris 1:
{{Tanpa referensi|date=Maret 2022}}[[Berkas:Triangle with notations 2.svg|jmpl|190px|Segitiga dengan sisi ''a'', ''b'' dan ''c'']]
'''
:<math>
di mana ''s'' adalah [[semiperimeter]] segitiga itu:
:<math display="block">s=\frac{a+b+c}{2}.</math>
== Sejarah ==
== Pembuktian ==
[[Berkas:Teorem Heron.gif|ka|Segitiga dengan sisi ''a'', ''b'' dan ''c'']]
Formula ini juga dapat diterbitkan dari:
Pertama sesuai dengan aturan kosinus:
|<math>= \frac{1}{2} (\mbox{alas}) (\mbox{tinggi})</math>▼
Kedua sesuai dengan aturan trigonometri:
Ketiga sesuai dengan aturan sinus:
|<math>= \frac{1}{4}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2}</math>▼
<math>
\begin{align}
& = \frac{1}{2} ab\sin C \\
& = \frac{1}{4}\sqrt{(2a b -(a^2 +b^2 -c^2))(2a b +(a^2 +b^2 -c^2))} \\
& = \frac{1}{4}\sqrt{(c^2 -(a -b)^2)((a +b)^2 -c^2)} \\
& = \sqrt{\frac{(c -(a -b))(c +(a -b))((a +b) -c)((a +b) +c)}{16}} \\
& = \sqrt{\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}\frac{(a + b + c)}{2}} \\
& = \sqrt{\frac{(a + b + c)}{2}\frac{(b + c - a)}{2}\frac{(a + c - b)}{2}\frac{(a + b - c)}{2}} \\
& = \sqrt{s(s-a)(s-b)(s-c)}.
\end{align}
</math>
:yaitu ''a'', ''b'' dan ''c'' adalah panjang sisi segitiga dan ''s'' adalah setengah jumlah seluruh panjang segitiga.
== Referensi ==
* Pappas, T. (2002) ''The Joy of Mathematics: Discovering Mathematics All Around You''
{{Authority control}}
[[Kategori:Geometri]]
|