Persamaan Schrödinger: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Add 1 book for Wikipedia:Pemastian (20240809)) #IABot (v2.0.9.5) (GreenC bot |
|||
(11 revisi perantara oleh 9 pengguna tidak ditampilkan) | |||
Baris 1:
{{mekanika kuantum|cTopic=persamaan}}
Dalam [[mekanika kuantum]], '''persamaan Schrödinger''' adalah [[persamaan matematika]] yang menjelaskan perubahan tiap waktu dari sebuah sistem fisika
Dalam [[mekanika klasik]], [[Hukum gerak Newton|hukum kedua Newton]]
Konsep fungsi gelombang adalah dasar bagi [[postulat mekanika kuantum]].
Dalam [[interpretasi Kopenhagen]] mekanika kuantum, fungsi gelombang adalah penjelasan paling lengkap untuk berbagai sistem fisik. Penyelesaian persamaan Schrödinger tidak hanya dapat menjelaskan sistem [[
Persamaan Schrödinger bukanlah satu-satunya cara untuk mempelajari sistem mekanika kuantum dan membuat prediksi, karena formulasi mekanika kuantum lainnya seperti [[mekanika matriks]] yang dikenalkan oleh [[Werner Heisenberg]], dan [[formulasi integral lintasan]], dikembangkan oleh [[Richard Feynman]]. [[Paul A.M. Dirac|Paul Dirac]] menggabungkan mekanika matriks dan persamaan Schrödinger menjadi satu formulasi tunggal.
Baris 15 ⟶ 16:
<math>\mathrm{i}</math> adalah [[bilangan imaginer]], <math>t</math> adalah [[waktu]], ∂ / ∂<math>t</math> adalah [[turunan parsial]] terhadap <math>t</math>, ħ adalah [[konstanta Planck]] dibagi 2π, ψ(<math>t</math>) adalah [[fungsi gelombang]], dan H(<math>t</math>) adalah [[Hamiltonian]].
== Persamaan ==
=== Persamaan tergantung-waktu ===
Bentuk persamaan Schrödinger tergantung dari kondisi fisiknya (lihat dibawah untuk contoh-contoh khusus). Bentuk paling umumnya adalah [[Persamaan Schrödinger#Tergantung waktu|persamaan tergantung-waktu]] yang menjelaskan sebuah sistem berkembang dengan waktu:<ref name=Shankar1994>
{{cite book
Baris 23 ⟶ 24:
|year=1994
|title=Principles of Quantum Mechanics
|url=https://archive.org/details/principlesofquan0000shan_x3c9 |edition=2nd
|publisher=[[Kluwer Academic]]/[[Plenum Publishers]]
|isbn=978-0-306-44790-7
}}</ref>{{rp|143}}
[[
{{Equation box 1
|indent=:
Baris 37 ⟶ 38:
|background colour = #ECFCF4}}
{{Equation box 1
dengan {{math|''i''}} adalah [[satuan imajiner]], {{math|''ħ''}} adalah [[konstanta Planck]] tereduksi yang sama dengan :<math>\hbar = \frac{h}{2 \pi}</math>, lambang {{math|{{sfrac|∂|∂''t''}}}} menunjukkan [[turunan parsial]] terhadap [[waktu]] {{math|''t''}}, {{math|''Ψ''}} (huruf Yunani [[psi (huruf)|psi]]) adalah [[fungsi gelombang]] sistem kuantum, {{math|'''r'''}} dan {{math|''t''}} adalah posisi vektor dan waktu, dan {{math|''Ĥ''}} adalah [[operator (fisika)|operator]] [[Hamiltonian (mekanika kuantum)|Hamiltonian]] (yang mengkarakterisasi total energi sistem).▼
|indent=:
|title='''Persamaan Schrödinger 3 dimensi''' ''
|equation=<math>-\frac{\hbar}{2m}\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} + U(x,y,z)\psi(x,y,z) = E\psi(x,y,z)</math>
Atau diringkas
<math>-\frac{\hbar}{2m}\nabla^2\psi + U(x,y,z)\psi(x,y,z) = E\psi(x,y,z)</math>
|cellpadding
|border
|border colour = #50C878
|background colour = #ECFCF4}}
▲dengan <math>\nabla</math> adalah operator nabla [[Divergence|divergensi]] lalu {{math|''i''}} adalah [[satuan imajiner]], {{math|''ħ''}} adalah [[konstanta Planck]] tereduksi yang sama dengan
[[
Contoh paling umum adalah persamaan [[mekanika kuantum relativistik|nonrelativistik]] untuk partikel tunggal yang bergerak dalam sebuah [[medan listrik]] (bukan [[medan magnet]]; lihat [[Persamaan Pauli]]):<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html "Schrodinger equation"]. ''hyperphysics.phy-astr.gsu.edu''.</ref>
Baris 51 ⟶ 63:
|background colour=#F5FFFA}}
dimana {{math|''μ''}} adalah "[[massa tereduksi]]" partikel, {{math|''V''}} [[energi potensial]], {{math|∇<sup>2</sup>}} adalah [[Laplasian]] (operator diferensial), dan {{math|''Ψ''}} adalah fungsi gelombang (lebih tepatnya dalam konteks ini adalah "fungsi gelombang ruang-posisi"). Dalam bahasa sederhana, persamaan ini berarti "total [[energi]] sama dengan [[energi kinetik]] ditambah [[energi potensial]]",
Dengan diketahui operator diferensial tertentu, maka persamaan ini adalah [[persamaan diferensial parsial]] [[persamaan diferensial linear|linear]]. Juga merupakan [[persamaan difusi]],
Istilah ''"Persamaan Schrödinger"'' dapat merujuk ke kedua persamaan umum atau versi nonrelativistiknya yang spesifik. Versi umumnya sangat umum dan bisa digunakan untuk semua mekanika kuantum, mulai dari [[persamaan Dirac]] hingga [[teori medan kuantum]], dengan memasukkan berbagai pernyataan pada Hamiltonian. Versi nonrelativistik adalah berupa perkiraan dari kenyataan sebenarnya namun menunjukkan hasil yang akurat pada banyak situasi,
Untuk menggunakan persamaan Schrödinger, digunakan operator Hamiltonian untuk sistemnya untuk menghitung energi kinetik dan potensial partikel-partikel pada sistem, kemudian dimasukkan dalam persamaan Schrödinger. Hasil persamaan diferensial parsial kemudian diselesaikan untuk persamaan gelombang yang kemudian akan memuat informasi mengenai sistem.
=== {{anchor|Time independent equation}}Persamaan tak tergantung-waktu ===
Persamaan Schrödinger tergantung-waktu yang dijelaskan diatas memprediksi bahwa fungsi gelombang dapat membentuk [[gelombang berdiri]] disebut [[keadaan stasioner]] (atau "orbital", seperti [[orbital atom]] atau [[orbital molekul]]). Keadaan-keadaan ini penting karena pada studi berikutnya, memudahkan dalam penyelesaian persamaan Schrödinger tak tergantung-waktu untuk keadaan apapun. Keadaan stasioner juga dapat dijelaskan menggunakan bentuk persamaan yang lebih sederhana, ''persamaan Schrödinger
{{Equation box 1
Baris 74 ⟶ 86:
Dengan kata lain, persamaan ini mengatakan:
::''Ketika operator Hamiltonian berperan pada fungsi gelombang tertentu {{math|
Dalam terminologi [[aljabar linear]], persamaan ini adalah [[Eigenvalue dan eigenvector|persamaan eigenvalue]] dan fungsi gelombang disini merupakan [[
Seperti sebelumnya, bentuk paling umum adalah persamaan [[mekanika kuantum relativistik|nonrelativistik]] untuk partikel tunggal yang bergerak dalam sebuah medan listrik (bukan medan magnet):
Baris 92 ⟶ 104:
Persamaan Schrödinger tak tergantung-waktu dijelaskan lebih lanjut [[#Tak tergantung waktu|dibawah]].
== Latar belakang dan perkembangan sejarah ==
[[
{{Main article|Justifikasi teoritis dan percobaan untuk persamaan Schrödinger}}
Baris 100 ⟶ 112:
:<math>p = \frac{h}{\lambda} = \hbar k,</math>
dengan {{math|''h''}} adalah [[konstanta Planck]] dan {{math|''ħ''}} adalah konstanta Planck tereduksi, {{math|''h/2π''}}. [[Louis de Broglie]] mengemukakan
{{Cite journal
|last = de Broglie
Baris 126 ⟶ 138:
Pendekatan ini membatasi gelombang elektron dalam satu dimensi, sepanjang orbit lingkar berjari-jari {{math|''r''}}.
Pada tahun 1921, sebelum de Broglie, Arthur C. Lunn di Universitas Chicago telah menggunakan argumen yang sama yang berbasis dari penyelesaian energi-momentum relativistik untuk menurunkan apa yang kita sebtut saat ini sebagai hubungan de Broglie.<ref>{{cite journal|last=Weissman|first=M.B. |author2=V. V. Iliev |author3=I. Gutman|title=A pioneer remembered: biographical notes about Arthur Constant Lunn|journal=Communications in Mathematical and in Computer Chemistry|year=2008|volume=59|issue=3|pages=687–708}}</ref> Tidak seperti de Broglie, Lunn merumuskan persamaan diferensial yang saat ini dikenal sebagai persamaan Schrödinger. Sayangnya paper ini ditolak oleh Physical Review.<ref>{{cite book|last=Kamen|first=Martin D.|title=Radiant Science, Dark Politics|url=https://archive.org/details/radiantscienceda00kame|year=1985|publisher=University of California Press|location=Berkeley and Los Angeles, CA|isbn=0-520-04929-2|pages=
Menindaklanjuti ide de Broglie, fisikawan [[Peter Debye]] berkomentar bahwa jika partikel berperilaku seperti gelombang, maka pastinya memiliki bentuk persamaan gelombang. Schrödinger pun berusaha mencari persamaan gelombang 3-dimensi yang layak untuk elektron. Ia dibimbing oleh analogi [[William Rowan Hamilton|William R. Hamilton]] antara [[mekanika]] dan [[optik]],
{{Cite book
|last=Schrodinger |first=E.
Baris 144 ⟶ 156:
* {{en}} [http://eqworld.ipmnet.ru/en/solutions/lpde/lpde108.pdf Linear Schrödinger Equation at EqWorld: The World of Mathematical Equations].
* {{en}} [http://eqworld.ipmnet.ru/en/solutions/npde/npde1403.pdf Nonlinear Schrödinger Equation at EqWorld: The World of Mathematical Equations].
* {{en}} [http://www.colorado.edu/UCB/AcademicAffairs/ArtsSciences/physics/TZD/PageProofs1/TAYL07-203-247.I.pdf The Schrödinger Equation in One Dimension] {{Webarchive|url=https://web.archive.org/web/20060524165051/http://www.colorado.edu/UCB/AcademicAffairs/ArtsSciences/physics/TZD/PageProofs1/ |date=2006-05-24 }}.
* {{en}} [http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html All about 3D schrodinger Equation ]
* {{en}} [http://tosio.math.toronto.edu/wiki/index.php/Main_Page Dispersive PDE Wiki] {{Webarchive|url=https://web.archive.org/web/20070425131659/http://tosio.math.toronto.edu/wiki/index.php/Main_Page |date=2007-04-25 }}.
{{fisika-stub}}
|