Besi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HaEr48 (bicara | kontrib)
Muhammad Anas Sidik (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
 
(46 revisi perantara oleh 28 pengguna tidak ditampilkan)
Baris 1:
{{kotak info besi}}
 
'''Besi''' adalah [[unsur kimia]] dengan simbol '''Fe''' (dari {{lang-la|ferrum}}) dan [[nomor atom]] 26. MerupakanBesi merupakan [[logam]] dalam [[deret transisi pertama]].<ref>{{Cite web |url=http://www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1May13.pdf |title=Salinan arsip |access-date=2016-01-11 |archive-date=2015-08-22 |archive-url=https://web.archive.org/web/20150822234830/http://www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1May13.pdf |dead-url=yes }}</ref> IniBesi adalah unsur paling umum di [[bumi]] berdasarkan massa, membentuk sebagian besar bagian [[inti luar bumi|inti luar]] dan [[inti dalam bumi|dalam]] bumi. Besi adalah [[Kelimpahan unsur dalam kerak bumi|unsur keempat terbesar pada kerak bumi]]. Kelimpahannya dalam [[planet berbatu]] seperti bumi karena melimpahnya produksi akibat [[Fusi nuklir|reaksi fusi]] dalam [[bintang]] bermassa besar, di mana produksi [[nikel-56]] (yang meluruh menjadi isotop besi paling umum) adalah [[reaksi fusi nuklir]] terakhir yang bersifat [[eksotermal]]. Akibatnya, [[nikel]] [[Radioaktivitas|radioaktif]] adalah unsur terakhir yang diproduksi sebelum keruntuhan hebat [[Supernova tipe II|supernova]]. Keruntuhan tersebut menghamburkan [[Prekursor (kimia)|prekursor]] [[radionuklida]] besi ke angkasa raya.
 
Seperti [[unsur golongan 8]] lainnya, besi berada pada rentang [[Bilangan oksidasi|tingkat oksidasi]] yang lebar, −2 hingga +6, meskipun +2 dan +3 adalah yang paling banyak. Unsur besi terdapat dalam [[meteorit]] dan lingkungan rendah [[oksigen]] lainnya, tetapi reaktif dengan oksigen dan [[air]]. Permukaan besi segar tampak berkilau abu-abu keperakan, tetapi [[Oksidasi|teroksidasi]] dalam udara normal menghasilkan [[besi oksida]] [[hidrat]], yang dikenal sebagai [[karat]]. Tidak seperti logam lain yang membentuk lapisan oksida [[Pasivasi (kimia)|pasivasi]], oksida besi menempati lebih banyak tempat daripada logamnya sendiri dan kemudian mengelupas, mengekspos permukaan segar untuk korosi.
 
Logam besi telah digunakan sejak [[Zaman Besi|zaman purba]], meskipun [[Logam paduan|paduan]] [[tembaga]], yang memiliki titik lebur lebih rendah, yang digunakan lebih awal dalam sejarah manusia. Besi murni relatif lembut, tetapi tidak bisa didapat melalui [[Peleburan (metalurgi)|peleburan]]. Materi ini mengeras dan diperkuat secara signifikan oleh kotoran, [[karbon]] khususnya, dari proses peleburan. Dengan proporsi karbon tertentu (antara 0,002% dan 2,1%) menghasilkan [[baja]], yang lebih keras dari besi murni, mungkin sampai 1000 kali. Logam besi mentah diproduksi di [[tanur tinggi]], dimanadi mana bijih direduksi dengan [[batu bara]] menjadi ''[[pig iron]]'', yang memiliki kandungan karbon tinggi. Pengolahan lebih lanjut dengan oksigen mengurangi kandungan karbon sehingga mencapai proporsi yang tepat untuk pembuatan baja. Baja dan [[Logam paduan|paduan]] besi berkadar karbon rendah bersama dengan logam lain ([[baja paduan]]) sejauh ini merupakan logam yang paling umum digunakan oleh industri, karena lebarnya rentang sifat-sifat yang didapat dan kelimpahan batuan yang mengandung besi.
 
Senyawa kimia besi memiliki banyak manfaat. Besi oksida dicampur dengan serbuk aluminium dapat dipantik untuk membuat [[reaksi termit]], yang digunakan dalam pengelasan dan pemurnian bijih. Besi membentuk senyawa biner dengan [[halogen]] dan [[kalsogen]]. Senyawa organologamnya antara lain [[ferosen]], [[senyawa sandwich]] pertama yang ditemukan.
Baris 57:
|}
 
Sifat mekanik besi dan paduannya dapat dievaluasi menggunakan berbagai uji, termasuk [[Timbangan Brinell|uji Brinell]], [[Timbangan Rockwell|uji Rockwell]] dan [[uji kekerasan Vickers]]. Data pada besi begitu konsisten sehingga sering digunakan untuk kalibrasi peralatan atau uji perbandingan.<ref name=corr/><ref>{{cite web| url=http://mdmetric.com/tech/hardnessconversion.html| title=Hardness Conversion Chart| accessdate=23 May 2010| publisher=Maryland Metrics| archive-date=2015-06-18| archive-url=https://web.archive.org/web/20150618071701/http://mdmetric.com/tech/hardnessconversion.html| dead-url=yes}}</ref> Namun, sifat mekanik besi sangat dipengaruhi oleh kemurnian sampel: besi murni kristal tunggal untuk keperluan penenelitian faktanya lebih lunak daripada aluminium,<ref name=pure/> dan besi hasil produksi industri yang paling murni (99,99%) memiliki kekerasan 20–30&nbsp;Brinell.<ref>{{Cite journal| title=Properties of Various Pure Irons: Study on pure iron I| url=http://ci.nii.ac.jp/naid/110001459778/en| volume=50| issue=1| pages=42–47| journal=Tetsu-to-Hagane| first1 = Kusakawa|last1 = Takaji|first2 = Otani|last2 =Toshikatsu| date=1964}}</ref> Kenaikan kandungan karbon dalam besi akan menyebabkan kenaikan yang signifikan pada kekerasan dan kekuatan tarik. Kekerasan maksimum [[Timbangan Rockwell|65 R<sub>c</sub>]] dicapai dengan kadar karbon 0.6%, meskipun prosedur ini untuk logam dengan daya tarik rendah<ref>{{Cite book|url=https://books.google.com/?id=LgB5dkmPML0C&pg=PA218|page=218|title=Materials Science and Engineering|first=V.|last= Raghavan|publisher =PHI Learning Pvt. Ltd.|isbn=81-203-2455-2|date=2004}}</ref>
[[Berkas:Iron-alpha-pV.svg|jmpl|240px|Volume molar vs tekanan untu besi-α pada temperatur kamar]]
Karena signifikansinya untuk inti planet, sifat fisik besi pada tekanan dan suhu tinggi juga telah dipelajari secara mendalam. Bentuk besi yang stabil di bawah kondisi standar dapat mengalami tekanan hingga 15 GPa sebelum berubah menjadi bentuk tekanan tinggi, seperti yang dijelaskan pada bagian selanjutnya.
Baris 84:
<sup>60</sup>Fe adalah [[radionuklida yang telah punah]] dengan [[waktu paruh]] panjang (2,6&nbsp;juta tahun).<ref name="RugelFaestermann2009">{{cite journal|last1=Rugel|first1=G.|last2=Faestermann|first2=T.|last3=Knie|first3=K.|last4=Korschinek|first4=G.|last5=Poutivtsev|first5=M.|last6=Schumann|first6=D.|last7=Kivel|first7=N.|last8=Günther-Leopold|first8=I.|last9=Weinreich|first9=R.|last10=Wohlmuther|first10=M.|title=New Measurement of the <sup>60</sup>Fe Half-Life|journal=Physical Review Letters|volume=103|issue=7|date=2009|issn=0031-9007|doi=10.1103/PhysRevLett.103.072502}}</ref> Ia tidak ditemukan di bumi, namun produk peluruhan utamanya adalah nuklida stabil [[nikel-60]].
 
Banyak riset masa lalu tentang pengukuran komposisi isotop Fe telah difokuskan pada penentuan variasi <sup>60</sup>Fe karena proses yang menyertai [[nukleosintesis]] (yaitu, studi [[meteorit]]) dan formasi bijih. Namun dalam dekade terakhir, perkembangan teknologi [[spektrometri massa]] telah memungkinkan untuk melakukan deteksi dan kuantifikasi renik, variasi rasio alami [[isotop stabil]] besi. Banyak dari penelitian ini telah didorong oleh komunitas [[ilmu bumi]] dan [[ilmu planet|planet]], meskipun aplikasi untuk sistem biologis dan industri mulai bermunculan.<ref>{{Cite journal|last1=Dauphas|first1 = N.|last2= Rouxel|first2 = O.|date=2006|title=Mass spectrometry and natural variations of iron isotopes|journal=Mass Spectrometry Reviews |volume=25| pages=515–550|url=http://geosci.uchicago.edu/~dauphas/OLwebsite/PDFfiles/Dauphas_Rouxel_MSR06.pdf |doi=10.1002/mas.20078 |pmid=16463281 |issue=4|access-date=2016-01-11|archive-date=2010-06-10|archive-url=https://web.archive.org/web/20100610095913/http://geosci.uchicago.edu/~dauphas/OLwebsite/PDFfiles/Dauphas_Rouxel_MSR06.pdf|dead-url=yes}}</ref>
 
Isotop besi yang paling melimpah {{Sup|56}}Fe merupakan daya tarik tersendiri bagi para ilmuwan nuklir karena merupakan titik akhir nukleosintesis yang paling umum.Hal ini sering dikutip, secara salah, sebagai isotop dengan energi ikatan tertinggi, perbedaan yang sebenarnya dimiliki [[nikel-62]].<ref>{{cite journal|last1=Fewell|first1=M. P.|title=The atomic nuclide with the highest mean binding energy|journal=American Journal of Physics|volume=63|page=653|date=1995|doi=10.1119/1.17828|bibcode=1995AmJPh..63..653F|issue=7}}</ref> Karena <sup>56</sup>Ni mudah dihasilkan dari inti yang lebih ringan dalam [[proses alfa]] pada [[reaksi nuklir]] di supernova (lihat [[proses pembakaran silikon]]), nikel-56 (14 [[Partikel Alfa|partikel alfa]]) adalah titik akhir rantai fusi dalam [[Bintang Populasi III|bintang sangat besar]], karena penambahan partikel alfa lain akan menghasilkan seng-60, yang membutuhkan lebih banyak energi. Oleh karena itu, nikel-56, dengan waktu paruh sekitar 6 hari, merupakan porsi terbesar dalam bintang-bintang ini, tetapi segera meluruh melalui emisi positron berturutan pada produk peluruhan supernova dalam awan gas [[sisa supernova]]. Peluruhan pertama membentuk kobalt-56, dan kemudian besi-56 yang stabil. Nuklida terakhir ini kemudian menjadi relatif mayoritas di jagat raya, dibandingkan dengan [[Kemetalikan (Metallicity)|logam]] stabil lainnya dengan [[Massa atom|berat atom]] yang mendekati.
 
Dalam fase meteorit ''Semarkona'' dan ''Chervony Kut'' korelasi antara konsentrasi <sup>60</sup>Ni, [[Produk peluruhan|produk anang]] <sup>60</sup>Fe, dan kelimpahan isotop besi yang stabil dapat ditemukan yang merupakan bukti keberadaan <sup>60</sup>Fe pada saat [[Pembentukan dan evolusi Tata Surya|pembentukan Sistem Tata Surya]]. Kemungkinan energi yang dilepaskan pada peluruhan <sup>60</sup>Fe, bersama energi yang dilepaskan pada peluruhan radionuklida <sup>26</sup>Al, memberikan kontribusi pada pelelehan kembali dan [[Diferensiasi planet|diferensiasi]] [[asteroid]] setelah pembentukannya 4,6 milyarmiliar tahun yang lalu. Kelimpahan 60Ni dalam materi [[wikt:extraterrestrial|ekstraterestrial]] juga memberikan wawasan lebih jauh ke dalam asal mula [[Tata Surya|Sistem Tata Surya]] dan sejarah awalnya.<ref>{{cite journal|doi=10.1016/j.newar.2003.11.022|title=Evidence for live 60Fe in meteorites|date=2004|last1=Mostefaoui|first1=S.|last2=Lugmair|first2=G.W.|last3=Hoppe|first3=P.|last4=El Goresy|first4=A.|journal=New Astronomy Reviews|volume=48|pages=155|bibcode = 2004NewAR..48..155M }}</ref>
 
Inti atom besi memiliki beberapa energi ikatan tertinggi per inti, hanya bisa diimbangi oleh [[isotop nikel]] <sup>62</sup>Ni. Ini terbentuk melalui [[fusi nuklir]] pada bintang. Meskipun penambahan sedikit energi dapat diekstraksi melalui sintesis <sup>62</sup>Ni, kondisi dalam bintang tidak cocok untuk proses ini. Distribusi unsur di Bumi lebih didominasi oleh besi daripada nikel, dan juga mungkin dalam produksi elemen supernova.<ref>{{cite journal|title = Iron and Nickel Abundances in H~II Regions and Supernova Remnants|date = 1995|bibcode=1995AAS...186.3707B|author=Bautista, Manuel A.|author2=Pradhan, Anil K.|journal=Bulletin of the American Astronomical Society|volume=27|page=865}}</ref>
Baris 95:
 
=== Nukleosintesis ===
Besi dibentuk oleh bintang yang sangat besar dengan inti yang sangat panas (lebih dari 2,5 milyarmiliar kelvin) melalui [[proses pembakaran silikon]]. Ia merupakan unsur stabil terberat yang diproduksi dengan cara ini. Proses dimulai dari inti stabil kedua terbesar melalui pembakaran silikon, yaitu kalsium. Satu inti stabil kalsium mengalami fusi dengan satu inti helium, membentuk titanium yang tidak stabil. Sebelum titanium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk kromium yang tak stabil. Sebelum kromium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk besi yang tak stabil. Sebelum besi meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk nikel-56 yang tak stabil. Fusi nikel-56 lebih jauh memerlukan energi dan bukannya menghasilkan energi, sehingga setelah produksi nikel-56, bintang tidak lagi menghasilkan energi yang dibutuhkan untuk menjaga inti agar tidak runtuh. Akhirnya, nikel-56 meluruh menjadi kobalt-56 yang tak stabil, yang pada gilirannya meluruh menjadi [[besi-56]] yang stabil. Ketika inti bintang runtuh, ia membentuk [[supernova]]. Supernova juga menciptakan bentuk-bentuk besi stabil tambahan melalui [[proses-r]].
 
=== Keberadaan ===
Baris 119:
 
==== Cadangan yang digunakan di masyarakat ====
Menurut ''[[Metal Stocks in Society report]]'' yang dikeluarkan oleh [[Panel Sumber Daya Internasional]] ({{Lang-en|[[:en:International Resource Panel|International Resource Panel]]}}), cadangan global besi yang digunakan di masyarakat adalah {{Kg to lb|2200|abbr = yes}} per kapita. Sebagian besar adalah negara maju ({{Kg to lb|7000|14000|abbr = yes|wiki = no}} – {{Kg to lb|14000|abbr = yes}} per kapita) sedangkan negara yang kurang berkembang hanya {{Kg to lb|2000|abbr = yes}} per kapita.
 
== Kimia dan senyawa ==
Baris 176:
 
=== Kimia larutan ===
[[Berkas:Ferrate_and_permanganate_solutionFerrate and permanganate solution.jpg|jmpl|100px|ka|Perbandingan warna larutan ferat (kiri) dan [[permanganat]] (kanan)]]
[[Potensial reduksi standar]] dalam larutan asam untuk beberapa ion besi yang umum adalah sebagai berikut:<ref name=Greenwood1075>Greenwood and Earnshaw, pp. 1075–9</ref>
{|
|-
Baris 187:
|}
 
Anion [[ferat]](VI) yang berbentuk tetrahedral dan berwarna merah-ungu adalah oksidator kuat yang dapat mengoksidasi nitrogen dan amonia pada suhu kamar, dan bahkan air dalam larutan asam atau netral:<ref name=Greenwood1082>Greenwood and Earnshaw, p. 1082–4</ref>
:<chem>4FeO4^2- + 10H2O -> 4Fe^3+ + 20OH^- + 3O2</chem>
 
Baris 243:
 
[[Berkas:Ferrocene-2D.png|jmpl|80px|[[Ferosen]]]]
Ferosen ({{Lang-en|[[:en:Ferrocene|Ferrocene]]}}) adalah kompleks yang sangat stabil. [[Senyawa sandwich]] pertama, yang mempunyai pusat besi(II) dengan dua ligan [[siklopentadienil]] yang terikat melalui kesepuluh atom karbonnya. Pengaturan ini adalah hal yang mengejutkan ketika pertama kali ditemukan,<ref>{{cite journal|title=Ferrocene: Ironclad History of Rashomon Tale?|pages =123–124|pmid=10649350|url=http://www.roaldhoffmann.com/sites/all/files/ferrocene.pdf|date=2000|last1=Laszlo|first1=P|last2=Hoffmann|first2=R|volume=39|issue=1|doi=10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z|journal=Angewandte Chemie (International ed. in English)|access-date=2016-01-11|archive-date=2012-06-28|archive-url=https://www.webcitation.org/68kbtsJr1?url=http://www.roaldhoffmann.com/sites/all/files/ferrocene.pdf|dead-url=yes}}</ref> tetapi penemuan ferosen memicu cabang baru kimia organologam. Ferosen sendiri dapat digunakan sebagai tulang punggung ligan, misalnya [[dppf]]. Ferosen dapat dioksidasi menjadi kation [[ferosenium]] (Fc<sup>+</sup>). Pasangan ferosen/ferosenium sering digunakan sebagai rujukan dalam elektrokimia.<ref>{{Cite journal|doi = 10.1002/chin.200443242|title = Ferrocene: 50 Years of Transition Metal Organometallic Chemistry—From Organic and Inorganic to Supramolecular Chemistry|date = 2004|last1 = Federman Neto|first1 = Alberto|last2 = Pelegrino|first2 = Alessandra Caramori|last3 = Darin|first3 = Vitor Andre|journal = ChemInform|volume = 35|issue = 43}}</ref>
 
== Sejarah ==
Baris 250:
=== Besi tempa ===
{{further|Produksi besi purba}}
[[Berkas:Mars symbol.svg|kiri|jmpl|80px|alt=A circle, with a short, simple arrow shape extending diagonally upwards and rightwards from its edge|Simbol planet Mars telah digunakan sejak zaman dahulu untuk menandakan keberadaan besi.]] [[Berkas:QtubIronPillar.JPG|jmpl|alt=An pillar, slightly fluted, with some ornamentation at its top. It is black, slightly weathered to a dark brown near the base. It is around {{convert|7|m|ft|abbr=off|sp=us}} tall. It stands upon a raised circular base of stone, and is surrounded by a short, square fence.|[[Pilar Besi Delhi|Tugu besi Delhi]] adalah sebuah contoh ekstraksi besi dan metodologi pengolahan pada zaman awal India. [[Pilar Besi Delhi|Tugu besi Delhi]] tahan karat selama 1600&nbsp;tahun terakhir.]]
 
Besi telah digarap, atau [[Besi tempa|ditempa]], selama beberapa milenium. Namun, objek besi berumur panjang jauh lebih jarang daripada objek yang dibuat dari emas atau perak karena besi mudah berkarat . Manik-manik yang terbuat dari [[besi meteor]] di 3500 SM atau sebelumnya ditemukan di Gerzah, Mesir oleh G.A. Wainwright.{{sfn|Weeks|1968|p=29}} Manik-manik mengandung 7,5% nikel, yang merupakan tanda bahwa berasal dari meteor karena hanya sedikit besi yang ditemukan pada kerak bumi dan tidak ada kandungan nikelnya. Besi meteorit sangat dihormati karena asal-usulnya di langit dan sering digunakan untuk menempa senjata dan alat-alat atau seluruh spesimen yang ditempatkan di gereja-gereja.{{sfn|Weeks|1968|p=31}} Barang-barang yang terbuat dari besi oleh bangsa Mesir bertanggal 2500 hingga 3000 SM.{{sfn|Weeks|1968|p=29}} Besi memiliki keuntungan pembeda dibandingkan perunggu untuk peralatan perang. Besi jauh lebih keras dan lebih awet dibandingkan perunggu, meskipun rentan terhadap karat . Namun, hal. ini telah ditentang. [[Hittites|Hittitolog]] [[Trevor Bryce]] berargumentasi bahwa sebelum teknik pengolahan besi tingkat lanjut dikembangkan di [[India]], senjata besi meteorit yang digunakan oleh tentara [[Mesopotamia]] awal memiliki kecenderungan mudah hancur dalam peperangan, karena kandungan karbonnya yang tinggi.<ref>{{cite book|author=Bryce, Trevor|title=Hittite Warrior|url=https://books.google.com/books?id=0_oi1CLayh8C&pg=PA22|date=2007|publisher=Osprey Publishing|isbn=978-1-84603-081-9|pages=22–23}}{{Pranala mati|date=Maret 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
 
Produksi besi pertama dimulai sejak [[Zaman Perunggu|Zaman Perunggu tengah]] tetapi memerlukan beberapa abad sebelum dapat menggantikan perunggu. Contoh [[Peleburan (metalurgi)|leburan]] besi dari [[Asmar (Mesopotamia)|Asmar]], Mesopotamia dan Tall Chagar Bazaar di Siria bagian utara dibuat antara 2.700 dan 3.000 SM.{{sfn|Weeks|1968|p=32}} [[Hittites]] tampaknya adalah yang pertama memahami produksi besi dari bijihnya dan sangat dihormati dalam masyarakat mereka. Mereka mulai melebur besi antara 1.500 dan 1.200 SM dan praktik ini tersebar ke Timur Dekat setelah kekaisaran mereka runtuk pada tahun 1.180 SM.{{sfn|Weeks|1968|p=32}} Periode berikutnya disebut [[Zaman Besi]]. Peleburan besi, oleh karenanya dinamakan Zaman Besi, mencapai Eropa dua ratus tahun kemudian dan tiba di [[Zimbabwe]], Afrika pada abad ke-8.{{sfn|Weeks|1968|p=32}} Di China, besi hanya muncul sekitar tahun 700-500 SM.<ref>Sawyer, Ralph D. and Mei-chün Sawyer. ''The Seven Military Classics of Ancient China.'' Boulder: Westview, (1993), p. 10.</ref> Peleburan besi telah diperkenalkan kepada China melalui Asia Tengah.<ref name="pigott2">Pigott, Vincent C. (1999). p. 8.</ref> Bukti awal penggunaan [[tanur tinggi]] di China berpenanggalan abad pertama setelah masehi,<ref name="Golas1999">{{cite book|author=Peter J. Golas|title=Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 13, Mining|url=https://books.google.com/books?id=TSiII7s2wLkC&pg=PA152|date=25 February 1999|publisher=Cambridge University Press|isbn=978-0-521-58000-7|page=152|quote=earlist blast furnace discovered in China from about the first century AD}}</ref> dan tungku kubah ({{Lang-en|cupola furnaces}}) digunakan pada awal periode perang (403–221 BCE).<ref name="pigott">Pigott, Vincent C. (1999). ''The Archaeometallurgy of the Asian Old World''. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 0-924171-34-0, p. 191.</ref> Penggunaan tanur tinggi dan kubah tetap menyebar selama [[Dinasti Song]] dan [[Dinasti Tang|Tang]].<ref name="The Coming of the Ages of Steel">{{cite book|title=The Coming of the Ages of Steel|url=https://books.google.com/books?id=uMwUAAAAIAAJ&pg=PA54|publisher=Brill Archive|page=54|id=GGKEY:DN6SZTCNQ3G|date=1961}}</ref>
Baris 271:
Karena besi menjadi lebih murah dan lebih banyak, besi juga menjadi bahan struktural utama menyusul pembangunan inovatif [[The Iron Bridge|jembatan besi pertama]] pada tahun 1778.
 
===Tabel kualitas komparatif besi tuang===
[[Besi tuang]] atau besi cor ([[bahasa Inggris]]: ''cast iron'') adalah [[Logam paduan|paduan]] [[besi]]-[[karbon]] dengan kandungan karbon lebih dari 2%.<ref>{{cite book|last1=Campbell|first1=F.C.|title=Elements of Metallurgy and Engineering Alloys|url=https://archive.org/details/elementsmetallur00fcam|date=2008|publisher=ASM International|location=Materials Park, Ohio|isbn=978-0-87170-867-0|page=[https://archive.org/details/elementsmetallur00fcam/page/n453 453]}}</ref> Paduan besi dengan kandungan karbon kurang dari 2% disebut sebagai [[baja]]. Unsur paduan utama yang membentuk karakter besi tuang adalah karbon (C) antara 3-3,5% dan [[silikon]] (Si) antara 1,8-2,4%. Perbedaan kadar C dan Si menyebabkan [[titik lebur]] besi tuang lebih rendah dari baja, yakni sekitar 1.150 sampai 1.200&nbsp;°C. Unsur paduan yang terkandung didalamnya mempengaruhi warna patahannya; besi tuang putih mengandung unsur karbida sedangkan besi tuang kelabu mengandung serpihan grafit.
 
{|class="wikitable"
|+Kualitas komparatif besi tuang<ref>Lyons, William C. and Plisga, Gary J. (eds.) ''Standard Handbook of Petroleum & Natural Gas Engineering'', Elsevier, 2006</ref>
|-
!Nama
!Komposisi nominal [% berat]
!Bentuk dan kondisi
!Kekuatan hasil <nowiki>[</nowiki>[[pounds per square inch|ksi]] (0.2% offset)]
!Kekuatan tarik [ksi]
!Perpanjangan [%]
!Kekerasan <nowiki>[</nowiki>[[Brinell scale]]<nowiki>]</nowiki>
!Penggunaan
|-
!Besi cor kelabu ([[ASTM International|ASTM]] A48)
|C&nbsp;3.4, Si&nbsp;1.8, [[manganese|Mn]]&nbsp;0.5
|Cast
|—
|50
|0.5
|260
|Blok silinder mesin, roda gila, kotak roda gigi, alas alat mesin
|-
!Besi cor putih
|C&nbsp;3.4, Si&nbsp;0.7, Mn&nbsp;0.6
|Cast (as cast)
|—
|25
|0
|450
|Permukaan bantalan bearing
|-
!Besi lunak (ASTM A47)
|C&nbsp;2.5, Si&nbsp;1.0, Mn&nbsp;0.55
|Cast (annealed)
|33
|52
|12
|130
|Bantalan bearing gandar, roda track, poros engkol otomotif
|-
!Besi ulet atau nodular
|C&nbsp;3.4, P&nbsp;0.1, Mn&nbsp;0.4, [[nickel|Ni]]&nbsp;1.0, Mg&nbsp;0.06
|Cast
|53
|70
|18
|170
|Roda gigi, poros bubungan, poros engkol
|-
!Besi ulet atau nodular (ASTM A339)
|—
|Cast (quench tempered)
|108
|135
|5
|310
|—
|-
!Ni-keras tipe 2
|C&nbsp;2.7, Si&nbsp;0.6, Mn&nbsp;0.5, Ni&nbsp;4.5, Cr&nbsp;2.0
|Sand-cast
|—
|55
|—
|550
|Aplikasi kekuatan tinggi
|-
!Ni-resist tipe 2
|C&nbsp;3.0, Si&nbsp;2.0, Mn&nbsp;1.0, Ni&nbsp;20.0, Cr&nbsp;2.5
|Cast
|—
|27
|2
|140
|Ketahanan terhadap panas dan korosi
|}
=== Baja ===
{{See also|Pembuatan baja}}
Baja (dengan kandungan karbon yang lebih kecil daripada besi kasar tetapi lebih banyak daripada besi tempa) pertama kali diproduksi menggunakan [[bloomery]]. Pandai besi di [[Luristan]], Iran bagian barat membuat baja yang bagus pada 1.000 SM.{{sfn|Weeks|1968|p=32}} Kemudian, versi pengembagannya adalah, [[baja Wootz]] oleh India dan [[baja Damaskus]] dikembangkan sekitar 300 SM dan 500 setelah masehi. Metode ini adalah spesialisasi, dan oleh karenanya baja tiak menjadi komoditas utama hingga tahun 1850an.<ref>Spoerl, Joseph S. [http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm A Brief History of Iron and Steel Production] {{Webarchive|url=https://web.archive.org/web/20100602031459/http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm |date=2010-06-02 }}. Saint Anselm College</ref>
 
Metode produksi baru adalah melalui [[karburasi]] besi batangan dalam [[proses sementasi]] ditemukan pada abad ke-17. Pada Revolusi Industri, metode baru memproduksi besi batangan tanpa batu bara ditemukan dan hal ini kemudian digunakan untuk memproduksi baja. Pada akhir 1850an, [[Henry Bessemer]] menciptakan proses pembuatan baja baru, melibatkan penghembusan udara melalui lelehan besi kasar untuk memproduksi baja lunak. Hal ini membuat baja jauh lebih ekonomis, oleh karena itu besi tempa tidak lagi diproduksi.<ref>{{cite book|url = https://books.google.com/books?id=fUmTX8yKU4gC&pg=PA190|pages = 190–191|title = Encyclopedia of the Elements: Technical Data - History - Processing - Applications|isbn = 9783527612345|author1 = Enghag|first1 = Per|date = 8 January 2008}}</ref>
 
==== Baja tahan karat ====
Baja tahan karat adalah istilah yang umum untuk semua jenis baja yang merupakan produk dari proses peleburan khusus, memiliki tingkat kemurnian yang tinggi, dan bereaksi merata terhadap panas yang diberikan. Berdasarkan definisi ini, baja stainless tidak harus selalu merupakan baja alloy atau baja alloy tinggi. Dalam uraian ini akan dibatasi pada baja stainless alloy tinggi dengan kandungan kromium setidaknya 10,5%. Berdasarkan strukturnya, baja stainless alloy tinggi dapat dikelompokkan ke dalam kategori berikut:
* baja tahan karat feritik
* baja tahan karat martensitik
* baja tahan karat austenitik
* baja tahan karat feritik-austenitik (baja dupleks)
* Baja tahan karat feritik
 
;Baja tahan karat feritik dibagi menjadi dua kelompok:
* dengan kromium (CR) sekitar 11 hingga 13%
* dengan kromium (CR) sekitar 17%
Baja tahan karat dengan kandungan kromium sebesar 10,5% hingga 13% dikategorikan sebagai lembam korosi karena kandungan kromiumnya yang rendah. Baja ini digunakan jika kriteria yang diutamakan adalah masa pakai, keamanan, dan tingkat perawatan yang rendah dan tidak ada kriteria spesifik yang dibutuhkan. Bidang aplikasi yang umum menggunakannya misalnya konstruksi kontainer, konstruksi gerbong, dan konstruksi kendaraan.
;Baja tahan karat martensitik
Baja tahan karat martensitik dengan kandungan kromium 12 hingga 18% dan kandungan karbon melebihi 0,1% akan berubah menjadi austenitik pada temperatur di atas 950 - 1050°C. Pendinginan cepat (quenching) akan menghasilkan struktur martensitik. Struktur ini, terutama jika dikeraskan dan didinginkan, akan menghasilkan kekuatan yang tinggi dan bahkan meningkatkan kandungan karbon. Baja tahan karat martensitik digunakan misalnya untuk produksi pisau silet, pisau, atau gunting.
;Baja tahan karat austenitik
Baja tahan karat austenitik (disebut juga: baja kromium-nikel) dengan kandungan nikel di atas 8% merupakan kombinasi yang ideal untuk aplikasi praktis yang terkait pemrosesan, ketahanan terhadap korosi, dan karakteristik mekanisnya. Karakteristik utama dari jenis baja stainless ini adalah ketahanan yang tinggi terhadap korosi. Atas dasar itu, baja stainless austenitik diterapkan di area dengan media yang agresif, misalnya kontak dengan air laut yang mengandung klorida dan dalam industri kimia dan makanan.
;Baja tahan karat feritik-austenitik
Baja tahan karat feritik-austenitik seringkali disebut juga baja dupleks karena merupakan komposit yang terbentuk dari dua struktur ini. Karena baja ini memiliki tingkat fleksibilitas yang tinggi dan juga memiliki ketahanan yang lebih baik terhadap korosi, baja jenis ini terutama cocok untuk penggunaan pada teknik lepas pantai.
 
==== SAE steel grades ====
Sistem nilai baja steel grades SAE adalah sistem penomoran paduan standar (SAE J1086 - Numbering Metals and Alloys) untuk nilai baja yang dikelola oleh SAE International.
{| class="wikitable"
|+ Penamaan baja tahan karat {{sfn|Oberg|2004|pp=448–49}}
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Austenitik
|-
| 201 || S20100 || 16–18 || 3.5–5.5 || 0.15 || 5.5–7.5 || 0.75 || 0.06 || 0.03 || 0.25 || -
|-
| 202 || S20200 || 17–19 || 4–6 || 0.15 || 7.5–10.0 || 0.75 || 0.06 || 0.03 || 0.25 || -
|-
| 205 || S20500 || 16.5–18 || 1–1.75 || 0.12–0.25 || 14–15.5 || 0.75 || 0.06 || 0.03 || 0.32–0.40 || -
|-
| 254<ref name="ni">{{cite web |url=http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |title=What is Stainless Steel? |publisher=Nickel Institute |access-date=2007-08-13 |url-status=dead |archive-url=https://web.archive.org/web/20051231194101/http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |archive-date=2005-12-31 }}</ref> || S31254 || 20 || 18 || 0.02 max. || - || - || - || - || 0.20 || 6 Mo; 0.75 Cu; "Super austenitic"; All values nominal
|-
| 301 || S30100 || 16–18 || 6–8 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || - || -
|-
| 302 || S30200 || 17–19 || 8–10 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 302B || S30215 || 17–19 || 8–10 || 0.15 || 2 || 2.0–3.0 || 0.045 || 0.03 || - || -
|-
| 303 || S30300 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.15 min. || - || Mo 0.60 (optional)
|-
| 303Se || S30323 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.06 || - || 0.15 Se min.
|-
| 304 || S30400 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 304L || S30403 || 18–20 || 8–12 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 304Cu || S30430 || 17–19 || 8–10 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || - || 3–4 Cu
|-
| 304N || S30451 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || -
|-
| 305 || S30500 || 17–19 || 10.50–13 || 0.12 || 2 || 0.75 || 0.045 || 0.03 || - || -
|-
| 308 || S30800 || 19–21 || 10–12 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| 309 || S30900 || 22–24 || 12–15 || 0.2 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| 309S || S30908 || 22–24 || 12–15 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| [[SAE 310S stainless steel|310]] || S31000 || 24–26 || 19–22 || 0.25 || 2 || 1.5 || 0.045 || 0.03 || - || -
|-
| [[SAE 310S stainless steel|310S]] || S31008 || 24–26 || 19–22 || 0.08 || 2 || 1.5 || 0.045 || 0.03 || - || -
|-
| 314 || S31400 || 23–26 || 19–22 || 0.25 || 2 || 1.5–3.0 || 0.045 || 0.03 || - || -
|-
| 316 || S31600 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo
|-
| 316L || S31603 || 16–18 || 10–14 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo
|-
| 316F || S31620 || 16–18 || 10–14 || 0.08 || 2 || 1 || 0.2 || 0.10 min. || - || 1.75–2.50 Mo
|-
| 316N || S31651 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || 2.0–3.0 Mo
|-
| 317 || S31700 || 18–20 || 11–15 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo
|-
| 317L || S31703 || 18–20 || 11–15 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo
|-
| 321 || S32100 || 17–19 || 9–12 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || Ti 5(C+N) min., 0.70 max.
|-
| 329 || S32900 || 23–28 || 2.5–5 || 0.08 || 2 || 0.75 || 0.04 || 0.03 || - || 1–2 Mo
|-
| 330 || N08330 || 17–20 || 34–37 || 0.08 || 2 || 0.75–1.50 || 0.04 || 0.03 || - || -
|-
| 347 || S34700 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max.
|-
| 348 || S34800 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max., but 0.10 Ta max.; 0.20 Ca
|-
| 384 || S38400 || 15–17 || 17–19 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Feritik
|-
| 405 || S40500 || 11.5–14.5 || - || 0.08 || 1 || 1 || 0.04 || 0.03 || - || 0.1–0.3 Al, 0.60 max.
|-
| 409 || S40900 || 10.5–11.75 || 0.05 || 0.08 || 1 || 1 || 0.045 || 0.03 || - || Ti 6 × (C + N) <ref>{{cite book|title=ASTM A SA-240/SA-540M|chapter=section 2, part A:Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications|year=2007|page=385}}</ref>
|-
| 429 || S42900 || 14–16 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 430 || S43000 || 16–18 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 430F || S43020 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo (optional)
|-
| 430FSe || S43023 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min.
|-
| 434 || S43400 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo
|-
| 436 || S43600 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo; Nb+Ta 5 × C min., 0.70 max.
|-
| 442 || S44200 || 18–23 || - || 0.2 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 446 || S44600 || 23–27 || 0.25 || 0.2 || 1.5 || 1 || 0.04 || 0.03 || - || -
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Martensitik
|-
| 403 || S40300 || 11.5–13.0 || 0.60 || 0.15 || 1 || 0.5 || 0.04 || 0.03 || - || -
|-
| 410 || S41000 || 11.5–13.5 || 0.75 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 414 || S41400 || 11.5–13.5 || 1.25–2.50 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 416 || S41600 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.060 Mo (optional)
|-
| 416Se || S41623 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min.
|-
| 420 || S42000 || 12–14 || - || 0.15 min. || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 420F || S42020 || 12–14 || - || 0.15 min. || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo max. (optional)
|-
| 422 || S42200 || 11.0–12.5 || 0.50–1.0 || 0.20–0.25 || 0.5–1.0 || 0.5 || 0.025 || 0.025 || - || 0.90–1.25 Mo; 0.20–0.30 V; 0.90–1.25 W
|-
| 431 || S41623 || 15–17 || 1.25–2.50 || 0.2 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 440A || S44002 || 16–18 || - || 0.60–0.75 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
| 440B || S44003 || 16–18 || - || 0.75–0.95 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
| [[440C]] || S44004 || 16–18 || - || 0.95–1.20 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Tahan panas
|-
| 501 || S50100 || 4–6 || - || 0.10 min. || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo
|-
| 502 || S50200 || 4–6 || - || 0.1 || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo
|-
! colspan="11"|Pengerasan presipitasi martensit
|-
| 630 || S17400 || 15–17 || 3–5 || 0.07 || 1 || 1 || 0.04 || 0.03 || - || Cu 3–5, Ta 0.15–0.45 <ref>{{cite web |url=http://www.upmet.com/media/17-4.pdf |title=Precipitation-Hardening Stainless Steel Type 17-4PH (S17400)}}</ref>
|}
 
=== Dasar kimia modern ===
Baris 300 ⟶ 560:
 
Untuk beberapa fungsi terbatas seperti inti elektromagnet, besi murni diproduksi dengan cara elektrolisis larutan [[fero sulfat]].
 
Bijih besi terdiri atas [[oksigen]] dan [[atom]] [[besi]] yang berikatan bersama dalam [[molekul]]. Besi sendiri biasanya didapatkan dalam bentuk [[magnetit]] (Fe<sub>3</sub>O<sub>4</sub>), [[hematit]] (Fe<sub>2</sub>O<sub>3</sub>), [[goethit]], [[limonit]] atau [[siderit]]. Bijih besi biasanya kaya akan [[besi oksida]] dan beragam dalam hal [[warna]], dari kelabu tua, kuning muda, ungu tua, hingga merah karat. Saat ini, cadangan biji besi tampak banyak, namun seiring dengan bertambahnya penggunaan besi secara eksponensial berkelanjutan, cadangan ini mulai berkurang, karena jumlahnya tetap. Sebagai contoh, [[Lester Brown]] dari [[Worldwatch Institute]] telah memperkirakan bahwa bijih besi bisa habis dalam waktu 64 tahun berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.<ref>{{cite web |url=http://www.mii.org/Minerals/photoiron.html |title=Iron Ore – Hematite, Magnetite & Taconite |work=Mineral Information Institute |access-date=7 April 2006 |url-status=dead |archive-url=https://web.archive.org/web/20060417160321/http://www.mii.org/Minerals/photoiron.html |archive-date=17 April 2006 }}</ref><ref>{{Cite journal|last1=Goldstein|first1=J.I.|last2=Scott|first2=E.R.D.|last3=Chabot|first3=N.L.|date=2009|title=Iron meteorites: Crystallization, thermal history, parent bodies, and origin|journal=Geochemistry|language=en|volume=69|issue=4|pages=293–325|doi=10.1016/j.chemer.2009.01.002|bibcode=2009ChEG...69..293G}}</ref>
 
;Tabel kandungan mineral besi
{| class=wikitable
!Mineral !! Rumus kimia !! Kandungan besi teoritis dalam mineral (dalam%)!! Kandungan besi teoritis setelah kalsinasi (dalam%)
|-
| [[Hematit]] || {{Chem|Fe|2|O|3}} || align="center" | 69,96 || align="center" | 69,96
|-
| [[Magnetit]] || {{Chem|Fe|3|O|4}} || align="center" | 72,4 || align="center" | 72,4
|-
| [[Magnesioferrite]] || {{Chem|MgOFe|2|O|3}} || align="center" | 56-65 || align="center" | 56-65
|-
| [[Goetit]] || {{Chem|Fe|2|O|3|H|2|O}} || align="center" | 62,9 || align="center" | 70
|-
| [[Hydrogœthite]] || {{Chem|3Fe|2|O|3|4H|2|O}} || align="center" | 60,9 || align="center" | 70
|-
| [[Limonit]] || {{Chem|2Fe|2|O|3|3H|2|O}} || align="center" | 60 || align="center" | 70
|-
| [[Siderite]] || {{Chem|FeCO|3}} || align="center" | 48,3 || align="center" | 70
|-
| [[Pirit]] || {{Chem|FeS|2}} || align="center" | 46,6 || align="center" | 70
|-
| [[Pyrrhotite]] || {{Chem|Fe|1-x|S}} || align="center" | 61,5 || align="center" | 70
|-
| [[Ilmenit]] || {{Chem|FeTiO|3}} || align="center" | 36,8 || align="center" | 36,8
|}
 
 
==== Proses tanur tinggi ====
Baris 335 ⟶ 623:
 
=== Metode laboratorium ===
[[Berkas:SteelIron pdcarbon phase diagram.svg|jmpl|340px|Diagram fase besi-karbon, berbagai bentuk [[larutan padat]] yang stabil]]
Besi logam secara umum diproduksi di laboratorium melalui dua metode. Pertama adalah elektrolisis fero klorida pada katode besi. Metode kedua melibatkan reduksi besi oksida dengan gas hidrogen pada temperatur sekitar 500&nbsp;°C.<ref>H. Lux "Metallic Iron" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1490-1..</ref>
 
Baris 343 ⟶ 631:
=== Metalurgi ===
{|class="wikitable" style="float:left; clear:left; margin-right:1em; margin-top:0;"
|+Produksi besi 2009 (juta [[ton]])<ref>[http://www.worldsteel.org/statistics/statistics-archive/yearbook-archive.html Steel Statistical Yearbook 2010] {{Webarchive|url=https://web.archive.org/web/20120701061319/http://worldsteel.org/statistics/statistics-archive/yearbook-archive.html |date=2012-07-01 }}. World Steel Association</ref>
!Negara!![[Bijih besi]]!![[Besi kasar]]!![[Besi reduksi langsung|Besi reduksi]]!![[Baja]]
|-
|ChinaCina|| 1.114,9||549.4 || || 573.6
|-
|Australia||393,9|| 4.4|| ||5.2
Baris 389 ⟶ 677:
Meskipun peran metalurgi dominan dalam hal jumlah, senyawa besi banyak digunakan oleh baik industri maupun kegunaan lainnya. Katalis besi secara tradisional digunakan dalam [[proses Haber-Bosch]] untuk produksi amonia dan [[proses Fischer-Tropsch]] untuk konversi karbon monoksida menjadi [[hidrokarbon]] untuk bahan bakar dan pelumas.<ref>{{Cite book|title = Surface science: foundations of catalysis and nanoscience|first = Kurt W.|last = Kolasinski|isbn = 978-0-471-49244-3|publisher =John Wiley and Sons|date = 2002|url = https://books.google.com/?id=OA7L1l6oHAYC&pg=PR15|chapter = Where are Heterogenous Reactions Important|pages = 15–16}}</ref> Serbuk besi dalam pelarut asam digunakan dalam [[reduksi Bechamp]] yaitu reduksi [[nitrobenzena]] menjadi [[anilin]].<ref>{{Cite book|url = https://books.google.com/?id=BiywGdlot9kC&pg=PA167|chapter = Nitrobenzene and Nitrotoluene|isbn = 978-0-8247-2481-8|publisher = CRC Press|date = 1989|first = John J.|last = McKetta|title = Encyclopedia of Chemical Processing and Design: Volume 31 – Natural Gas Liquids and Natural Gasoline to Offshore Process Piping: High Performance Alloys|pages = 166–167}}</ref>
 
[[Besi(III) klorida]] digunakan untuk pemurnian air dan [[pengolahan limbah]], untuk mewarnai tekstil, sebagai pewarna cat, sebagai aditif pakan ternak, dan sebagai [[:en:Industrial etching|''etchant'']] untuk [[tembaga]] dalam pabrikasi [[Papan sirkuit cetak|PCB]].<ref>{{Cite journal| doi = 10.1002/14356007.a14_591| title = Ullmann's Encyclopedia of Industrial Chemistry| date = 2000| last1 = Wildermuth| first1 = Egon| last2 = Stark| first2 = Hans| last3 = Friedrich| first3 = Gabriele| last4 = Ebenhöch| first4 = Franz Ludwig| last5 = Kühborth| first5 = Brigitte| last6 = Silver| first6 = Jack| last7 = Rituper| first7 = Rafael| chapter = Iron Compounds| isbn = 3527306730}}</ref> Ini bisa juga dilarutkan dalam alkohol untuk membuat besi ''tincture''. Halida lainnya cenderung memiliki penggunaan yang terbatas di laboratorium.
 
[[Besi(II) sulfat]] digunakan sebagai prekursor untuk senyawa besi lainnya. Ini juga digunakan untuk [[redoks|mereduksi]] kromat dalam semen. Ini digunakan untuk memfortifikasi makanan dan mengobati [[anemia defisiensi besi]]. Hal di atas adalah kegunaan utamanya. [[Besi(III) sulfat]] digunakan dalam pengendapan partikel limbah dalam air tangki. [[Besi(II) klorida]] digunakan sebagai pereduksi flokulator, dalam pembentukan kompleks besi dan besi oksida magnetik, serta sebagai reduktor dalam sintesis organik.
Baris 404 ⟶ 692:
# '''''Sacrificial Protection''''' (pengorbanan anode). Magnesium adalah logam yang jauh lebih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi, maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.
 
== Peran Biologibiologi ==
Besi melimpah dalam biologi.<ref>{{cite book|titlelast1=MetallomicsDlouhy|first1=Adrienne and the CellC.|last2=Outten|first2=Caryn E.|date=2013|title=Metallomics and the Cell|publisher=Springer|isbn=978-94-007-5560-4|editor1-last=Banci|editor1-first=Lucia|series=Metal Ions in Life Sciences|volume=12|chapter=Chapter 8 The Iron Metallome in Eukaryotic Organisms|doi=10.1007/978-94-007-5561-1_8|last1=Dlouhy|first1=Adrienne C.|editor1-first=Lucia|editor1-last=Banci}} electronic-book ISBN 978-94-007-5561-1 {{ISSN|1559-0836}} electronic-{{ISSN|1868-0402}}</ref><ref>
{{cite book
|first1=Gereon M.
Baris 421 ⟶ 709:
|doi=10.1007/978-3-319-12415-5_5
}}
</ref> Besi-protein ditemukan dalam semua organisme mulai dari yang promotif [[archaea]] hingga manusia. Warna darah disebabkan oleh hemoglobin, suatu protein yang mengandung besi. Seperti dalam hemoglobin, besi seringkalisering kali terikat pada [[Kofaktor (biokimia)|kofaktor]], misalnya dalam [[heme]]. [[Gugus besi-belerang]] adalah penyusun [[nitrogenase]], suatu enzim yang bertanggung jawab pada [[fiksasi nitrogen]] biologis. Pengaruh teori evolusi memberikan peran pada besi sulfida dalam [[teori besi-belerang dunia]].
 
[[Berkas:Heme b.png|jmpl|Struktur [[Heme|Heme b]], Fe akan terikat pada protein [[Ligan (biokimia)|ligan]] tambahan.]]
 
Besi adalah [[unsur renik]] penting yang ditemukan di hampir semua organisme hidup.<!--Probably incorrect: The only exceptions are several organisms that live in iron-poor environments and have evolved to use different elements in their metabolic processes, such as manganese instead of iron for catalysis, or [[hemocyanin]] instead of hemoglobin.{{Citation needed|date=September 2010}} 2010}}--> Enzim dan protein mengandung besi, seringkalisering kali mengandung [[gugus prostetik]] [[heme]], yang berperan besar dalam oksidasi dan transportasi biologis. Contoh protein yang ditemukan dalam organisme tingkat tinggi antara lain hemoglobin, [[sitokrom]] (lihat [[besi valensi tinggi]]), dan [[katalase]].<ref>{{Cite book|first1 =S. J.|last1 = Lippard|first2 = J. M.|last2 = Berg|title = Principles of Bioinorganic Chemistry|url =https://archive.org/details/ost-chemistry-bioinch|publisher = University Science Books|place = Mill Valley|date = 1994|isbn = 0-935702-73-3}}</ref>
 
=== Senyawa bioanorganik ===
Baris 433 ⟶ 721:
=== Kesehatan dan diet ===
{{Utama|Defisiensi besi|Metabolisme besi}}
Besi memang melimpah, tetapi sumber zat besi utama antara lain [[daging merah]], [[kacang-kacangan]], [[kacang]], [[daging unggas]], [[ikan]], [[sayuran hijau]], [[selada air]], [[tahu]], [[buncis]], [[kacang polong]], [[roti]] yang difortifikasi, dan [[sereal]] yang difortifikasi. Besi dalam jumlah kecil ditemukan dalam [[molases]], ''[[tefftef]]'', dan [[tepung kentang]] (farina). Besi dalam daging (besi [[heme]]) lebih mudah diserap daripada besi dalam sayuran.<ref>[http://www.eatwell.gov.uk/healthissues/irondeficiency/ Food Standards Agency – Eat well, be well – Iron deficiency] {{Webarchive|url=https://web.archive.org/web/20060808184739/http://www.eatwell.gov.uk/healthissues/irondeficiency/ |date=2006-08-08 }}. Eatwell.gov.uk (5 March 2012). Retrieved on 27 June 2012.</ref> Meskipun sejumlah studi menyebutkan bahwa heme/hemoglobin dari daging merah mempunyai efek yang dapat meningkatkan kemungkinan [[kanker usus besar]],<ref name="pmid10582688">{{Cite journal|title=Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme |journal=Cancer Research|volume=59 |issue=22 |date=1999 |pmid=10582688 |last=Sesink |first= Aloys L. A. |author2=T |author3=K |author4=V|pages=5704–9}}</ref><ref name="pmid16226281">{{Cite journal|title=Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes |journal=[[Mutat. Res.]] |volume=594 |issue=1–2 |pages=162–171 |date=2006 |pmid=16226281 |doi=10.1016/j.mrfmmm.2005.08.006 |last1=Glei |first1=M. |last2=Klenow |first2=S. |last3=Sauer |first3=J. |last4=Wegewitz |first4=U. |last5=Richter |first5=K. |last6=Pool-Zobel |first6=B. L.}}</ref> tetapi tetap ada sejumlah kontroversi,<ref>{{Cite journal|url=http://cebp.aacrjournals.org/content/10/5/439.full|title=Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach |journal=Cancer Epidemiology, Biomarkers & Prevention |date=2001 |volume=10 |pmid=11352852 |issue=5|last1=Sandhu|first1=M. S.|last2=White|first2=I. R.|last3=McPherson|first3=K.|pages=439–46}}</ref> dan bahkan ada beberapa studi yang menyatakan bahwa tidak ada bukti cukup yang mendukung klaim semacam itu.<ref>{{cite web| url = http://www.sciencedaily.com/releases/2007/06/070611113729.htm|title = Eating Red Meat Will Not Increase Colorectal Cancer Risk, Study Suggests|publisher = ScienceDaily|date = 13 June 2007| accessdate = 23 May 2010}}</ref>
 
Besi yang ada dalam [[suplemen makanan]] seringkalisering kali ditemukan sebagai [[besi(II) fumarat]], meskipun besi sulfat lebih murah dan dapat diserap cukup baik. Unsur besi, meski efisiensi penyerapannya hanya {{frac|3}} relatif dari besi sulfat,<ref>{{cite journal|last1=Hoppe|first1=M.|last2=Hulthén|first2=L.|last3=Hallberg|first3=L.|title=The relative bioavailability in humans of elemental iron powders for use in food fortification|journal=European Journal of Nutrition|volume=45|issue=1|pages=37–44|date=2005|pmid=15864409|doi=10.1007/s00394-005-0560-0}}</ref> sering ditambahkan dalam makanan seperti sereal dan tepung terigu. Besi yang paling mudah diserap tubuh apabila [[Pembentukan khelat|di-khelat-kan]] dengan asam amino<ref name="pmid11377130">{{Cite journal|title=Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate |journal=Nutrition |volume=17 |issue=5 |pages=381–4 |date=2001 |pmid=11377130| doi = 10.1016/S0899-9007(01)00519-6 |last1=Pineda |first1=O. |last2=Ashmead |first2=H. D.}}</ref> dan juga tersedia sebagai [[suplemen besi]]. Seringkali asam amino yang dipilih adalah yang termurah dan paling umum yaitu [[glisin]], dalam bentuk suplemen "besi glisinat".<ref name="Ashmead">{{Cite book|last = Ashmead|first = H. DeWayne|date = 1989|title = ''Conversations on Chelation and Mineral Nutrition''|publisher = Keats Publishing|isbn = 0-87983-501-X}}</ref> [[Angka Kecukupan Gizi]] (AKG) yang dianjurkan ({{lang-en|Recommended Dietary Allowance (RDA)}}) untuk besi beragam sesuai umur, jenis kelamin, dan sumber zat besi (besi berbasis heme memiliki [[bioavilabilitas]] yang lebih tinggi).<ref>{{cite web |url=http://www.iom.edu/Object.File/Master/7/294/0.pdf |title=Dietary Reference Intakes: Elements |publisher = The National Academies |date = 2001 |format=PDF |accessdate = 21 May 2008 |archive-date=2008-05-27 |archive-url=https://web.archive.org/web/20080527203113/http://www.iom.edu/Object.File/Master/7/294/0.pdf |dead-url=yes }}</ref> Bayi memerlukan suplemen besi jika mengkonsumsi susu formula.<ref>{{cite web |url=http://bodyandhealth.canada.com/condition_info_details.asp?disease_id=274 |title=Iron Deficiency Anemia |publisher=MediResource |accessdate =17 December 2008 |archive-date=2022-01-30 |archive-url=https://web.archive.org/web/20220130231205/https://www.healthing.ca/all-diseases-and-conditions/alphabetical-search/ |dead-url=yes }}</ref> [[Donor darah|Pendonor darah]] dan wanita hamil beresikoberisiko mengalami kekurangan besi dan seringkalisering kali dianjurkan untuk mengkonsumsi suplemen besi.<ref>{{Cite journal| doi= 10.1016/0925-5710(95)00426-2|pmid= 8867722|date= 1996|last1= Milman|first1= N|title= Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy|volume= 63|issue= 2|pages= 103–35|journal= [[International Journal of Hematology]]}}</ref>
 
=== Penyerapan dan penyimpanan ===
Akuisisi besi menghadapi masalah bagi organisme aerobik, karena ion feri sukar larut pada pH mendekati netral. Oleh karena itu, bakteri telah melibatkan senyawa [[wikt:sequester|sekuestor]] yang disebut [[siderofora]] ({{lang-en|siderophore}}).<ref>{{Cite journal| url = http://www.jbc.org/content/270/45/26723.short|pmid = 7592901|doi = 10.1074/jbc.270.45.26723|date = 1995|last1 = Neilands|first1 = JB|title = Siderophores: structure and function of microbial iron transport compounds|volume = 270|issue = 45|pages = 26723–6|journal = The Journal of Biological Chemistry}}</ref><ref>{{Cite journal| doi =10.1146/annurev.bi.50.070181.003435|title =Microbial Iron Compounds|date =1981|last1 =Neilands|first1 =J B|journal =Annual Review of Biochemistry|volume =50|pages =715–31|pmid =6455965|issue=1}}</ref><ref>{{Cite journal| doi = 10.1023/A:1020218608266|date = 2002|last1 = Boukhalfa|first1 = Hakim|last2 = Crumbliss|first2 = Alvin L.|journal = BioMetals|volume = 15|pages = 325–39|pmid = 12405526|title = Chemical aspects of siderophore mediated iron transport|issue = 4}}</ref>
 
Setelah diserap, dalam [[sel (biologi)|sel]], penyimpanan besi diatur dengan hati-hati; ion besi "bebas" tidak tersedia begitu saja. Komponen utama yang mengatur ini adalah protein [[transferin]], yang mengikat ion besi yang diserap dari [[duodenum]] dan mengangkutnya melalui [[aliran arah]] menuju sel.<ref>{{Cite journal|doi=10.1371/journal.pbio.0000079|title=How Mammals Acquire and Distribute Iron Needed for Oxygen-Based Metabolism|date=2003|last=Rouault|first = Tracey A.|journal=PLoS Biology|volume=1|pages=e9 |pmid=14551907 |issue=3 |pmc=212690}}</ref> Pada hewan, tumbuhan, dan jamur, besi seringkalisering kali berupa ion yang berbentuk kompleks heme. Heme adalah komponen esensial protein [[sitokrom]], yang mengatur reaksi [[redoks]], dan komponen esensial [[protein pengangkut]] oksigen seperti [[hemoglobin]], [[myoglobin]], dan [[leghemoglobin]].
 
Besi anorganik berkontribusi pada reaksi redoks dalam [[gugus besi-belerang]] enzim, seperti [[nitrogenase]] (terlibat dalam sintesis [[amonia]] dari [[nitrogen]] dan [[hidrogen]]) serta [[hidrogenase]]. Protein besi non-heme meliputi [[enzim]] [[metana monooksigenase]] (mengoksidasi [[metana]] menjadi [[metanol]]), [[ribonukleotida reduktase]] (mereduksi [[ribosa]] menjadi [[deoksiribosa]]; [[Replikasi DNA|biosintesis DNA]]), [[hemertrin]] (transpor [[oksigen]] dan fiksasi dalam [[invertebrata]] laut) serta [[asam fosfatase]] ungu ([[hidrolisis]] [[ester]] [[fosfat]]).
Baris 451 ⟶ 739:
[[Metabolisme besi dalam tubuh manusia|Asupan besi]] diatur ketat oleh tubuh manusia, yang tidak memiliki pengaturan fisiologis ekskresi besi. Hanya sejumlah kecil besi yang hilang setiap hari karena peluruhan sel mukosa dan epitel kulit, sehingga pengendalian level besi sangat diatur dari asupannya.<ref>{{cite book|author1=Ramzi S. Cotran|author2=Vinay Kumar|author3=Tucker Collins|author4=Stanley Leonard Robbins|title=Robbins pathologic basis of disease|url=https://books.google.com/books?id=kdhrAAAAMAAJ|accessdate= 27 June 2012|date=1999|publisher=Saunders|isbn=978-0-7216-7335-6}}</ref> Pengaturan asupan besi tidak berlangsung sempurna pada beberapa orang akibat dari [[Kelainan genetika|cacat genetik]] yang memetakan region gen HLA-H pada kromosom 6. Pada orang-orang ini, kelebihan asupan dapat mengakibatkan [[kelainan akibat kelebihan besi]] ({{lang-en|iron overload disorder}}), seperti [[hemokromatosis]]. Banyak orang memiliki kerentanan genetik terhadap kelebihan zat besi tanpa menyadarinya atau menyadari masalah sejarah keluarga. Berdasarkan alasan tersebut, disarankan untuk tidak mengkonsumsi suplemen besi kecuali mengalami [[defisiensi besi]] dan telah berkonsultasi dengan dokter. [[Hemokromatosis]] diperkirakan menyebabkan penyakit antara 0,3 dan 0,8% di kalangan ras kaukasia.<ref>{{Cite journal|title=Hereditary hemochromatosis|journal=Rev Med Interne|date=2000 |volume=21 |issue=11 |pages=961–71 |doi=10.1016/S0248-8663(00)00252-6 |pmid=11109593|last1=Durupt|first1=S|last2=Durieu|first2=I|last3=Nové-Josserand|first3=R|last4=Bencharif|first4=L|last5=Rousset|first5=H|last6=Vital Durand|first6=D}}</ref>
 
[[MRI]] menemukan bahwa besi terakumulasi dalam [[hipokampus]] otak pada penderita [[Alzheimer]] dan dalam [[substansia nigra]] pada penderita [[Parkinson]].<ref>{{Cite journal| url = http://archneur.highwire.org/cgi/content/abstract/66/3/371 |pmid = 19273756|doi = 10.1001/archneurol.2008.586|date = 2009|last1 = Brar|first1 = S|last2 = Henderson|first2 = D|last3 = Schenck|first3 = J|last4 = Zimmerman|first4 = EA|title = Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism|volume = 66|issue = 3|pages = 371–4|journal = Archives of neurology}}{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
 
=== Bioremediasi ===
Baris 459 ⟶ 747:
|first = Greg
|title = The Rough Guide to the ''Titanic''
|url = https://archive.org/details/roughguidetotita0000ward
|date = 2012
|publisher = Rough Guides Ltd
|location = London
|page=[https://archive.org/details/roughguidetotita0000ward/page/171 171]
|page=171
|isbn = 978-1-4053-8699-9
|ref = harv
}}</ref> Bakteti asidofil ''[[Acidithiobacillus|Acidithiobacillus ferrooxidans]]'', ''[[Leptospirillum ferrooxidans]]'', ''[[Sulfolobus]]'' spp., ''[[Acidianus|Acidianus brierleyi]]'' and ''[[Sulfobacillus thermosulfidooxidans]]'' dapat mengoksidasi enzimatis besi fero.<ref>{{cite journal|url=http://mic.sgmjournals.org/content/156/3/609.full|title=Metals, minerals and microbes: geomicrobiology and bioremediation|journal=Microbiology|author=Geoffrey Michael Gadd|volume=156|date=March 2010|pages=609–643|doi=10.1099/mic.0.037143-0|pmid=20019082|issue=3|access-date=2016-01-11|archive-date=2014-10-25|archive-url=https://web.archive.org/web/20141025153753/http://mic.sgmjournals.org/content/156/3/609.full|dead-url=yes}}</ref> Sample jamur ''[[Aspergillus niger]]'' ditemukan tumbuh dari larutan penambangan emas, dan ditemukan mengandung kompleks sianologam seperti emas, perak, tembaga, besi dan seng. Jamur juga berperan dalam kemudahlarutan sulfida logam berat.<ref>{{cite book|url=https://books.google.com/books?id=WY3YvfNoouMC&pg=PA533&cad=4#v=onepage&q&f=false|title=Mycoremediation: Fungal Bioremediation|author=Harbhajan Singh|page=509}}</ref>
 
=== Hambatan permeabel reaktif ===
Baris 474 ⟶ 763:
{{Utama|Keracunan besi}}
 
Mencerna besi dalam jumlah besar dapat menyebabkan kelebihan kadar besi dalam darah. Kadar besi fero yang tinggi dalam darah bereaksi dengan [[peroksida]] membentuk [[radikal bebas]], yang sangat reaktif dan dapat merusak [[DNA]], [[protein]], [[lemak]], dan komponen sel lainnya. Oleh karena itu, toksisitas besi muncul ketika besi bebas dalam sel, yang biasanya terjadi ketika kadar besi melebihi kemampuan [[transferin]] mengikat besi. Kerusakan pada sel [[Saluran pencernaan manusia|saluran pencernaan]] dapat juga menghambat pengaturan asupan besi yang berakibat pada peningkatan lebih lanjut kadar besi darah. Besi umumnya merusak sel dalam [[jantung]], [[liver]] dan lainnya, yang dapat menyebabkan efek parah, termasuk [[koma (medis)|koma]], [[asidosis metabolik]], [[Syok (sirkulatori)|syok]], [[Gagal liver|kegagalan liver]], [[koagulopati]], [[sindrom distres pernapasan dewasa]] ({{lang-en|adult respiratory distress syndrome}}), kerusakan organ jangka panjang, dan bahkan kematian.<ref name="Cheney" /> Manusia mengalami keracunan besi di atas 20&nbsp;miligram besi per kilogram berat badan, dan 60&nbsp;miligram per kilogram adalah [[dosis letal]].<ref name="emed-topic285">{{cite web|url=http://www.emedicine.com/emerg/topic285.htm|title=Toxicity, Iron| publisher = Medscape|accessdate=23 May 2010}}</ref> Asupan besi berlebihan, seringkalisering kali akibat dari konsumsi berlebih tablet [[fero sulfat]] pada anak-anak tetapi dengan dosis dewasa. Ini adalah salah satu keracunan umum yang menyebabkan kematian pada anak-anak usia di bawah enam tahun.<ref name="emed-topic285" /> [[Standar Asupan Gizi]] ({{lang-en|Dietary Reference Intake (DRI)}}) mencantumkan Batas Atas Toleransi ({{lang-en|Tolerable Upper Intake Level (UL)}}) untuk dewasa adalah 45&nbsp;mg/hari. Untuk anak-anak di bawah empat belas tahun, ''UL''-nya 40&nbsp;mg/hari.
 
Pengelolaan medis keracunan besi adalah rumit, dan dapat berupa penggunaan zat [[Pembentukan khelat|pengkhelat]] yang disebut [[deferoksamina]] untuk mengikat dan mengeluarkan kelebihan besi dari dalam tubuh.<ref name="Cheney">{{Cite journal| last1 =Cheney|first1 =K.| last2 =Gumbiner|first2 =C.| last3 = Benson|first3 =B.| last4 = Tenenbein|first4 =M.|title=Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine |journal=J Toxicol Clin Toxicol |volume=33 |issue=1 |pages=61–6 |date=1995 |pmid=7837315 |doi=10.3109/15563659509020217}}</ref><ref>{{Cite journal| last = Tenenbein|first = M|title=Benefits of parenteral deferoxamine for acute iron poisoning |journal=J Toxicol Clin Toxicol |volume=34 |issue=5 |pages=485–489 |date=1996 |pmid=8800185 |doi=10.3109/15563659609028005}}</ref><ref name="pmid21102602">{{cite journal | author = Wu H, Wu T, Xu X, Wang J, Wang J. | title = Iron toxicity in mice with collagenase-induced intracerebral hemorrhage | journal = J Cereb Blood Flow Metab. | volume = 31 | issue = 5 | pages = 1243–50 |date=May 2011 | pmid = 21102602 | doi =10.1038/jcbfm.2010.209 | pmc=3099628}}</ref>
 
== Lihat jugapula ==
{{Portal|Kimia}}
<!-- Please keep this list tidy and in alphabetical order. Avoid links prominently featured in article. -->
Baris 504 ⟶ 793:
|year = 1968
|title = Discovery of the Elements
|url = https://archive.org/details/discoveryofeleme07edunse
|publisher = Journal of Chemical Education
|location = Easton, PA
|chapter = Elements Known to the Ancients
|pages = [https://archive.org/details/discoveryofeleme07edunse/page/n42 29]–40
|pages = 29–40
|lccn = 68-15217
|ref = CITEREFWeeks1968
Baris 513 ⟶ 803:
}}
 
== Bacaan lainlanjutan ==
* {{cite|author=H.R. Schubert|title=History of the British Iron and Steel Industry... to 1775 AD|publisher=Routledge|location=London|year=1957}}.
* {{cite|author=R.F. Tylecote|title=History of Metallurgy|publisher=Institute of Materials|location=London|year=1992}}.
* {{cite|author=R.F. Tylecote|contribution=Iron in the Industrial Revolution|editor1=J. Day|editor2=R.F. Tylecote|title=The Industrial Revolution in Metals|publisher=Institute of Materials|year=1991|pages=200–60}}.
 
== Pranala luar ==
{{Wiktionary|iron}}
{{Commons|Iron}}
== Pranala luar ==
* [http://www.webelements.com/webelements/elements/text/Fe/index.html WebElements.com – Iron]
* [http://education.jlab.org/itselemental/ele026.html It's Elemental – Iron]
* [http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html The Most Tightly Bound Nuclei]
* [http://www.webelements.com/webelements/elements/text/Fe/xtal.html Crystal structure of iron]
* [http://www.karyasteel.com Steel Plate Supplier Surabaya]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* [http://www.rsc.org/chemistryworld/podcast/element.asp Chemistry in its element podcast] (MP3) from the [[Royal Society of Chemistry]]'s [[Chemistry World]]: [http://www.rsc.org/images/CIIE_iron_48kbps_tcm18-120046.mp3 Iron]
* [http://www.periodicvideos.com/videos/026.htm Iron] at ''[[The Periodic Table of Videos]]'' (University of Nottingham)
Baris 542 ⟶ 831:
[[Kategori:Mineral diet]]
[[Kategori:Bahan feromagnetik]]
[[Kategori:Unsur kimia dengan struktur kubus berpusat-badan]]
[[Kategori:Logam]]