Pecahan berlanjut: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Glorious Engine (bicara | kontrib)
←Membuat halaman berisi '{{thumb|width=220 |content=<math>a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{ \ddots + \cfrac{1}{a_n} }}}</math> }} Dalam matematika, '''pecahan berlanjut'''...'
 
Dedhert.Jr (bicara | kontrib)
memperbaiki istilah matematika
 
(7 revisi perantara oleh 3 pengguna tidak ditampilkan)
Baris 1:
{|class="wikitable" bgcolor="#ffffff" cellpadding="5" align="right" style="margin-left:50px" width="120"
!bgcolor=#e7dcc3 colspan=2|''Artikel ini dalam proses pengembangan atau penambahan''
|}
{{thumb|width=220
|content=<math>a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{ \ddots + \cfrac{1}{a_n} }}}</math>
}}
 
Dalam [[matematika]], '''pecahan berlanjut''' atau '''pecahan kontinu''' ({{Lang-en|Continued fraction}}) adalah sebuah [[ekspresi (matematika)|ekspresi]] yang didapat melalui proses [[iteratif]] mewakili bilangan sebagai jawaban dari [[bagian integerbilangan bulat]]<nowiki/>nya.<ref>{{cite web|url=http://www.britannica.com/EBchecked/topic/135043/continued-fraction|title=Continued fraction - mathematics|publisher=}}</ref> IntegerBilangan bulat <math>a_i</math> disebut [[koefisien]] dari pecahan berlanjut.<ref name="Pettofrezzo 1970 150">{{harvtxt|Pettofrezzo|Byrkit|1970|p=150}}</ref>
 
== Catatan ==
{{Reflist}}
 
== Referensi ==
* {{cite news|first1=H. | last1=Siebeck | year=1846 | title= Ueber periodische Kettenbrüche
|journal= J. Reine Angew. Math. | volume=33 | pages=68–70 | url=http://www.digizeitschriften.de/dms/resolveppn/?PID=PPN243919689_0033}}
Baris 20 ⟶ 23:
* {{cite news|first1=William B. | last1=Gragg | title=Matrix interpretations and applications of the continued fraction algorithm
|journal= Rocky Mount. J. Math. | volume=4 | number=2 | doi=10.1216/RJM-1974-4-2-213 | page=213 |year=1974}}
* {{Cite book | last = Jones | first = William B. | last2 = Thron | first2 = W. J. | title = Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. | place= | publisher = Addison-Wesley Publishing Company | year = 1980 | location = Reading. Massachusetts | volume = 11 | edition = | isbn = 0-201-13510-8}}
* {{cite book |title = Continued Fractions |url = https://archive.org/details/continuedfractio00khin_0 | year = 1964 | last1 = Khinchin | first1 = A. Ya. | authorlink = Aleksandr Khinchin | origyear = Originally published in Russian, 1935 | publisher = [[University of Chicago Press]] | ISBN= 0-486-69630-8 }}
* {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = [[D. C. Heath and Company]] | location = Lexington | lccn = 77-171950 }}
* {{cite book | first=Oskar | last= Perron | authorlink=Oskar Perron | title =Die Lehre von den Kettenbrüchen | publisher=Chelsea Publishing Company | place=New York, NY | year= 1950}}
* {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = [[Prentice Hall]] | location = Englewood Cliffs | lccn = 77-81766 }}
* {{cite book | title = Continued Fractions | url = https://archive.org/details/continuedfractio0000rock | last1 = Rockett | first1 = Andrew M. | last2 = Szüsz | first2 = Peter| year = 1992 | publisher = World Scientific Press | ISBN = 981-02-1047-7 }}
* H. S. Wall, ''Analytic Theory of Continued Fractions'', D. Van Nostrand Company, Inc., 1948 {{isbn|0-8284-0207-8}}
* {{cite book|first1=A. |last1= Cuyt |first2= V. | last2= Brevik Petersen |first3= B. |last3= Verdonk
|first4= H. |last4= Waadeland |first5 = W. B. |last5=Jones |title =Handbook of Continued fractions for Special functions
|publisher= Springer Verlag |year=2008 |isbn=978-1-4020-6948-2}}
Baris 33 ⟶ 36:
|journal= Abh. Braunschweig.Wiss. Ges. | volume= 33 |year=1982 |pages=205–217}}
 
== Pranala luar ==
* {{springer|title=Continued fraction|id=p/c025540}}
* [http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/cfINTRO.html An Introduction to the Continued Fraction]
Baris 51 ⟶ 54:
{{Authority control}}
 
[[CategoryKategori:analisisAnalisis matematika]]