=== Amonia sebagai ligan ===
{{main|MetalKompleks amminelogam complexamina}}
[[File:Tetraamminediaquacopper(II)-3D-balls.png|thumb|[[Ball-and-stickModel modelbola dan batang]] ofkation the tetraamminediaquacoppertetraaminadiakuatembaga(II) cation, {{chem|[Cu(NH<sub>|3</sub>|)<sub>|4</sub>|(H<sub>|2</sub>|O)<sub>|2</sub>|]<sup>|2+</sup>}}]]
AmmoniaAmonia candapat actbertindak as asebagai [[ligandligan]] indalam [[transitionKompleks metal(kimia)|kompleks]] [[complexlogam (chemistry)|complexestransisi]]. ItIa ismurni asebagai puredonor σ-donor, inpada thebagian middle of thetengah [[spectrochemicalderet seriesspektrokimia]], anddan showsmenunjukkan intermediateperilaku di antara [[Teori HSAB concept|hardkuat-softlunak]] behaviour. ForBerdasarkan historicalalasan reasonshistoris, ammoniaamonia is nameddinamakan '''ammineamina''' indalam the nomenclature oftatanama [[coordinationsenyawa compoundkoordinasi]]s. SomeBeberapa kompleks notableamina amminepenting complexesantara includelain tetraamminediaquacoppertetraaminadiakuatembaga(II) ({{chem|[Cu(NH<sub>|3</sub>|)<sub>|4</sub>|(H<sub>|2</sub>|O)<sub>|2</sub>|]<sup>|2+</sup>}}), akompleks darkbiru bluetua complexyang formedterbentuk bymelalui addingpenambahan ammoniaamonia toke adalam solutionlarutan ofgaram coppertembaga(II) salts. TetraamminediaquacopperTetraaminadiakuatembaga(II) hydroxidehidroksida isdikenal known assebagai [[pereaksi Schweizer's reagent]], anddan hasmemiliki thekemampuan remarkablemenakjubkan abilityuntuk to dissolvemelarutkan [[celluloseselulosa]]. DiamminesilverDiaminaperak(I) ({{chem|[Ag(NH<sub>|3</sub>|)<sub>|2</sub>|]<sup>|+</sup>}}) isadalah thespesies activeaktif species indalam [[pereaksi Tollens' reagent]]. Formation of thisPembentukan complexkompleks canini alsodapat helpjuga tomembantu distinguishuntuk betweenmembedakan precipitatesendapan ofspesies theperak differenthalida silveryang halidesberbeda: [[silverperak chlorideklorida]] (AgCl) islarut solubledalam inlarutan diluteamonia encer (2M) ammonia solution, [[silverperak bromidebromida]] (AgBr) is onlyhanya solublelarut indalam concentratedlarutan ammoniaamonia solutionpekat, whereassementara [[silverperak iodideiodida]] (AgI) istidak insolublelarut indalam aqueouslarutan ammoniaamonia.
AmmineKompleks complexesamina ofdari [[chromiumkromium]](III) weredikenal knownsejak inakhir theabad late 19th centuryke-19, anddan formedmembentuk thedasar basisteori ofrevolusioner [[Alfred Werner]]'s revolutionary theory on the structuremengenai ofstruktur coordinationsenyawa compoundskoordinasi. Werner notedhanya onlymengenal twodua isomersisomer (''fac''- anddan ''mer''-) ofdari the complexkompleks {{chem|[CrCl<sub>|3</sub>|(NH<sub>|3</sub>|)<sub>|3</sub>|]}} couldyang bedapat formedterbentuk, anddan concludedmenyimpulkan thebahwa ligandsligan mustharus betertata arranged around the metalmengelilingi ion atlogam thepada [[wikt:vertex|verticesverteks]] of an [[octahedronoktahedron]]. ThisProposal proposalini hastelah sincedikonfirmasi beendengan confirmed[[kristalografi bysinar [[X-ray crystallography]].
Suatu ligan amina yang berikatan dengan ion logam bersifat lebih asam daripada molekul amonia bebas, meskipun deprotonasi dalam larutan berair jarang terjadi. Salah satu contohnya adalah [[Raksa(I) klorida|reaksi kalomel]], yang menghasilkan senyawa amidoraksa(II) yang sangat mudah larut.
An ammine ligand bound to a metal ion is markedly more acidic than a free ammonia molecule, although deprotonation in aqueous solution is still rare. One example is the [[Mercury(I) chloride|Calomel reaction]], where the resulting amidomercury(II) compound is highly insoluble.
:Hg<sub>2</sub>Cl<sub>2</sub> + 2 NH<sub>3</sub> → Hg + HgCl(NH<sub>2</sub>) + NH<sub>4</sub><sup>+</sup> + Cl<sup>−</sup>
:<chem>Hg2Cl2 + 2 NH3 -> Hg + HgCl(NH2) + NH4+ + Cl-</chem>
==Detection and determination==
{{about|section=true|detection in the laboratory|detection in astronomy|#In astronomy}}
===AmmoniaDeteksi indan solution=penentuan==
{{about|section=true|deteksi dalam laboratorium|deteksi dalam astronomi|#Dalam astronomi}}
{{main|Ammonia solution}}
Ammonia and ammonium salts can be readily detected, in very minute traces, by the addition of [[Nessler's solution]], which gives a distinct yellow colouration in the presence of the slightest trace of ammonia or ammonium salts. The amount of ammonia in ammonium salts can be estimated quantitatively by distillation of the salts with [[sodium hydroxide|sodium]] or [[potassium hydroxide]], the ammonia evolved being absorbed in a known volume of standard [[sulfuric acid]] and the excess of acid then determined [[volumetric analysis|volumetrically]]; or the ammonia may be absorbed in [[hydrochloric acid]] and the ammonium chloride so formed precipitated as [[ammonium hexachloroplatinate]], (NH<sub>4</sub>)<sub>2</sub>PtCl<sub>6</sub>.{{sfn|Chisholm|1911|p=863}}
===GaseousAmonia ammoniadalam larutan===
{{main|Larutan amonia}}
[[Sulfur sticks]] are burnt to detect small leaks in industrial ammonia refrigeration systems. Larger quantities can be detected by warming the salts with a caustic alkali or with [[calcium oxide|quicklime]], when the characteristic smell of ammonia will be at once apparent.{{sfn|Chisholm|1911|p=863}} Ammonia is an irritant and irritation increases with concentration; the [[permissible exposure limit]] is 25 ppm, and lethal above 500 ppm.<ref>(OSHA) Source: Sax, N. Irving (1984) ''Dangerous Properties of Industrial Materials''. 6th Ed. Van Nostrand Reinhold. {{ISBN|0-442-28304-0}}.</ref> Higher concentrations are hardly detected by conventional detectors, the type of detector is chosen according to the sensitivity required (e.g. semiconductor, catalytic, electrochemical). Holographic sensors have been proposed for detecting concentrations up to 12.5% in volume.<ref name="HurtadoLowe2014">{{cite journal|last1=Hurtado|first1=J. L. Martinez|last2=Lowe|first2=C. R.|title=Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation|journal=ACS Applied Materials & Interfaces|volume=6|issue=11|year=2014|pages=8903–8908|issn=1944-8244|doi=10.1021/am5016588|pmid=24803236}}</ref> ▼
Amonia dan garam amonium dapat dengan mudah terdeteksi, dalam kadar yang sangat kecil, dengan penambahan [[larutan Nessler]]. Reaksi ini menghasilkan pewarnaan kuning yang unik dengan adanya sejumlah renik amonia atau garam amonium. Jumlah amonia dalam garam amonium dapat diperkirakan secara kuantitatif melalui distilasi garam dengan [[natrium hidroksida|natrium]] atau [[kalium hidroksida]]. Amonia yang dihasilkan diabsorbsikan ke dalam larutan standar [[asam sulfat]] dengan volume tertentu dan kelebihan asam kemudian ditentukan secara [[analisis volumetrik|volumetrik]]. Cara lain adalah amonia diabsorbsikan ke dalam [[asam klorida]] dan amonium klorida yang terbentuk diendapkan sebagai [[amonium heksakloroplatinat]], {{chem|(NH|4|)|2|PtCl|6}}.{{sfn|Chisholm|1911|p=863}}
===Amonia gas===
===Ammoniacal nitrogen (NH<sub>3</sub>-N)===
▲[[ SulfurBelerang|Tongkat sticksbelerang]] aredibakar burntuntuk tomendeteksi detectkebocoran smallkecil leaksdalam insistem industrialpendingin ammoniaamonia refrigeration systemsindustri. Larger quantities canJumlah beyang detectedlebih bybesar warmingdapat thedideteksi saltsdengan withmenghangatkan agaramnya causticmenggunakan alkali orkaustik withatau dengan [[ calciumkalsium oxideoksida| quicklimekapur api]], when the characteristic smell ofketika ammoniaaroma willkhas beamonia atakan oncesegera apparenttercium.{{sfn|Chisholm|1911|p=863}} AmmoniaAmonia isbersifat anpengiritasi irritantdan andiritasi irritationmeningkat increasesberbanding withlurus concentrationdengan konsentrasi; the [[ batas paparan yang diizinkan]] (''permissible exposure limit ]]'') isadalah 25 ppm, anddan mematikan lethaldi aboveatas 500 ppm.<ref>(OSHA) Source: Sax, N. Irving (1984) ''Dangerous Properties of Industrial Materials''. 6th Ed. Van Nostrand Reinhold. {{ISBN|0-442-28304-0}}.</ref> HigherKonsentrasi concentrationsyang arelebih hardlytinggi detectedhampir bytidak conventionalterdeteksi detectors,oleh thedetektor typekonvensional, ofjenis detectordetektor isdipilih chosensesuai accordingdengan tosensitivitas theyang sensitivity requireddiperlukan ( e.gmis. semiconductorsemikonduktor, catalytickatalitik, electrochemicalelektrokimia). HolographicSensor sensorsholografik havetelah beendiusulkan proposeduntuk formendeteksi detectingkonsentrasi concentrations up tohingga 12 .,5% in volume.<ref name="HurtadoLowe2014">{{cite journal|last1=Hurtado|first1=J. L. Martinez|last2=Lowe|first2=C. R.|title=Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation|journal=ACS Applied Materials & Interfaces|volume=6|issue=11|year=2014|pages=8903–8908|issn=1944-8244|doi=10.1021/am5016588|pmid=24803236}}</ref>
[[Ammoniacal nitrogen]] (NH<sub>3</sub>-N) is a measure commonly used for testing the quantity of [[ammonium]] ions, derived naturally from ammonia, and returned to ammonia via organic processes, in water or waste liquids. It is a measure used mainly for quantifying values in waste treatment and water purification systems, as well as a measure of the health of natural and man-made water reserves. It is measured in units of mg/L ([[milligram]] per [[litre]]).
===Nitrogen amoniakal ({{chem|NH|3|-N}})===
==History==
[[Nitrogen amoniakal]] ({{chem|NH|3|-N}}) adalah ukuran yang umum digunakan untuk menguji jumlah ion [[amonium]], yang diperoleh secara alami dari amoniak, dan kembali menjadi amoniak melalui proses organik, dalam air atau limbah cair. Ini adalah suati ukuran yang digunakan terutama untuk menentukan besaran dalam pengolahan limbah dan sistem pemurnian air, serta ukuran kesehatan cadangan air alami dan buatan. Nilainya diukur dalam satuan mg/L ([[miligram]] per [[liter]]).
[[File:Ammoniak Reaktor BASF.jpg|thumb|upright|This high-pressure reactor was built in 1921 by [[BASF]] in [[Ludwigshafen]] and was re-erected on the premises of the [[University of Karlsruhe]] in Germany.]] ▼
The ancient Greek historian [[Herodotus]] mentioned that there were [[outcrop]]s of salt in an area of Libya that was inhabited by a people called the "Ammonians" (now: the [[Siwa oasis]] in northwestern Egypt, where salt lakes still exist).<ref>Herodotus with George Rawlinson, trans., ''The History of Herodotus'' (New York, New York: Tandy-Thomas Co., 1909), vol.2, Book 4, § 181, [https://babel.hathitrust.org/cgi/pt?id=uva.x004090527;view=1up;seq=330 pp. 304–305.]</ref><ref>The land of the Ammonians is mentioned elsewhere in Herodotus' ''History'' and in [[Pausanias (geographer)|Pausanias']] ''Description of Greece'': ▼
==Sejarah==
▲[[File:Ammoniak Reaktor BASF.jpg|thumb|upright| ThisReaktor high-pressurebertekanan reactortinggi wasini builtdibangun inpada tahun 1921 byoleh [[BASF]] indi [[Ludwigshafen]] anddan wasdibangun re-erectedkembali ondi the premises of thelokasi [[ University ofUniversitas Karlsruhe]] indi GermanyJerman.]]
▲TheSejarawan ancientYunani Greek historiankuno, [[Herodotus]] , mentionedmenyebutkan thatbahwa there wereada [[ outcropsingkapan]] s ofgaram saltdi in an area ofwilayah Libya thatyang wasdihuni inhabitedoleh byorang-orang ayang people called thedisebut " AmmoniansAmmonian" ( nowsekarang: the [[ Siwa oasis Siwa]] indi northwesternbarat Egyptlaut Mesir, wheretempat danau saltgaram lakesberada stillhingga existsekarang).<ref>Herodotus with George Rawlinson, trans., ''The History of Herodotus'' (New York, New York: Tandy-Thomas Co., 1909), vol.2, Book 4, § 181, [https://babel.hathitrust.org/cgi/pt?id=uva.x004090527;view=1up;seq=330 pp. 304–305.]</ref><ref>The land of the Ammonians is mentioned elsewhere in Herodotus' ''History'' and in [[Pausanias (geographer)|Pausanias']] ''Description of Greece'':
* Herodotus with George Rawlinson, trans., ''The History of Herodotus'' (New York, New York: Tandy-Thomas Co., 1909), vol. 1, Book 2, § 42, [https://babel.hathitrust.org/cgi/pt?id=uva.x000278335;view=1up;seq=277 p. 245], vol. 2, Book 3, § 25, [https://babel.hathitrust.org/cgi/pt?id=uva.x004090527;view=1up;seq=83 p. 73], and vol. 2, Book 3, § 26, [https://babel.hathitrust.org/cgi/pt?id=uva.x004090527;view=1up;seq=84 p. 74.]
* Pausanias with W.H.S. Jones, trans., ''Description of Greece'' (London, England: William Heinemann Ltd., 1979), vol. 2, Book 3, Ch. 18, § 3, pp. 109 and [https://babel.hathitrust.org/cgi/pt?id=mdp.39015028936014;view=1up;seq=125 111] and vol. 4, Book 9, Ch. 16, § 1, [https://babel.hathitrust.org/cgi/pt?id=mdp.39015028936030;view=1up;seq=251 p. 239.]</ref> Ahli The Greekgeografi geographerYunani [[Strabo]] alsojuga mentionedmenyebutkan the saltgaram fromdari thiswilayah regionini. HoweverNamun, thepara ancientpenulis authorskuno [[Pedanius DioscoridesDioskorides|Dioscorides]], [[Apicius]], [[ArrianArrianos]], [[Synesius]], anddan [[AëtiusAetios ofdari Amida]] describedmenggambarkan thisgaram saltini assebagai formingbentuk clearkristal crystalsbening thatyang coulddapat bedigunakan useduntuk formemasak cookingdan andyang thatpada weredasarnya essentiallyadalah [[halitehalit|rockgaram saltbatu]].<ref>Kopp, Hermann, ''Geschichte der Chemie'' [History of Chemistry] (Braunschweig, (Germany): Friedrich Vieweg und Sohn, 1845), Part 3, [https://archive.org/stream/geschichtederche03unse#page/236/mode/2up p. 237.] [in German]</ref> ''Hammoniacus sal'' appearsmuncul indalam the writings oftulisan [[PlinyPlinius theyang ElderTua|PlinyPlinius]],<ref>{{harvnb|Chisholm|1911}} cites Pliny ''Nat. Hist.'' xxxi. 39. See: Pliny the Elder with John Bostock and H. T. Riley, ed.s, ''The Natural History'' (London, England: H. G. Bohn, 1857), vol. 5, Book 31, § 39, [https://babel.hathitrust.org/cgi/pt?id=mdp.39015020434133;view=1up;seq=528 p. 502.]</ref> althoughmeskipun ittidak isdiketahui notapakah knownistilah whetherini theidentik termdengan is[[sal identicalamoniak]] withyang the morelebih modern sal ammoniac (ammoniumamonium chlorideklorida).{{sfn|Chisholm|1911|p=861}}<ref name="Mineral Data">{{cite web|url=http://webmineral.com/data/Sal-ammoniac.shtml |title=Sal-ammoniac|publisher=Webmineral|accessdate=7 July 2009}}</ref><ref>PlinyPlinius alsojuga mentionedmenyebutkan thatbahwa whenketika some samples ofbeberapa whatsampel wasdari purportedapa toyang bedisebut ''[[natron]]'' (bahasa Latin: ''nitrum'', impurenatrium sodiumkarbonat carbonatetak murni) werediolah treateddengan with limekapur (calciumkalsium carbonatekarbonat) anddan waterair, the ''natron'' wouldakan emitmengeluarkan abau pungent smellmenyengat, whichyang someoleh authorsbeberapa havepenulis interpretedditafsirkan assebagai signifyingtanda that thebahwa ''natron'' eitheradalah wasamonium ammoniumklorida chlorideatau orsesuatu wasyang contaminatedterkontaminasi withdengan itamonium klorida. SeeLihat:
* Pliny with W.H.S. Jones, trans., ''Natural History'' (London, England: William Heinemann Ltd., 1963), vol. 8, Book 31, § 46, pp. 448–449. [https://archive.org/stream/naturalhistory08plinuoft#page/448/mode/2up From pp. 448–449:] ''"Adulteratur in Aegypto calce, deprehenditur gusto. Sincerum enim statim resolvitur, adulteratum calce pungit et asperum ''[or ''aspersum'']'' reddit odorem vehementer."'' (In Egypt it [i.e., natron] is adulterated with lime, which is detected by taste ; for pure natron melts at once, but adulterated natron stings because of the lime, and emits a strong, bitter odour [or: when sprinkled [(''aspersum'') with water] emits a vehement odour])
* Kidd, John, ''Outlines of Mineralogy'' (Oxford, England: N. Bliss, 1809), vol. 2, [https://books.google.com/books?id=mCU4AAAAMAAJ&pg=PA6#v=onepage&q&f=false p. 6.]
* Moore, Nathaniel Fish, ''Ancient Mineralogy: Or, An Inquiry Respecting Mineral Substances Mentioned by the Ancients:'' … (New York, New York: G. & C. Carvill & Co., 1834), [https://books.google.com/books?id=5aRgAAAAcAAJ&pg=PA96#v=onepage&q&f=false pp. 96–97.]</ref>
Fermentasi urin oleh bakteri menghasilkan [[larutan amonia]]; karenanya urin yang difermentasi pada [[Era klasik|Zaman Kuno]] digunakan untuk mencuci kain dan pakaian, untuk menghilangkan bulu dari kulitnya dalam persiapan untuk penyamakan, sebagai [[mordan]] pada kain berwarna, dan untuk menghilangkan karat dari besi.<ref>See:
The fermentation of urine by bacteria produces a [[Ammonia solution|solution of ammonia]]; hence fermented urine was used in [[Classical Antiquity]] to wash cloth and clothing, to remove hair from hides in preparation for tanning, to serve as a [[mordant]] in dying cloth, and to remove rust from iron.<ref>See:
* Forbes, R.J., ''Studies in Ancient Technology'', vol. 5, 2nd ed. (Leiden, Netherlands: E.J. Brill, 1966), pp. [https://books.google.com/books?id=Zqg3AAAAIAAJ&pg=PA19#v=onepage&q&f=false 19], [https://books.google.com/books?id=Zqg3AAAAIAAJ&pg=PA48#v=onepage&q&f=false 48], and [https://books.google.com/books?id=Zqg3AAAAIAAJ&pg=PA65#v=onepage&q&f=false 65].
* Moeller, Walter O., ''The Wool Trade of Ancient Pompeii'' (Leiden, Netherlands: E.J. Brill, 1976), [https://books.google.com/books?id=g7wUAAAAIAAJ&pg=PA20#v=onepage&q&f=false p. 20.]
* Witty, Michael (December 2016) "Ancient Roman urine chemistry," ''Acta Archaeologica'', '''87''' (1) : 179–191. Witty speculates that the Romans obtained ammonia in concentrated form by adding wood ash (impure [[potassium carbonate]]) to urine that had been fermented for several hours. [[Struvite]] (magnesium ammonium phosphate) is thereby precipitated, and the yield of struvite can be increased by then treating the solution with [[bittern (salt)|bittern]], a magnesium-rich solution that is a byproduct of making salt from sea water. Roasting struvite releases ammonia vapors.</ref>
InDalam the form ofbentuk sal ammoniacamoniak ''(نشادر, nushadir)'' ammoniaamonia waspenting important to thebagi [[AlchemyAlkimia anddan chemistrykimia inpada medievalzaman Islam pertengahan|Muslimalkimiawan alchemistsMuslim]] assejak earlyabad as the 8th centuryke-8, firstpertama mentionedkali bydisebutkan theoleh Persiankimiawan Persia-Arab chemist [[Abu Musa Jabir bin Hayyan|Jābir ibn Hayyān]],<ref name="Haq1995">{{cite book|last=Haq|first=Syed Nomanul|title=Names, Natures and Things: The Alchemist Jabir Ibn Hayyan and His Kitab Al-Ahjar (Book of Stones)|url=https://books.google.com/?id=P-70YjP0nj8C|accessdate=22 June 2010|date=28 February 1995|publisher=Springer|isbn=978-0-7923-3254-1}}</ref> anddan to the Europeanpara [[AlchemyAlkimia|alchemistsalkimiawan]] sinceEropa thesejak 13thabad centuryke-13, being mentioned byoleh [[Albertus Magnus]].{{sfn|Chisholm|1911|p=861}} ItIni wasjuga alsodigunakan used byoleh [[dyePewarna|tukang celup]]rs in thepada [[MiddleAbad AgesPertengahan]] indalam the form of fermentedbentuk [[urineurin]] toyang alterdifermentasi theuntuk colourmengubah ofwarna vegetablepewarna dyessayuran. InPada theabad 15th centuryke-15, [[Basilius Valentinus]] showedmenunjukkan thatbahwa ammoniaamonia coulddapat bediperoleh obtaineddengan by the action ofmenambahkan alkalisalkali onpada sal ammoniacamoniak.<ref>''Spiritus salis urinæ'' (spirit of the salt of urine, i.e., ammonium carbonate) had apparently been produced before Valentinus, although he presented a new, simpler method for preparing it in his book: Valentinus, Basilius, ''Vier Tractätlein Fr. Basilii Valentini'' … [Four essays of Brother Basil Valentine … ] (Frankfurt am Main, (Germany): Luca Jennis, 1625), ''"Supplementum oder Zugabe"'' (Supplement or appendix), pp. 80–81: ''"Der Weg zum Universal, damit die drei Stein zusammen kommen."'' (The path to the Universal, so that the three stones come together.). [https://books.google.com/books?id=UlhcAAAAcAAJ&pg=PA81#v=onepage&q&f=false From p. 81:] ''"Der Spiritus salis Urinæ nimbt langes wesen zubereiten / dieser proceß aber ist waß leichter unnd näher auß dem Salz von Armenia, … Nun nimb sauberen schönen Armenischen Salz armoniac ohn alles sublimiren / thue ihn in ein Kolben / giesse ein Oleum Tartari drauff / daß es wie ein Muß oder Brey werde / vermachs baldt / dafür thu auch ein grosen vorlag / so lege sich als baldt der Spiritus Salis Urinæ im Helm an Crystallisch … "'' (Spirit of the salt of urine [i.e., ammonium carbonate] requires a long method [i.e., procedure] to prepare; this [i.e., Valentine’s] process [starting] from the salt from Armenia [i.e., ammonium chloride], however, is somewhat easier and shorter … Now take clean nice Armenian salt, without sublimating all [of it]; put it in a [distillation] flask; pour oil of tartar [i.e., potassium carbonate that has dissolved only in the water that it has absorbed from the air] on it, [so] that it [i.e., the mixture] becomes like a mush or paste; assemble it [i.e., the distilling apparatus ([[alembic]])] quickly; for that [purpose] connect a large receiving flask; then soon spirit of the salt of urine deposits as crystals in the "helmet" [i.e., the outlet for the vapors, which is atop the distillation flask] … )<br>
See also: Kopp, Hermann, ''Geschichte der Chemie'' [History of Chemistry] (Braunschweig, (Germany): Friedrich Vieweg und Sohn, 1845), Part 3, [https://archive.org/stream/geschichtederche03unse#page/243/mode/2up p. 243.] [in German]
</ref> AtPada aperiode later periodselanjutnya, whenketika sal ammoniacamoniak wasdiperoleh obtaineddengan bymendistilasi distillingkuku thedan hoovestanduk andsapi hornsdan ofmenetralkan oxenkarbonat andyang neutralizingdihasilkan the resulting carbonate withdengan [[hydrochloricasam acidklorida]], theamonia namemendapat julukan "''roh tanduk rusa (spirit of hartshorn)''" was applied to ammonia.{{sfn|Chisholm|1911|p=861}}<ref>{{cite book|url=https://books.google.com/?id=kwQQaltqByAC&pg=PA72|page=72|title=Historical Studies in the Language of Chemistry|author=Maurice P. Crosland|publisher=Courier Dover Publications|year=2004|isbn=978-0-486-43802-3}}</ref>
GaseousAmonia ammoniagas waspertama firstkali isolateddiisolasi byoleh [[Joseph Black]] inpada tahun 1756 bydengan reactingmereaksikan ''sal ammoniac''amoniak ([[Ammoniumamonium Chlorideklorida]]) with ''calcineddengan magnesia'' yang dikalsinasi ([[Magnesiummagnesium Oxideoksida]]).<ref>{{Cite book|url=https://archive.org/details/b21730738|title=Experiments upon magnesia alba, quick-lime, and other alcaline substances|last=Black|first=Joseph|date=1893|publisher=W.F. Clay|others=|isbn=|location=Edinburgh|pages=|orig-year=1755}}</ref><ref>{{Cite book|url=https://books.google.com/?id=UeGlmU2F8_8C&pg=PA14&dq=Ammonia+Joseph+Black#v=onepage&q=Ammonia%20Joseph%20Black&f=false|title=Air Pollution and Global Warming: History, Science, and Solutions|last=Jacobson|first=Mark Z.|date=2012-04-23|publisher=Cambridge University Press|isbn=9781107691155|language=en}}</ref> ItIa wasdiisolasi isolatedlagi again byoleh [[Peter Woulfe]] inpada tahun 1767,<ref>{{Cite news|url=https://www.chemistryworld.com/opinion/woulfes-bottle/2500114.article|title=Woulfe’s bottle|work=Chemistry World|access-date=2017-07-01|language=en}}</ref><ref>{{Cite journal|last=Woulfe|first=Peter|date=1767-01-01|title=Experiments on the Distillation of Acids, Volatile Alkalies, &c. Shewing How They May be Condensed without Loss, and How Thereby We May Avoid Disagreeable and Noxious Fumes: In a Letter from Mr. Peter Woulfe, F. R. S. to John Ellis, Esq; F. R. S.|url=http://rstl.royalsocietypublishing.org/content/57/517|journal=Philosophical Transactions|language=en|volume=57|pages=517–536|doi=10.1098/rstl.1767.0052|issn=0261-0523}}</ref> byoleh [[Carl Wilhelm Scheele]] inpada tahun 1770<ref>https://kb.osu.edu/dspace/bitstream/handle/1811/28946/Pictorial%20Life%20History_Scheele.pdf?sequence=1</ref> anddan byoleh [[Joseph Priestley]] inpada tahun 1773 and was termed bydan himdisebutnya "alkalineudara airalkali".{{sfn|Chisholm|1911|p=861}}<ref>See:
* Priestley, Joseph (1773) [https://archive.org/stream/observationsetm02pari#page/388/mode/2up "Extrait d'une lettre de M. Priestley, en date du 14 Octobre 1773"] (Extract of a letter from Mr. Priestley, dated 14 October 1773), ''Observations sur la Physique'' …, '''2''' : 389.
* Priestley, Joseph, ''Experiments and Observations on Different Kinds of Air'', vol. 1, 2nd ed. (London, England: 1775), [https://archive.org/stream/experimentsobser01prie#page/162/mode/2up Part 2, § 1: Observations on Alkaline Air, pp. 163–177.]
* Schofield, Robert E., ''The Enlightened Joseph Priestley: A Study of His Life and Work from 1773 to 1804'' (University Park, Pennsylvania: Pennsylvania State University Press, 2004), [https://books.google.com/books?id=qL9K2e4KIvsC&pg=PA94#v=onepage&q&f=false pp. 93–94.]
* By 1775, Priestley had observed that electricity could decompose ammonia ("alkaline air"), yielding a flammable gas (hydrogen). See: Priestley, Joseph, ''Experiments and Observations on Different Kinds of Air'', vol. 2 (London, England: J. Johnson, 1775), [https://books.google.com/books?id=gB0UAAAAQAAJ&pg=PA239#v=onepage&q&f=false pp. 239–240.]</ref> ElevenSebelas yearstahun laterkemudian inpada tahun 1785, [[Claude Louis Berthollet]] ascertained itsmemastikan compositionkomposisinya.<ref>Berthollet (1785) [http://gallica.bnf.fr/ark:/12148/bpt6k35847/f490.item.zoom "Analyse de l'alkali volatil"] (Analysis of volatile alkali), ''Mémoires de l'Académie Royale des Sciences'', 316–326.</ref>{{sfn|Chisholm|1911|p=861}}
The [[ Haber–BoschProses processHaber|Proses Haber-Bosch]] tountuk producemenghasilkan ammoniaamonia from thedari nitrogen indi theudara airdikembangkan was developed byoleh [[Fritz Haber]] anddan [[Carl Bosch]] inpada tahun 1909 anddan patenteddipatenkan inpada tahun 1910. ItProses wasini firstpertama usedkali ondigunakan anpada industrialskala scaleindustri indi GermanyJerman duringselama [[ WorldPerang WarDunia I]],<ref name=Ullmann>{{cite book|author=Max Appl |title=Ammonia, in Ullmann's Encyclopedia of Industrial Chemistry|year= 2006|publisher= Wiley-VCH|location= Weinheim|doi=10.1002/14356007.a02_143.pub2|chapter=Ammonia|isbn=978-3527306732}}</ref> followingsetelah theblokade alliedsekutu blockadememotong thatpasokan cutnitrat off the supply of nitrates fromdari [[Chile]]. The ammonia wasAmonia useddigunakan tountuk producememproduksi explosivesbahan topeledak sustaindemi warkeberlangsungan effortsperang.<ref name="Conquering" >{{cite book|author=Smith, Roland|title=Conquering Chemistry|year=2001|isbn=978-0-07-470146-1|publisher=McGraw-Hill|location=Sydney}}</ref> ▼
Sebelum ketersediaan gas alam, hidrogen sebagai prekursor untuk [[produksi amonia]] diproduksi melalui [[elektrolisis]] air atau menggunakan [[proses kloralkali]].
Dengan munculnya industri baja di abad ke-20, amonia menjadi produk sampingan dari produksi batubara.
==Penggunaan==
▲The [[Haber–Bosch process]] to produce ammonia from the nitrogen in the air was developed by [[Fritz Haber]] and [[Carl Bosch]] in 1909 and patented in 1910. It was first used on an industrial scale in Germany during [[World War I]],<ref name=Ullmann>{{cite book|author=Max Appl |title=Ammonia, in Ullmann's Encyclopedia of Industrial Chemistry|year= 2006|publisher= Wiley-VCH|location= Weinheim|doi=10.1002/14356007.a02_143.pub2|chapter=Ammonia|isbn=978-3527306732}}</ref> following the allied blockade that cut off the supply of nitrates from [[Chile]]. The ammonia was used to produce explosives to sustain war efforts.<ref name="Conquering" >{{cite book|author=Smith, Roland|title=Conquering Chemistry|year=2001|isbn=978-0-07-470146-1|publisher=McGraw-Hill|location=Sydney}}</ref>
===Pupuk===
Before the availability of natural gas, hydrogen as a precursor to [[ammonia production]] was produced via the [[electrolysis]] of water or using the [[chloralkali process]].
GloballySecara global, approximatelysekitar 88% amonia ( as ofpada 2014) ofdigunakan ammoniasebagai is used as fertilizers eitherpupuk, asbaik itssebagai saltsgaramnya, solutionslarutannya oratau anhydrouslyanhidratnya.<ref name="USGS2016"/> WhenKetika appliedditerapkan topada soiltanah, itini helpsmembantu providepeningkatan increasedhasil yieldspanen ofseperti cropspada suchjagung as maize anddan wheatgandum.<ref>{{cite journal|last1=Lassaletta|first1=Luis|last2=Billen|first2=Gilles|last3=Grizzetti|first3=Bruna|last4=Anglade|first4=Juliette|last5=Garnier|first5=Josette|title=50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland|journal=Environmental Research Letters|date=2014|volume=9|issue=10|pages=105011|doi=10.1088/1748-9326/9/10/105011|language=en|issn=1748-9326|bibcode=2014ERL.....9j5011L}}</ref> Sekitar 30% of agricultural nitrogen appliedpertanian inyang thedigunakan USAdi isAS inadalah thedalam formbentuk ofamonia anhydrousanhidrat ammoniadan and110 worldwidejuta 110ton milliondigunakan tonnesdi areseluruh applieddunia eachsetiap yeartahun.<ref>{{cite news|url=https://www.washingtonpost.com/national/health-science/anhydrous-ammonia-fertilizer-abundant-important-hazardous/2013/04/18/c2d4c69c-a85a-11e2-a8e2-5b98cb59187f_story.html|title=Anhydrous ammonia fertilizer: abundant, important, hazardous|publisher=Washington Post|author=David Brown|date=18 April 2013|accessdate=23 April 2013}}</ref> ▼
===Prekursor senyawa-senyawa bernitrogen===
With the advent of the steel industry in the 20th century, ammonia became a byproduct of the production of coking coal.
AmmoniaAmonia issecara directlylangsung oratau indirectlytidak thelangsung precursormerupakan toprekursor mostbagi nitrogen-containingsebagian compounds.besar Virtuallysenyawa allyang syntheticmengandung nitrogen . compoundsHampir semua senyawa nitrogen aresintetik derivedberasal fromdari ammoniaamonia. AnTurunannya importantyang derivativepenting isadalah [[ nitricasam acidnitrat]]. ThisBahan keykunci materialini isdihasilkan generated via theoleh [[ Ostwaldproses processOstwald]] bymelalui [[ oxidationoksidasi]] ofamonia ammoniadengan withudara airdi overatas akatalis [[ platinumplatina]] catalyst atpada {{convert|700|–|850|°C}}, ~9 atm. [[ NitricNitrogen oxidemonoksida]] isadalah anproduk intermediateantara indalam thiskonversi conversionini:<ref>{{cite book|author1=Holleman, A. F. |author2=Wiberg, E. |title=Inorganic Chemistry|publisher=Academic Press|location= San Diego|year=2001|isbn=978-0-12-352651-9}}</ref> ▼
: <chem>NH3 + 2 O2 -> HNO3 + H2O</chem>
Asam nitrat digunakan untuk produksi [[pupuk]], [[bahan peledak]], dan banyak senyawa organonitrogen.
Amonia juga digunakan untuk membuat senyawa berikut:
==Uses==
* [[Hidrazin]], dalam [[proses Olin Raschig]] dan [[proses peroksida]]
* [[Hidrogen sianida]], dalam [[proses BMA]] dan [[proses Andrussow]]
* [[Hidroksilamina]] dan [[amonium karbonat]], dalam [[proses Raschig]]
* [[Fenol]], dalam [[proses Raschig – Hooker]]
* [[Urea]], dalam [[proses urea Bosch – Meiser]] dan dalam [[sintesis Wöhler]]
* [[Asam amino]], menggunakan [[Sintesis asam amino Strecker]]
* [[Akrilonitril]], dalam [[proses Sohio]]
Amonia juga dapat digunakan untuk membuat senyawa dalam reaksi yang tidak disebutkan namanya secara spesifik. Contoh-contoh senyawa tersebut meliputi: [[amonium perklorat]], [[amonium nitrat]], [[formamida]], [[dinitrogen tetroksida]], [[alprazolam]], [[etanolamina]], [[etil karbamat]], [[heksametilenatetramina]], dan [[amonium bikarbonat]].
===Fertilizer===
▲Globally, approximately 88% (as of 2014) of ammonia is used as fertilizers either as its salts, solutions or anhydrously.<ref name="USGS2016"/> When applied to soil, it helps provide increased yields of crops such as maize and wheat.<ref>{{cite journal|last1=Lassaletta|first1=Luis|last2=Billen|first2=Gilles|last3=Grizzetti|first3=Bruna|last4=Anglade|first4=Juliette|last5=Garnier|first5=Josette|title=50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland|journal=Environmental Research Letters|date=2014|volume=9|issue=10|pages=105011|doi=10.1088/1748-9326/9/10/105011|language=en|issn=1748-9326|bibcode=2014ERL.....9j5011L}}</ref> 30% of agricultural nitrogen applied in the USA is in the form of anhydrous ammonia and worldwide 110 million tonnes are applied each year.<ref>{{cite news|url=https://www.washingtonpost.com/national/health-science/anhydrous-ammonia-fertilizer-abundant-important-hazardous/2013/04/18/c2d4c69c-a85a-11e2-a8e2-5b98cb59187f_story.html|title=Anhydrous ammonia fertilizer: abundant, important, hazardous|publisher=Washington Post|author=David Brown|date=18 April 2013|accessdate=23 April 2013}}</ref>
===Sebagai pembersih===
===Precursor to nitrogenous compounds===
HouseholdAmonia ammoniarumah istangga aadalah solution oflarutan {{chem|NH <sub>|3 </sub>}} indalam waterair ( i.e.,yaitu [[ ammoniumamonium hydroxidehidroksida]]) usedyang asumumnya adigunakan generalsebagai purposepembersih cleanerpermukaan. forAmonia manymenghasilkan surfaces.kilau Becauseyang ammoniarelatif resultsbebas ingoresan, aoleh relatively streak-freekarena shineitu, onesalah ofsatu itskegunaannya mostyang commonpaling usesumum isadalah topembersih clean glasskaca, porcelainporselen, anddan stainlessbaja steelnirkarat. ItAmonia isjuga alsosering frequentlydigunakan useduntuk formembersihkan cleaningoven ovensdan andmerendam soakingbarang itemsuntuk tomelonggarkan loosenkotoran baked-onbekas grimememanggang. HouseholdAmonia ammoniarumah rangestangga inberada concentrationdalam bykisaran weight fromkonsentrasi 5 tohingga 10% ammoniaamonia, berdasarkan berat.<ref>{{Cite web|url=https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm|title=The Facts About Ammonia|website=www.health.ny.gov|language=en-us|access-date=2018-04-06}}</ref> UnitedProdusen Statesproduk manufacturerspembersih ofAmerika cleaningSerikat productsdiharuskan are required to provide the product'smenyediakan [[ material safetylembar data sheetkeselamatan bahan]] whichproduknya, yang listsmencantumkan thekonsentrasi concentrationyang useddigunakan.<ref>{{Cite web|url=https://www.osha.gov/Publications/OSHA3514.pdf|title=OSHA Hazard Communication Standard: Safety Data Sheets|last=|first=|date=|website=OSHA|access-date=}}</ref> ▼
▲Ammonia is directly or indirectly the precursor to most nitrogen-containing compounds. Virtually all synthetic nitrogen compounds are derived from ammonia. An important derivative is [[nitric acid]]. This key material is generated via the [[Ostwald process]] by [[oxidation]] of ammonia with air over a [[platinum]] catalyst at {{convert|700|–|850|°C}}, ~9 atm. [[Nitric oxide]] is an intermediate in this conversion:<ref>{{cite book|author1=Holleman, A. F. |author2=Wiberg, E. |title=Inorganic Chemistry|publisher=Academic Press|location= San Diego|year=2001|isbn=978-0-12-352651-9}}</ref>
: NH<sub>3</sub> + 2 O<sub>2</sub> → HNO<sub>3</sub> + H<sub>2</sub>O
Nitric acid is used for the production of [[fertilizer]]s, [[explosive]]s, and many organonitrogen compounds.
===Fermentasi===
Ammonia is also used to make the following compounds:
Larutan amonia dalam rentang konsentrasi 16% hingga 25% digunakan dalam industri [[Fermentasi industri|fermentasi]] sebagai sumber nitrogen untuk mikroorganisme dan untuk menyesuaikan pH selama fermentasi.
* [[Hydrazine]], in the [[Olin Raschig process]] and the [[peroxide process]]
* [[Hydrogen cyanide]], in the [[BMA process]] and the [[Andrussow process]]
* [[Hydroxylamine]] and [[ammonium carbonate]], in the [[Raschig process]]
* [[Phenol]], in the [[Raschig–Hooker process]]
* [[Urea]], in the [[Bosch–Meiser urea process]] and in [[Wöhler synthesis]]
* [[Amino acid]]s, using [[Strecker amino-acid synthesis]]
* [[Acrylonitrile]], in the [[Sohio process]]
===Zat antimikroba untuk produk makanan===
Ammonia can also be used to make compounds in reactions which are not specifically named. Examples of such compounds include: [[ammonium perchlorate]], [[ammonium nitrate]], [[formamide]], [[dinitrogen tetroxide]], [[alprazolam]], [[ethanolamine]], [[ethyl carbamate]], [[hexamethylenetetramine]], and [[ammonium bicarbonate]].
AsPada earlyawal as intahun 1895, itdiketahui wasbahwa known that ammonia wasamonia " strongly [[ antisepticantiseptik]] kuat ... it requiresdibutuhkan 1 .,4 gramsgram per litreliter tountuk preservemengawetkan [[ beefKaldu|kaldu teasapi]]."<ref>{{cite book|url=https://archive.org/details/disinfectiondisi00rideuoft|title=Disinfection and Disinfectants: An Introduction to the Study of|author=Samuel Rideal|publisher=Charles Griffin and Company|place=London|year=1895|page=109}}</ref> InDalam onesebuah studypenelitian, anhydrousamonia ammoniaanhidrat destroyedmenghancurkan 99 .,999% of [[ zoonoticZoonosis|bakteri bacteriazoonosis]] inpada 3 types ofjenis [[ compound feedPakan| animalpakan feedhewan]], buttetapi notbukan [[ silagesilase]].<ref>{{cite journal|doi=10.1016/j.ijfoodmicro.2007.11.040|title=Ammonia disinfection of animal feeds — Laboratory study|author=Tajkarimi, Mehrdad|journal=International Journal of Food Microbiology|volume=122|issue= 1–2|year=2008|pages=23–28|pmid=18155794|last2=Riemann|first2=H. P.|last3=Hajmeer|first3=M. N.|last4=Gomez|first4=E. L.|last5=Razavilar|first5=V.|last6=Cliver|first6=D. O.|display-authors=etal}}</ref><ref>{{cite journal |last1=Kim |first1=JS |last2=Lee |first2=YY |last3=Kim |first3=TH |title=A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. |journal=Bioresource Technology |date=January 2016 |volume=199 |pages=42–48 |doi=10.1016/j.biortech.2015.08.085 |pmid=26341010}}</ref> AnhydrousAmonia ammoniaanhidrat issaat currentlyini useddigunakan commerciallysecara tokomersial reduceuntuk ormengurangi eliminateatau [[microbial]]menghilangkan contaminationkontaminasi ofmikroba daging sapi. [ 57] [ beef58] ].<ref>"[https://web.archive.org/web/20110811220534/http://asae.frymulti.com/abstract.asp?aid=27245&t=2 EvaluationDaging ofsapi Treatmenttanpa Methodslemak forbertekstur Reducinghalus Bacteriadi inindustri Textureddaging Beef]",sapi terbuat dari Jensenhiasan daging sapi berlemak (sekitar 50-70% lemak) dengan menghilangkan lemak menggunakan panas dan sentrifugasi, Jeankemudian Lmemperlakukannya dengan ''etamonia aluntuk membunuh E. '', [[Americancoli. SocietyProses ofitu Agriculturaldianggap andefektif Biologicaldan Engineers]]aman oleh Departemen AnnualPertanian MeetingAS 2009</ref><ref>''[http://haccpallianceberdasarkan studi yang menemukan bahwa perawatan mengurangi E. org/sub/Antimicrobial%20Interventions%20for%20Beef.pdf Referencecoli Document:ke Antimicrobialtingkat Interventionsyang fortidak terdeteksi. Beef[59] '', DawnaAda Winklermasalah andkeamanan Kerritentang B.proses Harris,tersebut Centerserta forkeluhan Foodkonsumen Safety,tentang Departmentrasa ofdan Animalbau Science,daging [[Texassapi A&Myang Universitydiolah pada tingkat amonia yang optimal. [60] ], MayTingkat 2009,amonia pagedalam produk akhir 12</ref>apa pun belum mendekati tingkat toksik bagi manusia.▼
===As a cleaner===
▲Household ammonia is a solution of NH<sub>3</sub> in water (i.e., [[ammonium hydroxide]]) used as a general purpose cleaner for many surfaces. Because ammonia results in a relatively streak-free shine, one of its most common uses is to clean glass, porcelain and stainless steel. It is also frequently used for cleaning ovens and soaking items to loosen baked-on grime. Household ammonia ranges in concentration by weight from 5 to 10% ammonia.<ref>{{Cite web|url=https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm|title=The Facts About Ammonia|website=www.health.ny.gov|language=en-us|access-date=2018-04-06}}</ref> United States manufacturers of cleaning products are required to provide the product's [[material safety data sheet]] which lists the concentration used.<ref>{{Cite web|url=https://www.osha.gov/Publications/OSHA3514.pdf|title=OSHA Hazard Communication Standard: Safety Data Sheets|last=|first=|date=|website=OSHA|access-date=}}</ref>
===Fermentation===
Solutions of ammonia ranging from 16% to 25% are used in the [[Industrial fermentation|fermentation]] industry as a source of nitrogen for microorganisms and to adjust pH during fermentation.
As early as in 1895, it was known that ammonia was "strongly [[antiseptic]] ... it requires 1.4 grams per litre to preserve [[beef tea]]." In one study, anhydrous ammonia destroyed 99.999% of [[zoonotic bacteria]] in 3 types of [[compound feed|animal feed]], but not [[silage]]. Anhydrous ammonia is currently used commercially to reduce or eliminate [[microbial]] contamination of [[beef]].<ref>"[https://web.archive.org/web/20110811220534/http://asae.frymulti.com/abstract.asp?aid=27245&t=2 Evaluation of Treatment Methods for Reducing Bacteria in Textured Beef]", Jensen, Jean L ''et al.'', [[American Society of Agricultural and Biological Engineers]] Annual Meeting 2009</ref><ref>''[http://haccpalliance.org/sub/Antimicrobial%20Interventions%20for%20Beef.pdf Reference Document: Antimicrobial Interventions for Beef]'', Dawna Winkler and Kerri B. Harris, Center for Food Safety, Department of Animal Science, [[Texas A&M University]], May 2009, page 12</ref>
===Antimicrobial agent for food products===
▲As early as in 1895, it was known that ammonia was "strongly [[antiseptic]] ... it requires 1.4 grams per litre to preserve [[beef tea]]."<ref>{{cite book|url=https://archive.org/details/disinfectiondisi00rideuoft|title=Disinfection and Disinfectants: An Introduction to the Study of|author=Samuel Rideal|publisher=Charles Griffin and Company|place=London|year=1895|page=109}}</ref> In one study, anhydrous ammonia destroyed 99.999% of [[zoonotic bacteria]] in 3 types of [[compound feed|animal feed]], but not [[silage]].<ref>{{cite journal|doi=10.1016/j.ijfoodmicro.2007.11.040|title=Ammonia disinfection of animal feeds — Laboratory study|author=Tajkarimi, Mehrdad|journal=International Journal of Food Microbiology|volume=122|issue= 1–2|year=2008|pages=23–28|pmid=18155794|last2=Riemann|first2=H. P.|last3=Hajmeer|first3=M. N.|last4=Gomez|first4=E. L.|last5=Razavilar|first5=V.|last6=Cliver|first6=D. O.|display-authors=etal}}</ref><ref>{{cite journal |last1=Kim |first1=JS |last2=Lee |first2=YY |last3=Kim |first3=TH |title=A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. |journal=Bioresource Technology |date=January 2016 |volume=199 |pages=42–48 |doi=10.1016/j.biortech.2015.08.085 |pmid=26341010}}</ref> Anhydrous ammonia is currently used commercially to reduce or eliminate [[microbial]] contamination of [[beef]].<ref>"[https://web.archive.org/web/20110811220534/http://asae.frymulti.com/abstract.asp?aid=27245&t=2 Evaluation of Treatment Methods for Reducing Bacteria in Textured Beef]", Jensen, Jean L ''et al.'', [[American Society of Agricultural and Biological Engineers]] Annual Meeting 2009</ref><ref>''[http://haccpalliance.org/sub/Antimicrobial%20Interventions%20for%20Beef.pdf Reference Document: Antimicrobial Interventions for Beef]'', Dawna Winkler and Kerri B. Harris, Center for Food Safety, Department of Animal Science, [[Texas A&M University]], May 2009, page 12</ref>
Lean finely textured beef in the beef industry is made from fatty [[beef trimmings]] (c. 50–70% fat) by removing the fat using heat and [[centrifugation]], then treating it with ammonia to kill ''[[Escherichia coli|E. coli]]''. The process was deemed effective and safe by the [[US Department of Agriculture]] based on a study that found that the treatment reduces ''E. coli'' to undetectable levels.<ref>{{cite news | url = https://www.nytimes.com/2009/10/04/health/04meat.html | work=The New York Times | title=The Burger That Shattered Her Life | first=Michael | last=Moss | date=3 October 2009}}</ref> There have been safety concerns about the process as well as consumer complaints about the taste and smell of beef treated at optimal levels of ammonia.<ref>{{cite news | url = https://www.nytimes.com/2009/12/31/us/31meat.html | work=The New York Times | title=Safety of Beef Processing Method Is Questioned | first=Michael | last=Moss | date=31 December 2009}}</ref> The level of ammonia in any final product has not come close to toxic levels to humans.
{{Wide image|Reference ranges for blood tests - by molarity.png|3500px|[[Reference ranges for blood tests]], comparing blood content of ammonia (shown in yellow near middle) with other constituents}}
==InDalam astronomyastronomi==
[[File:Jupiter.jpg|thumb|Ammonia occurs in the [[celestial body atmosphere|atmospheres]] of the outer gas planets such as [[Jupiter]] (0.026% ammonia) and [[Saturn]] (0.012% ammonia).]]
|