Metode Jacobi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(4 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
'''Metode [[Iterasi]] Jacobi''' merupakan salah satu bidang [[analisis numerik]] yang digunakan untuk menyelesaikan permasalahan [[persamaan linear]] dan sering dijumpai dalam berbagai disiplin [[ilmu]]. Metode Iterasi Jacobi merupakan salah satu metode tak langsung, yaitu bermula dari suatu hampiran penyelesaian awal dan kemudian berusaha memperbaiki hampiran dalam tak berhingga namun langkah konvergen. Metode Iterasi Jacobi ini digunakan untuk menyelesaikan [[persamaan linear]] berukuran besar dan proporsi koefisien nolnya besar.
Metode ini ditemukan oleh [[matematikawan]] yang berasal dari Jerman,[[Carl Gustav Jakob Jacobi]]. Penemuan ini diperkirakan pada tahun 1800-an.
Baris 7:
:<math> A x = b.\, </math>
Kemudian, diketahui bahwa <math> A = D+\left({L + U} \right)</math>,
di mana <math>D</math> merupakan [[matriks diagonal]], <math>L</math> merupakan matriks segitiga bawah, dan <math>U</math> merupakan matriks segitiga atas.
Kemudian, persamaan di atas dapat diubah menjadi:
Baris 78:
== Algoritme Metode Iterasi Jacobi dalam bentuk ''software'' Matlab ==
Penggunaan [[Algoritma|algoritme]] Metode Iterasi Jacobi dalam bentuk matlab. Matlab merupakan program pengolahan data numerik.
INPUT:
Baris 106:
:<math>\left | a_{ii} \right | > \sum_{i \ne j} {\left | a_{ij} \right |}.</math>
== Contoh ==
Sistem linear dari bentuk <math>Ax=b</math> dengan perkiraan awal <math>x^{(0)}</math> diberikan oleh
:<math> A=
\begin{bmatrix}
2 & 1 \\
5 & 7 \\
\end{bmatrix},
\ b=
\begin{bmatrix}
11 \\
13 \\
\end{bmatrix}
\quad \text{dan} \quad x^{(0)} =
\begin{bmatrix}
1 \\
1 \\
\end{bmatrix} .</math>
Kami menggunakan persamaan <math> x^{(k+1)}=D^{-1}(b - (L+U)x^{(k)})</math>, dijelaskan di atas, untuk memperkirakan <math>x</math>. Pertama, kami menulis ulang persamaan dalam bentuk yang lebih mudah <math>D^{-1}(b - (L+U)x^{(k)}) = Tx^{(k)} + C</math>, dimana <math>T=-D^{-1}(L+U)</math> dan <math>C = D^{-1}b</math>. Dari nilai-nilai yang diketahui
:<math> D^{-1}=
\begin{bmatrix}
1/2 & 0 \\
0 & 1/7 \\
\end{bmatrix},
\ L=
\begin{bmatrix}
0 & 0 \\
5 & 0 \\
\end{bmatrix}
\quad \text{dan} \quad U =
\begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix} .</math>
we determine <math> T=-D^{-1}(L+U) </math> as
:<math> T=
\begin{bmatrix}
1/2 & 0 \\
0 & 1/7 \\
\end{bmatrix}
\left\{
\begin{bmatrix}
0 & 0 \\
-5 & 0 \\
\end{bmatrix}
+
\begin{bmatrix}
0 & -1 \\
0 & 0 \\
\end{bmatrix}\right\}
=
\begin{bmatrix}
0 & -1/2 \\
-5/7 & 0 \\
\end{bmatrix} .</math>
Further, <math>C</math> is found as
:<math> C =
\begin{bmatrix}
1/2 & 0 \\
0 & 1/7 \\
\end{bmatrix}
\begin{bmatrix}
11 \\
13 \\
\end{bmatrix}
=
\begin{bmatrix}
11/2 \\
13/7 \\
\end{bmatrix}. </math>
Dengan <math>T</math> dan <math>C</math> dihitung, kami perkirakan <math>x</math> sebagai <math> x^{(1)}= Tx^{(0)}+C </math>:
:<math> x^{(1)}=
\begin{bmatrix}
0 & -1/2 \\
-5/7 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\end{bmatrix}
+
\begin{bmatrix}
11/2 \\
13/7 \\
\end{bmatrix}
=
\begin{bmatrix}
5.0 \\
8/7 \\
\end{bmatrix}
\approx
\begin{bmatrix}
5 \\
1.143 \\
\end{bmatrix} .</math>
Hasil iterasi berikutnya
:<math> x^{(2)}=
\begin{bmatrix}
0 & -1/2 \\
-5/7 & 0 \\
\end{bmatrix}
\begin{bmatrix}
5.0 \\
8/7 \\
\end{bmatrix}
+
\begin{bmatrix}
11/2 \\
13/7 \\
\end{bmatrix}
=
\begin{bmatrix}
69/14 \\
-12/7 \\
\end{bmatrix}
\approx
\begin{bmatrix}
4.929 \\
-1.714 \\
\end{bmatrix} .</math>
Proses ini diulangi sampai konvergensi (yaitu, sampai <math>\|Ax^{(n)} - b\|</math> kecil). Solusi setelah 25 iterasi adalah
:<math> x=\begin{bmatrix}
7.111\\
-3.222
\end{bmatrix}
.</math>
=== Contoh lain ===
Contohnya kita diberi sistem linier berikut:
:<math>
\begin{align}
10x_1 - x_2 + 2x_3 & = 6, \\
-x_1 + 11x_2 - x_3 + 3x_4 & = 25, \\
2x_1- x_2+ 10x_3 - x_4 & = -11, \\
3x_2 - x_3 + 8x_4 & = 15.
\end{align}
</math>
Bila kita memilih {{math|(0, 0, 0, 0)}} sebagai pendekatan awal, maka solusi perkiraan pertama diberikan oleh
:<math>
\begin{align}
x_1 & = (6 + 0 - (2 * 0)) / 10 = 0.6, \\
x_2 & = (25 + 0 + 0 - (3 * 0)) / 11 = 25/11 = 2.2727, \\
x_3 & = (-11 - (2 * 0) + 0 + 0) / 10 = -1.1,\\
x_4 & = (15 - (3 * 0) + 0) / 8 = 1.875.
\end{align}
</math>
Dengan menggunakan perkiraan yang diperoleh, prosedur iteratif diulangi sampai akurasi yang diinginkan tercapai. Berikut ini adalah solusi yang diperkirakan setelah lima iterasi.
{| class="wikitable" border="1"
|-
! <math>x_1</math>
! <math>x_2</math>
! <math>x_3</math>
! <math>x_4</math>
|-
| 0.6
| 2.27272
| -1.1
| 1.875
|-
| 1.04727
| 1.7159
| -0.80522
| 0.88522
|-
| 0.93263
| 2.05330
| -1.0493
| 1.13088
|-
| 1.01519
| 1.95369
| -0.9681
| 0.97384
|-
| 0.98899
| 2.0114
| -1.0102
| 1.02135
|}
Solusi yang tepat dari sistem ini adalah {{math|(1, 2, −1, 1)}}.
=== Contoh menggunakan Python dan NumPy ===
Prosedur numerik berikut hanya melakukan iterasi untuk menghasilkan vektor solusi.
<syntaxhighlight lang="python">
def jacobi(A, b, x_init, epsilon=1e-10, max_iterations=500):
D = np.diag(np.diag(A))
LU = A - D
x = x_init
for i in range(max_iterations):
D_inv = np.diag(1 / np.diag(D))
x_new = np.dot(D_inv, b - np.dot(LU, x))
if np.linalg.norm(x_new - x) < epsilon:
return x_new
x = x_new
return x
# problem data
A = np.array([
[5, 2, 1, 1],
[2, 6, 2, 1],
[1, 2, 7, 1],
[1, 1, 2, 8]
])
b = np.array([29, 31, 26, 19])
# you can choose any starting vector
x_init = np.zeros(len(b))
x = jacobi(A, b, x_init)
print("x:", x)
print("computed b:", np.dot(A, x))
print("real b:", b)
</syntaxhighlight>
Menghasilkan keluaran:
<pre>
x: [3.99275362 2.95410628 2.16183575 0.96618357]
computed b: [29. 31. 26. 19.]
real b: [29 31 26 19]
</pre>
== Lihat pula ==
*[[Metode Gauss–Seidel]]
*[[Relaksasi berlebihan berturut-turut]]
*[[Metode berulang#Sistem linear|Metode berulang§Sistem linier]]
*[[Propagasi Keyakinan#Propagasi keyakinan Gaussian .28GaBP.29|Propagasi Keyakinan Gaussian]]
* [[Pemisahan matriks]]
== Referensi ==
{{Reflist}}
: Sahid. 2005. ''Pengantar Komputasi Numerik dengan MATLAB''. ANDI, Yogyakarta
== Pranala luar ==
<!--* {{CFDWiki|name=Jacobi_method}}-->
* {{MathWorld|urlname=JacobiMethod|title=Metode Jacobi|author=Black, Noel; Moore, Shirley; and Weisstein, Eric W.}}
* [http://www.math-linux.com/spip.php?article49 Jacobi Method from www.math-linux.com]
<!--{{Aljabar linear numerik}}-->
[[Kategori:Aljabar linear numerik]]
[[Kategori:Artikel dengan contoh kodesemu]]
[[Kategori:Relaksasi (metode berulang)]]
[[Kategori:Artikel dengan contoh kode Python]]
[[Kategori:Analisis numerik]]
|