Elektron: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Oktober7384 (bicara | kontrib) ←Mengosongkan halaman Tag: Mengosongkan Dikembalikan |
Add 1 book for Wikipedia:Pemastian (20240809)) #IABot (v2.0.9.5) (GreenC bot |
||
(24 revisi perantara oleh 12 pengguna tidak ditampilkan) | |||
Baris 1:
{{Infobox Partikel
| bgcolour =
| name = Elektron
| image = [[Berkas:HAtomOrbitals.png|280px]]
| caption = Perkiraan teoretis rapatan elektron untuk atom Hidrogen dalam beberapa orbit elektron
| num_types =
| composition = [[Partikel dasar]]
| family = [[Fermion]]
| group = [[Lepton]]
| generation = Pertama
| interaction = [[Gravitasi]], [[Gaya elektromagnetik|Elektromagnetik]], [[Gaya nuklir lemah|Lemah]]
| antiparticle = [[Positron]] (juga disebut antielektron)
| theorized = [[Richard Laming]] (1838–1851),{{br}}[[G. Johnstone Stoney]] (1874) et. al.
| discovered = [[J. J. Thomson]] (1897)<ref name="dahl">[[#refDahl1997|Dahl (1997:122–185).]]</ref>
| symbol = {{SubatomicParticle|Electron}}, {{SubatomicParticle|beta-}}
| mass= 9,10938215(45) × 10<sup>-31</sup> kg{{br}}5,4857990943(23) × 10<sup>-4</sup> u{{br}}[1822,88850204(77)]<sup>−1</sup> u<ref group=cat>Penyebut versi pecahannya merupakan balikan nilai desimal (dengan ketidakpastian standar relatif 4,2 × 10<sup>-10</sup>).</ref>{{br}}0,510998910(13)MeV/c<sup>2</sup>
| electric_charge = −1 [[muatan elementer|e]]<ref group=cat>Muatan elektron adalah negatif [[muatan elementer]] yang memiliki nilai positif untuk proton.</ref>{{br}}-1,602176487(40) × 10<sup>-19</sup> C
| magnetic_moment = −1,001<span style="margin-left:0.25em">159</span><span style="margin-left:0.25em">652</span><span style="margin-left:0.25em">181</span><span style="margin-left:0.25em">11</span> [[Magneton Bohr|μ<sub>B</sub>]]
| spin = {{frac|1|2}}
}}
'''Elektron''' adalah [[fisika partikel|partikel]] subatom yang bermuatan negatif dan umumnya ditulis sebagai '''e<sup>-</sup>'''. Elektron tidak memiliki komponen dasar ataupun substruktur apapun yang diketahui, sehingga ia dipercayai sebagai [[partikel elementer]].<ref name="prl50"/> Elektron memiliki [[massa]] sekitar 1/1836 massa [[proton]].<ref name=nist_codata_mu/> [[Momentum sudut]] ([[spin]]) instrinsik elektron adalah setengah nilai integer dalam satuan [[konstanta Planck|''ħ'']], yang berarti bahwa ia termasuk [[fermion]]. [[Antipartikel]] elektron disebut sebagai [[positron]], yang identik dengan elektron, tetapi bermuatan positif. Ketika sebuah elektron bertumbukan dengan [[positron]], keduanya kemungkinan dapat saling [[hamburan Bhabha|berhambur]] ataupun [[pemusnahan|musnah]] total, menghasilkan sepasang (atau lebih) [[foton]] [[sinar gama]].
Elektron, yang termasuk ke dalam [[generasi (fisika partikel)|generasi]] keluarga partikel [[lepton]] pertama,<ref name="curtis74"/> berpartisipasi dalam interaksi [[gravitasi]], interaksi [[gaya elektromagnetik|elektromagnetik]] dan [[interaksi lemah]].<ref name="anastopoulos1">{{cite book
|first=Charis
|last=Anastopoulos
|year=2008
|title=Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics
|pages=236–237
|url=http://books.google.com/books?id=rDEvQZhpltEC&pg=PA236
|publisher=[[Princeton University Press]]
|isbn=0691135126
|access-date=2010-04-12
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121700/https://books.google.com/books?id=rDEvQZhpltEC&pg=PA236&hl=en
|dead-url=no
}}</ref> Sama seperti semua materi, elektron memiliki sifat bak partikel maupun bak gelombang ([[dualitas gelombang-partikel]]), sehingga ia dapat bertumbukan dengan partikel lain dan ber[[difraksi]] seperti cahaya. Oleh karena elektron termasuk fermion, dua elektron berbeda tidak dapat menduduki keadaan kuantum yang sama sesuai dengan [[asas pengecualian Pauli]].<ref name="curtis74"/>
Konsep muatan listrik yang tidak dapat dibagi-bagi lagi diteorikan untuk menjelaskan sifat-sifat kimiawi [[atom]] oleh filsuf alam [[Richard Laming]] pada awal tahun 1838;<ref name="arabatzis" /> nama ''electron'' diperkenalkan untuk menamakan muatan ini pada tahun 1894 oleh fisikawan Irlandia [[George Johnstone Stoney]]. Elektron berhasil diidentifikasikan sebagai partikel pada tahun 1897 oleh [[J. J. Thomson]].<ref name="dahl"/><ref name="wilson"/>
Dalam banyak fenomena fisika, seperti [[listrik]], [[magnetisme]] dan [[konduktivitas termal]], elektron memainkan peran yang sangat penting. Suatu elektron yang bergerak relatif terhadap pengamat akan menghasilkan [[medan magnetik]] dan lintasan elektron tersebut juga akan dilengkungkan oleh medan magnetik eksternal. Ketika sebuah elektron dipercepat, ia dapat menyerap ataupun memancarkan energi dalam bentuk foton. Elektron bersama-sama dengan [[inti atom]] yang terdiri dari [[proton]] dan [[neutron]], membentuk atom. Namun, elektron hanya mengambil 0,06% massa total atom. Gaya tarik [[hukum Coulomb|Coulomb]] antara elektron dengan proton menyebabkan elektron terikat dalam atom. Pertukaran ataupun perkongsian elektron antara dua atau lebih atom merupakan sebab utama terjadinya [[ikatan kimia]].<ref name=Pauling/>
Menurut teorinya, kebanyakan elektron dalam alam semesta diciptakan pada peristiwa [[Big Bang]] (ledakan besar), namun ia juga dapat diciptakan melalui [[peluruhan beta]] isotop radioaktif maupun dalam tumbukan berenergi tinggi, misalnya pada saat [[sinar kosmis]] memasuki atmosfer. Elektron dapat dihancurkan melalui pemusnahan dengan positron, maupun dapat diserap semasa [[nukleosintesis bintang]]. Peralatan-peralatan laboratorium modern dapat digunakan untuk memuat ataupun memantau elektron individual. Elektron memiliki banyak kegunaan dalam teknologi modern, misalnya dalam [[mikroskop elektron]], [[terapi radiasi]], dan [[pemercepat partikel]].
== Sejarah ==
Orang [[Yunani Kuno]] memperhatikan bahwa [[ambar]] dapat menarik benda-benda kecil ketika digosok-gosokkan dengan bulu hewan. Selain [[petir]], fenomena ini merupakan salah satu catatan terawal manusia mengenai listrik.<ref>
{{cite book
|last=Shipley|first=Joseph T.
|year=1945
|title=Dictionary of Word Origins
|url=https://archive.org/details/dictionaryofword00ship|page=[https://archive.org/details/dictionaryofword00ship/page/133 133]
|publisher=[[The Philosophical Library]]
}}</ref> Dalam karya tahun 1600-nya {{lang|la|''[[De Magnete]]''}}, fisikawan Inggris [[William Gilbert]] menciptakan istilah baru {{lang|la|''electricus''}} untuk merujuk pada sifat penarikan benda-benda kecil setelah digosok.<ref>{{cite book
|first=Brian
|last=Baigrie
|year=2006
|title=Electricity and Magnetism: A Historical Perspective
|url=http://books.google.com/books?id=3XEc5xkWxi4C&pg=PA7
|pages=7–8
|publisher=[[Greenwood Press]]
|isbn=0-3133-3358-0
|access-date=2010-04-12
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121718/https://books.google.com/books?id=3XEc5xkWxi4C&pg=PA7&hl=en
|dead-url=no
}}</ref> Bahasa Inggris untuk kata ''electric'' diturunkan dari bahasa Latin ''{{lang|la|ēlectrum}}'', yang berasal dari bahasa Yunani {{lang|grc|ήλεκτρον}} (''{{lang|grc-Latn|ēlektron}}'') untuk batu ambar.
Pada tahun 1737, [[C. F. du Fay]] dan Hawksbee secara independen menemukan apa yang mereka percaya sebagai dua jenis listrik friksional; satunya dihasilkan dari penggosokan gelas, yang lainnya dihasilkan dari penggosokan resin. Dari sinilah, Du Fay berteori bahwa listrik terdiri dari dua fluida elektris, yaitu "vitreous" dan "resinous", yang dipisahkan oleh gesekan dan menetralkan satu sama lainnya ketika bergabung.<ref>{{cite book|title = The Story of Electrical and Magnetic Measurements: From 500 B.C. to the 1940s|author = Keithley, Joseph F.|publisher = Wiley|year = 1999|isbn = 0-780-31193-0|url = http://books.google.com/books?id=uwgNAtqSHuQC&pg=PA207|access-date = 2010-04-12|archive-date = 2023-03-27|archive-url = https://web.archive.org/web/20230327121736/https://books.google.com/books?id=uwgNAtqSHuQC&pg=PA207&hl=en|dead-url = no}}</ref> Satu dasarwasa kemudian, [[Benjamin Franklin]] mengajukan bahwa listrik tidaklah berasal dari fluida elektris yang bermacam-macam, namun berasal dari fluida elektris yang sama di bawah tekanan yang berbeda. Ia memberikan tatanama [[muatan listrik|muatan]] positif dan negatif untuk tekanan yang berbeda ini.<ref>[http://scienceworld.wolfram.com/biography/FranklinBenjamin.html ''Benjamin Franklin (1706–1790).''] {{Webarchive|url=https://web.archive.org/web/20171018063555/http://scienceworld.wolfram.com/biography/FranklinBenjamin.html |date=2017-10-18 }} Science World, from Eric Weisstein's World of Scientific Biography.</ref><ref name="EncyclopediaAmericana">The Encyclopedia Americana; a library of universal knowledge. (1918). New York: Encyclopedia Americana Corp.</ref>
Antara tahun 1838 dan 1851, filsuf alam Britania [[Richard Laming]] mengembangkan gagasan bahwa atom terdiri dari materi inti yang dikelilingi oleh partikel subatom yang memiliki [[muatan listrik]].<ref name="farrar">
{{cite journal
|last=Farrar |first=Wilfred V.
|year=1969
|title=Richard Laming and the Coal-Gas Industry, with His Views on the Structure of Matter
|journal=Annals of Science
|volume=25 |pages=243–254
|doi=10.1080/00033796900200141
}}</ref> Awal tahun 1846, fisikawan Jerman [[Wilhelm Eduard Weber|William Weber]] berteori bahwa listrik terdiri dari fluida yang bermuatan positif dan negatif, dan interaksinya mematuhi [[hukum kuadrat terbalik]]. Setelah mengkaji fenomena [[elektrolisis]] pada tahun 1874, fisikawan Irlandia [[George Johnstone Stoney]] mengajukan teori bahwa terdapat suatu "satuan kuantitas listrik tertentu" yang merupakan muatan sebuah ion [[valensi|monovalen]]. Ia berhasil memperkirakan nilai muatan elementer ''e'' ini menggunakan [[Hukum elektrolisis Faraday]].<ref>
{{cite journal
|last=Barrow |first=John D. |authorlink=John D. Barrow
|year=1983
|title=Natural Units Before Planck
|journal=Royal Astronomical Society Quarterly Journal
|volume=24 |pages=24–26
|bibcode=1983QJRAS..24...24B
}}</ref> Namun, Stoney percaya bahwa muatan-muatan ini secara permanen terikat pada atom dan tidak dapat dilepaskan. Pada tahun 1881, fisikawan Jerman [[Hermann von Helmholtz]] berargumen bahwa baik muatan positif dan negatif dibagi menjadi beberapa bagian elementer, yang "berperilaku seperti atom dari listrik".<ref name="arabatzis">
{{cite book
|last=Arabatzis|first=Theodore
|year=2006
|title=Representing Electrons: A Biographical Approach to Theoretical Entities
|pages=70–74|url=http://books.google.com/books?id=rZHT-chpLmAC&pg=PA70
|publisher=[[University of Chicago Press]]
|isbn=0226024210
}}</ref>
Pada tahun 1894, Stoney menciptakan istilah ''electron'' untuk mewakili muatan elementer ini.<ref>
{{Cite journal
|last=Stoney |first=George Johnstone
|year=1894
|title=Of the "Electron," or Atom of Electricity
|journal=[[Philosophical Magazine]]
|volume=38 |issue=5 |pages=418–420
|doi=
}}</ref> Kata ''electron'' merupakan kombinasi kata ''electric'' dengan akhiran ''on'', yang digunakan sekarang untuk merujuk pada partikel subatomik seperti proton dan neutron.<ref>
{{cite book
|author=Soukhanov, Anne H. ed.<!-- using author field because editor field double-punctuates. -->
|year=1986
|title=Word Mysteries & Histories
|page=73
|publisher=[[Houghton Mifflin Company]]
|isbn=0-395-40265-4
}}</ref><ref>
{{cite book
|author=Guralnik, David B. ed.<!-- using author field because editor field double-punctuates. -->
|year=1970
|title=Webster's New World Dictionary
|publisher=[[Prentice-Hall]]
|page=450
|isbn=
}}</ref>
=== Penemuan elektron ===
[[Berkas:Cyclotron motion wider view.jpg|ka|jmpl|350px|Seberkas elektron dibelokkan menjadi lingkaran oleh medan magnet<ref>{{cite book
|author=Born, Max; Blin-Stoyle, Roger John; Radcliffe, J. M.
|year=1989
|title=Atomic Physics
|page=26
|url=http://books.google.com/books?id=NmM-KujxMtoC&pg=PA26
|publisher=[[Courier Dover]]
|isbn=0486659844
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121743/https://books.google.com/books?id=NmM-KujxMtoC&pg=PA26&hl=en
|dead-url=no
}}</ref>]]
Fisikawan Jerman [[Johann Wilhelm Hittorf]] melakukan kajian mengenai [[konduktivitas listrik]] dalam gas. Pada tahun 1869, ia menemukan sebuah pancaran yang dipancarkan dari [[katode]] yang ukurannya meningkat seiring dengan menurunnya tekanan gas. Pada tahun 1876, fisikawan Jerman [[Eugen Goldstein]] menunjukkan bahwa sinar pancaran ini menghasilkan bayangnya, dan ia menamakannya [[sinar katode]].<ref>[[#refDahl1997|Dahl (1997:55–58).]]</ref> Semasa tahun 1870-an, kimiawan dan fisikawan Inggris [[William Crookes]] mengembangkan tabung katode pertama yang [[vakum]].<ref name="dekosky">
{{cite journal
|last=DeKosky |first=Robert
|year=1983
|title=William Crookes and the quest for absolute vacuum in the 1870s
|journal=Annals of Science
|volume=40 |issue=1 |pages=1–18
|doi=10.1080/00033798300200101
}}</ref> Ia kemudian menunjukkan sinar berpendar yang tampak di dalam tabung tersebut membawa energi dan bergerak dari katode ke [[anode]]. Lebih jauh lagi, menggunakan medan magnetik, ia dapat membelokkan sinar tersebut dan mendemonstrasikan bahwa berkas ini berperilaku seolah-olah ia bermuatan negatif.<ref name="leicester">{{cite book
|last=Leicester
|first=Henry M.
|year=1971
|title=The Historical Background of Chemistry
|pages=221–222
|url=http://books.google.com/books?id=aJZVQnqcwv4C&pg=PA221
|publisher=[[Courier Dover Publications]]
|isbn=0486610535
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121719/https://books.google.com/books?id=aJZVQnqcwv4C&pg=PA221&hl=en
|dead-url=no
}}</ref><ref>[[#refDahl1997|Dahl (1997:64–78).]]</ref> Pada tahun 1879, ia mengajukan bahwa sifat-sifat ini dapat dijelaskan menggunakan apa yang ia istilahkan sebagai 'materi radian' (''radiant matter''). Ia mengajukan ini adalah [[keadaan materi]] keempat, yang terdiri dari [[molekul|molekul-molekul]] bermuatan negatif yang diproyeksikan dengan kecepatan tinggi dari katode.<ref>{{cite journal
|author=Zeeman, Pieter<!-- Lockyer, Norman ed.: commenting out for now because editor field double-punctuates. -->
|authorlink=Pieter Zeeman
|year=1907
|title=Sir William Crookes, F.R.S.
|url=http://books.google.com/books?id=UtYRAAAAYAAJ
|journal=[[Nature (journal)|Nature]]
|volume=77
|issue=1984
|pages=1–3
|doi=10.1038/077001a0
|access-date=2009-02-24
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121728/https://books.google.com/books?id=UtYRAAAAYAAJ&hl=en
|dead-url=no
}}</ref>
Fisikawan Britania kelahiran Jerman [[Arthur Schuster]] memperluas eksperimen Crookes dengan memasang dua pelat logam secara paralel terhadap sinar katode dan memberikan [[potensial listrik]] antara dua pelat tersebut. Medan ini kemudian membelokkan sinar menuju pelat bermuatan positif, memberikan bukti lebih jauh bahwa sinar ini mengandung muatan negatif. Dengan mengukur besar pembelokan sinar sesuai dengan [[arus listrik]] yang diberikan, pada tahun 1890, Schuster berhasil memperkirakan [[rasio massa terhadap muatan]] komponen-komponen sinar. Namun, perhitungan ini menghasilkan nilai yang seribu kali lebih besar daripada yang diperkirakan, sehingga perhitungan ini tidak dipercayai pada saat itu.<ref name="leicester"/><ref>[[#refDahl1997|Dahl (1997:99).]]</ref>
Pada tahun 1896, fisikawan Britania [[J. J. Thomson]], bersama dengan koleganya [[John Sealy Townsend|John S. Townsend]] dan [[Harold A. Wilson (fisikawan)|H. A. Wilson]],<ref name="dahl"/> melakukan eksperimen yang mengindikasikan bahwa sinar katode benar-benar merupakan partikel baru dan bukanlah gelombang, atom, ataupun molekul seperti yang dipercayai sebelumnya. Thomson membuat perkiraan yang cukup baik dalam menentukan muatan ''e'' dan massa ''m'', dan menemukan bahwa partikel sinar katode, yang ia sebut "corpuscles" mungkin bermassa seperseribu massa ion terkecil yang pernah diketahui (''hidrogen'').<ref name="wilson">{{cite book
|first=Robert
|last=Wilson
|year=1997
|title=Astronomy Through the Ages: The Story of the Human Attempt to Understand the Universe
|page=138
|publisher=[[CRC Press]]
|isbn=0748407480
|url=http://books.google.com/books?id=AoiJ3hA8bQ8C&pg=PA138
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121720/https://books.google.com/books?id=AoiJ3hA8bQ8C&pg=PA138&hl=en
|dead-url=no
}}</ref> Ia menunjukkan bahwa nisbah massa terhadap muatan, ''e''/''m'', tidak tergantung pada material katode. Ia lebih jauh lagi menunjukkan bahwa partikel bermuatan negatif yang dihasilkan oleh bahan-bahan radioaktif, bahan-bahan yang dipanaskan, atau bahan-bahan yang berpendar bersifat universal.<ref>{{cite web
|last=Thomson
|first=J. J.
|year=1906
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-lecture.pdf
|title=Nobel Lecture: Carriers of Negative Electricity
|publisher=[[The Nobel Foundation]]
|accessdate=2008-08-25
|archive-date=2008-10-10
|archive-url=https://web.archive.org/web/20081010100408/http://nobelprize.org/nobel_prizes/physics/laureates/1906/thomson-lecture.pdf
|dead-url=yes
}}</ref> Nama elektron kemudian diajukan untuk menamakan partikel ini oleh fisikawan Irlandia [[George FitzGerald|George F. Fitzgerald]], dan seterusnya mendapatkan penerimaan yang universal.<ref name="leicester"/>
Manakala sedang mengkaji mineral [[fluoresens]] pada tahun 1896, fisikawan Prancis [[Henri Becquerel]] menemukan bahwa mineral tersebut memancarkan radiasi tanpa terpapar sumber energi eksternal. Bahan [[radioaktif]] ini menarik perhatian banyak ilmuwan, meliputi ilmuwan [[Selandia Baru]] [[Ernest Rutherford]] yang menemukan bahwa partikel ini memancarkan partikel. Ia melabeli partikel ini [[partikel alfa]] dan [[partikel beta]] berdasarkan kemampuannya menembus materi.<ref>
{{cite journal
|last=Trenn |first=Thaddeus J.
|year=1976
|title=Rutherford on the Alpha-Beta-Gamma Classification of Radioactive Rays
|journal=[[Isis (journal)|Isis]]
|volume=67 |issue=1 |pages=61–75
|id={{JSTOR|231134}}
|doi=10.1086/351545
}}</ref> Pada tahun 1900, Becquerel menunjukkan bahwa emisi sinar beta oleh [[radium]] dapat dibelokkan oleh medan listrik, dan rasio massa terhadap muatannya adalah sama dengan rasio massa terhadap muatan sinar katode.<ref>
{{cite journal
|last=Becquerel |first=Henri
|year=1900
|title=Déviation du Rayonnement du Radium dans un Champ Électrique
|journal=[[Comptes Rendus de l'Académie des Sciences]]
|volume=130 |pages=809–815
}} {{Fr icon}}</ref> Bukti ini menguatkan pandangan bahwa elektron merupakan komponen atom.<ref name="BaW9091">[[#refBaW2001|Buchwald and Warwick (2001:90–91).]]</ref><ref>{{cite journal
|last=Myers
|first=William G.
|year=1976
|title=Becquerel's Discovery of Radioactivity in 1896
|url=http://jnm.snmjournals.org/cgi/content/abstract/17/7/579
|journal=Journal of Nuclear Medicine
|volume=17
|issue=7
|pages=579–582
|pmid=775027
|doi=
|access-date=2010-04-13
|archive-date=2008-12-22
|archive-url=https://web.archive.org/web/20081222023947/http://jnm.snmjournals.org/cgi/content/abstract/17/7/579
|dead-url=no
}}</ref>
Muatan elektron kemudian diukur lebih saksama lagi oleh fisikawan Amerika [[Robert Andrews Millikan|Robert Millikan]] dalam [[Percobaan Millikan|Percobaan tetesan minyak]] pada tahun 1909. Hasil percobaan ini dipublikasikan pada tahun 1911. Percobaan ini menggunakan medan listrik untuk mencegah tetesan minyak bermuatan jatuh sebagai akibat dari gravitasi. Peralatan yang digunakan dalam percobaan ini dapat mengukur muatan listrik dari 1–150 ion dengan [[batas kesalahan]] kurang dari 0,3%. Percobaan yang mirip dengan percobaan Millikan sebelumnya telah dilakukan oleh Thomson, menggunakan tetesan awan air bermuatan yang dihasilkan dari elektrolisis,<ref name="dahl"/> dan oleh [[Abram Ioffe]] pada tahun 1911, yang secara independen mendapatkan hasil yang sama dengan Millikan menggunakan mikropartikel logam bermuatan. Ia mempublikasikan hasil percobaannya pada tahun 1913.<ref>{{cite journal
|last=Kikoin |first=Isaak K. |authorlink=Isaak Kikoin
|last2=Sominskiĭ |first2=Isaak S.
|year=1961
|title=Abram Fedorovich Ioffe (on his eightieth birthday)
|journal=[[Soviet Physics Uspekhi]]
|volume=3 |pages=798–809
|doi=10.1070/PU1961v003n05ABEH005812
}} Original publication in Russian: {{cite journal
|last=Кикоин
|first=И.К.
|last2=Соминский
|first2=М.С.
|year=1960
|title=Академик А.Ф. Иоффе
|url=http://ufn.ru/ufn60/ufn60_10/Russian/r6010e.pdf
|journal=Успехи Физических Наук
|volume=72
|issue=10
|pages=303–321
|access-date=2010-04-13
|archive-date=2018-10-09
|archive-url=https://web.archive.org/web/20181009013215/https://ufn.ru/ufn60/ufn60_10/Russian/r6010e.pdf
|dead-url=no
}}</ref> Namun, tetesan minyak lebih stabil daripada tetesan air karena laju penguapan minyak yang lebih lambat, sehingga lebih cocok digunakan untuk percobaan dalam periode waktu yang lama.<ref>
{{cite journal
|last=Millikan |first=Robert A.
|year=1911
|title=The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes' Law
|journal=Physical Review
|volume=32 |issue=2 |pages=349–397
|doi=10.1103/PhysRevSeriesI.32.349
}}</ref>
Sekitar permulaan abad ke-20, ditemukan bahwa di bawah kondisi tertentu, partikel bermuatan yang bergerak cepat dapat menyebabkan kondensasi uap air yang [[lewat jenuh]] di sepanjang lintasan partikel tersebut. pada tahun 1911, [[Charles Thomson Rees Wilson|Charles Wilson]] menggunakan prinsip ini untuk membangun [[bilik kabut]], mengijikan pelacakan partikel-partikel bermuatan seperti elektron yang bergerak cepat untuk difoto.<ref>{{cite journal
|last=Das Gupta |first=N. N.
|last2=Ghosh |first2=Sanjay K.
|year=1999
|title=A Report on the Wilson Cloud Chamber and Its Applications in Physics
|journal=[[Reviews of Modern Physics]]
|volume=18 |pages=225–290
|doi=10.1103/RevModPhys.18.225
}}</ref>
=== Teori atom ===
[[Berkas:Bohr atom model English.svg|ka|jmpl|[[Model atom Bohr]], menunjukkan keadaan elektron dengan energi [[bilangan kuantum|terkuantisasi]] n. Sebuah elektron yang jatuh ke orbit bawah memancarkan foton yang energinya sama dengan selisih energi antar orbit.]]
Pada tahun 1914, percobaan yang dilakukan oleh fisikawan Ernest Rutherford, [[Henry Moseley]], [[James Franck]] dan [[Gustav Ludwig Hertz|Gustav Hertz]] secara garis besar telah berhasil membangun model struktur atom sebagai [[inti atom]] bermuatan positif yang dikelilingi oleh elektron bermassa kecil.<ref name="smirnov"/> Pada tahun 1913, fisikawan Denmark [[Niels Bohr]] berpostulat bahwa elektron berada dalam keadaan energi terkuantisasi, dengan energinya ditentukan berdasarkan momentum sudut orbit elektron di sekitar inti. Elektron dapat berpindah dari satu keadaan ke keadaan lain (atau orbit) dengan memancarkan emisi ataupun menyerap foton pada frekuensi tertentu. Menggunakan model orbit terkuantisasi ini, ia secara akurat berhasil menjelaskan [[garis spektrum]] atom hidrogen.<ref>{{cite web
|last=Bohr
|first=Niels
|year=1922
|title=Nobel Lecture: The Structure of the Atom
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-lecture.pdf
|publisher=[[The Nobel Foundation]]
|accessdate=2008-12-03
|archive-date=2008-12-03
|archive-url=https://web.archive.org/web/20081203124237/http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-lecture.pdf
|dead-url=no
}}</ref> Namun, model Bohr gagal menjelaskan intensitas relatif garis spektrum ini dan gagal pula dalam menjelaskan spektrum atom yang lebih kompleks.<ref name="smirnov">{{cite book
|last=Smirnov
|first=Boris M.
|year=2003
|title=Physics of Atoms and Ions
|pages=14–21
|publisher=[[Springer (publisher)|Springer]]
|isbn=038795550X
|url=http://books.google.com/books?id=I1O8WYOcUscC&pg=PA14
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121729/https://books.google.com/books?id=I1O8WYOcUscC&pg=PA14&hl=en
|dead-url=no
}}</ref>
Ikatan kimia antaratom dijelaskan oleh [[Gilbert Newton Lewis]], yang pada tahun 1916 mengajukan bahwa [[ikatan kovalen]] antara dua atom dijaga oleh sepasang elektron yang dibagikan di antara dua atom yang berikatan.<ref>
{{cite journal
|last=Lewis|first=Gilbert N.
|year=1916
|title=The Atom and the Molecule
|journal=Journal of the American Chemical Society
|volume=38 |issue=4 |pages=762–786
|doi=10.1021/ja02261a002
}}</ref> Kemudian, pada tahun 1923, [[Walter Heitler]] dan [[Fritz London]] memberikan penjelasan penuh mengenai formasi pasangan elektron dan ikatan kimia berdasarkan [[mekanika kuantum]].<ref name=Arabatzis>
{{cite journal
|last=Arabatzis |first=Theodore
|last2=Gavroglu |first2=Kostas
|year=1997
|title=The chemists' electron
|journal=[[European Journal of Physics]]
|volume=18 |pages=150–163
|doi=10.1088/0143-0807/18/3/005
}}</ref> Pada tahun 1919, kimiawan Amerika [[Irving Langmuir]] menjabarkan lebih lanjut lagi model statis atom Lewis dan mengajukan bahwa semua elektron terdistribusikan dalam "kulit-kulit bola konsentris, kesemuannya berketebalan sama".<ref>
{{cite journal
|last=Langmuir |first=Irving
|year=1919
|title=The Arrangement of Electrons in Atoms and Molecules
|journal=Journal of the American Chemical Society
|volume=41 |issue=6 |pages=868–934
|doi=10.1021/ja02227a002
}}</ref> Kulit tersebut kemudian dibagi olehnya ke dalam sejumlah sel yang tiap-tiap sel mengandung sepasangan elektron. Dengan model ini, Langmuir berhasil secara kualitatif menjelaskan sifat-sifat kimia semua unsur dalam tabel periodik.<ref name=Arabatzis/>
Pada tahun 1924, fisikawan Austria [[Wolfang Pauli]] memperhatikan bahwa struktur seperi kulit atom ini dapat dijelaskan menggunakan empat parameter yang menentukan tiap-tiap keadaan energi kuantum sepanjang tiap keadaan diduduki oleh tidak lebih dari satu elektron tunggal. Pelarangan adanya lebih dari satu elektron menduduki keadaan energi kuantum yang sama dikenal sebagai [[asas pengecualian Pauli]].)<ref>{{cite book
|last=Massimi
|first=Michela
|year=2005
|title=Pauli's Exclusion Principle, The Origin and Validation of a Scientific Principle
|pages=7–8
|url=http://books.google.com/books?id=YS91Gsbd13cC&pg=PA7
|publisher=[[Cambridge University Press]]
|isbn=0521839114
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121734/https://books.google.com/books?id=YS91Gsbd13cC&pg=PA7&hl=en
|dead-url=no
}}</ref> Mekanisme fisika yang menjelaskan parameter keempat, yang memiliki dua nilai berbeda, diberikan oleh fisikawan Belanda [[Samuel Abraham Goudsmit|Abraham Goudsmith]] dan [[George Uhlenbeck]] ketika mereka mengajukan bahwa elektron, selain momentum sudut orbitnya, juga dapat memiliki momentum sudut intrinsiknya sendiri.<ref name="smirnov"/><ref>
{{cite journal
|last=Uhlenbeck |first=G. E.
|last2=Goudsmith |first2=S.
|year=1925
|title=Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons
|journal=[[Die Naturwissenschaften]]
|volume=13 |issue=47
|bibcode=1925NW.....13..953E
}} {{De icon}}</ref> Ciri ini kemudian dikenal sebagai [[spin]], yang menjelaskan pemisahan garis spektrum yang terpantau pada [[spektrometer]] beresolusi tinggi. Fenomena ini dikenal sebagai pemisahan [[struktur halus]].<ref>
{{cite journal
|last=Pauli |first=Wolfgang
|year=1923
|title=Über die Gesetzmäßigkeiten des anomalen Zeemaneffektes
|journal=[[Zeitschrift für Physik]]
|volume=16 |issue=1 |pages=155–164<!--
|bicode=1923ZPhy...16..155P-->
|doi=10.1007/BF01327386
}} {{De icon}}</ref>
=== Mekanika kuantum ===
[[Berkas:AOs-3D-dots.png|ka|jmpl|300px|Dalam mekanika kuantum, perilaku elektron dalam atom dijelaskan menggunakan [[orbital atom|orbital]], yang merupakan sebuah distribusi probabilitas dan bukannya orbit. Pada gambar di atas, bagian berwarna menunjukkan probabilitas relatif "penemuan" elektron yang memiliki energi sesuai dengan [[bilangan kuantum]] pada titik tersebut.]]
Dalam disertasi tahun 1924 berjudul ''{{lang|fr|Recherches sur la théorie des quanta}}'' (Riset mengenai Teori Kuantum), fisikawan Prancis [[Louis de Broglie]] berhipotesis bahwa semua materi memiliki [[gelombang De Broglie]] yang mirip dengan [[cahaya]].<ref name="de_broglie">{{cite web
|last=de Broglie
|first=Louis
|year=1929
|title=Nobel Lecture: The Wave Nature of the Electron
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.pdf
|publisher=[[The Nobel Foundation]]
|accessdate=2008-08-30
|archive-date=2008-10-04
|archive-url=https://web.archive.org/web/20081004022001/http://nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.pdf
|dead-url=no
}}</ref> Ini berarti bahwa di bawah kondisi yang tepat, elektron dan semua materi dapat menunjukkan sifat-sifat seperti partikel maupun seperti gelombang. [[Teori korpusukular cahaya|Sifat korpuskular]] partikel dapat didemonstrasikan ketika ia dapat ditunjukkan memiliki posisi terlokalisasi dalam ruang sepanjang trayektorinya pada waktu apapun.<ref>{{cite book
|first=Brigitte
|last=Falkenburg
|year=2007
|title=Particle Metaphysics: A Critical Account of Subatomic Reality
|page=85
|url=http://books.google.com/books?id=EbOz5I9RNrYC&pg=PA85
|publisher=[[Springer (publisher)|Springer]]
|isbn=3540337318
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121728/https://books.google.com/books?id=EbOz5I9RNrYC&pg=PA85&hl=en
|dead-url=no
}}</ref> Sifat seperti gelombang dapat dipantau ketika seberkas cahaya dilewatkan melalui celah-celah paralel dan menghasilkan pola-pola [[interferensi]].
Pada tahun 1927, efek interferensi ini berhasil ditunjukkan juga berlaku bagi berkas elektron oleh fisikawan Inggris [[George Paget Thomson]] menggunakan film logam tipis dan oleh fisikawan Amerika [[Clinton Davisson]] dan [[Lester Germer]] menggunakan kristal [[nikel]].<ref>{{cite web
|last=Davisson
|first=Clinton
|year=1937
|title=Nobel Lecture: The Discovery of Electron Waves
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-lecture.pdf
|publisher=[[The Nobel Foundation]]
|accessdate=2008-08-30
|archive-date=2008-07-09
|archive-url=https://web.archive.org/web/20080709090839/http://nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-lecture.pdf
|dead-url=no
}}</ref> Suksesnya prediksi de Broglie turut membantu [[Erwin Schrödinger]] yang pada tahun 1926 mempublikasikan [[persamaan Schrödinger]] yang secara sukses mendeskripsikan bagaimana gelombang elektron merambat.<ref>
{{cite journal
|last=Schrödinger |first=Erwin
|year=1926
|title=Quantisierung als Eigenwertproblem
|journal=Annalen der Physik
|volume=385 |issue=13 |pages=437–490
|bibcode=1926AnP...385..437S
|doi=10.1002/andp.19263851302
}} {{De icon}}</ref> Daripada menghasilkan penyelesaian yang menentukan lokasi elektron seiring dengan berjalannya waktu, persamaan gelombang ini dapat digunakan untuk memprediksikan probabilitas penemuan sebuah elektron dekat sebuah posisi. Pendekatan ini kemudian disebut sebagai [[mekanika kuantum]], yang memberikan perhitungan keadaan energi elektron atom hidrogen dengan sangat tepat. Ketika spin dan interaksi antara banyak elektron diperhitungkan, mekanika kuantum memungkinkan konfigurasi elektron dalam atom bernomor atom lebih tinggi daripada hidrogen diprediksi dengan tepat.<ref>{{cite book
|last=Reed
|first=Bruce Cameron
|year=2007
|title=Quantum Mechanics
|pages=275–350
|publisher=[[Jones & Bartlett Publishers]]
|isbn=0763744514
|url=http://books.google.com/books?id=4sluccbpwjsC&pg=PA275
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121805/https://books.google.com/books?id=4sluccbpwjsC&pg=PA275&hl=en
|dead-url=no
}}</ref>
Pada tahun 1928, berdasarkan karya Wolfgang Pauli, [[Paul Dirac]] menghasilkan model elektron, [[persamaan Dirac]], yang konsisten dengan teori relativitas, dengan menerapkan pertimbangan relativitas dan simetri ke dalam perumusan [[Hamiltonan]] mekanika kuantum medan elektro-magnetik.<ref>
{{cite journal
|last=Dirac |first=Paul A. M.
|year=1928
|title=The Quantum Theory of the Electron
|journal=[[Proceedings of the Royal Society of London A]]
|volume=117 |issue=778 |pages=610–624
|doi=10.1098/rspa.1928.0023
}}</ref> Agar dapat memecahkan berbagai masalah dalam persamaan relativistiknya, pada tahun 1930, Dirac mengembangkan model vakum sebagai lautan partikel tak terhingga yang berenergi negatif (dikenal sebagai [[laut Dirac]]). Ini mengantar Dirac memprediksikan keberadaan positron, [[antimateri]] dari elektron.<ref>{{cite web
|last=Dirac
|first=Paul A. M.
|year=1933
|title=Nobel Lecture: Theory of Electrons and Positrons
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1933/dirac-lecture.pdf
|publisher=[[The Nobel Foundation]]
|accessdate=2008-11-01
|archive-date=2008-07-23
|archive-url=https://web.archive.org/web/20080723220816/http://nobelprize.org/nobel_prizes/physics/laureates/1933/dirac-lecture.pdf
|dead-url=no
}}</ref> Partikel positron ditemukan pada tahun 1932 oleh [[Carl D. Anderson]], yang menyerukan dinamakannya elektron biasa sebagai ''negatron'', dan ''elektron'' digunakan sebagai istilah generik untuk merujuk pada kedua partikel tersebut. Penggunaan istilah 'negatron' kadang-kadang masih dapat ditemukan sekarang, dan dapat disingkat menjadi 'negaton'.<ref>{{cite book
|first=Helge
|last=Kragh
|year=2002
|title=Quantum Generations: A History of Physics in the Twentieth Century
|page=132
|publisher=[[Princeton University Press]]
|isbn=0691095523
|url=http://books.google.com/books?id=ELrFDIldlawC&pg=PA132
|access-date=2010-04-13
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121732/https://books.google.com/books?id=ELrFDIldlawC&pg=PA132&hl=en
|dead-url=no
}}</ref><ref>
{{cite book
|first=Frank|last=Gaynor
|year=1950
|title=Concise Encyclopedia of Atomic Energy
|page=117
|publisher=[[The Philosophical Library]]
}}</ref>
Pada tahun 1947, [[Willis Eugene Lamb|Willis Lamb]], berkolaborasi dengan murid pascasarjananya Robert Retherford, menemukan bahwa keadaan kuantum tertentu atom hidrogen, yang seharusnya berenergi sama, bergeser relatif terhadap satu sama lain. Pergesaran ini disebut sebagai [[geseran Lamb]]. Pada waktu yang bersamaan, [[Polykarp Kusch]], bekerja dengan [[Henry M. Foley]], menemukan bahwa momen magnetik elektron sedikit lebih besar daripada yang diprediksikan oleh teori Dirac. Perbedaan kecil ini kemudian disebut sebagai [[anomali momen dipol magnetik]] elektron. Untuk memecahkan masalah ini, teori yang disebut [[elektrodinamika kuantum]] dikembangkan oleh [[Sin-Itiro Tomonaga]], [[Julian Schwinger]] dan
[[Richard P. Feynman]] pada akhir tahun 1940-an.<ref>{{cite web
|title=The Nobel Prize in Physics 1965
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1965/
|publisher=[[The Nobel Foundation]]
|accessdate=2008-11-04
|archive-date=2008-10-24
|archive-url=https://web.archive.org/web/20081024052537/http://nobelprize.org/nobel_prizes/physics/laureates/1965/
|dead-url=no
}}</ref>
=== Pemercepat partikel ===
Dengan berkembangnya [[pemercepat partikel]] semasa paruh pertama abad ke-20, fisikawan mulai mengkaji lebih dalam sifat-sifat [[partikel subatom]].<ref>{{cite web
|last=Panofsky
|first=Wolfgang K. H.
|year=1997
|title=The Evolution of Particle Accelerators & Colliders
|url=http://www.slac.stanford.edu/pubs/beamline/27/1/27-1-panofsky.pdf
|publisher=[[Stanford University]]
|accessdate=2008-09-15
|archive-date=2016-06-03
|archive-url=https://web.archive.org/web/20160603171047/http://www.slac.stanford.edu/pubs/beamline/27/1/27-1-panofsky.pdf
|dead-url=no
}}</ref> Usaha pertama yang berhasil mempercepat elektron menggunakan [[induksi elektromagnetik]] dilakukan pada tahun 1942 oleh [[Donald Kerst]]. [[Betatron]] awalnya mencapai energi sebesar 2,3 M[[Elektronvolt|eV]], manakala betatron-betatron selanjutnya berhasil mencapai 300 MeV. Pada tahun 1947, [[radiasi sinkrotron]] ditemukan menggunakan sinkrotron elektron 70 MeV di [[General Electric]]. Radiasi ini disebabkan oleh percepatan elektron yang bergerak mendekati kecepatan cahaya melalui medan magnetik.<ref>
{{cite journal
|last=Elder |first=F. R. |last2=Gurewitsch |first2=A. M.
|last3=Langmuir |first3=R. V. |last4=Pollock |first4=H. C.
|year=1947
|title=Radiation from Electrons in a Synchrotron
|journal=Physical Review
|volume=71 |issue=11 |pages=829–830
|doi=10.1103/PhysRev.71.829.5
}}</ref>
Dengan energi berkas sebesar 1,5 GeV, penumbuk partikel berenergi tinggi [[ADONE]] memulai operasinya pada tahun 1968.<ref>
{{cite book
|last=Hoddeson|first=Lillian|last2=Brown|first2=Laurie
|last3=Riordan|first3=Michael|last4=Dresden|first4=Max
|year=1997
|title=The Rise of the Standard Model: Particle Physics in the 1960s and 1970s
|url=https://archive.org/details/risestandardmode00hodd|pages=[https://archive.org/details/risestandardmode00hodd/page/25 25]–26
|publisher=[[Cambridge University Press]]
|isbn=0521578167|
}}</ref> Alat ini mempercepat elektron dan positron dengan arah yang berlawanan, secara efektif menggandakan energi tumbukan dibandingkan apabila menumbukkan elektron dengan target yang diam.<ref>
{{cite journal
|last=Bernardini |first=Carlo
|year=2004
|title=AdA: The First Electron–Positron Collider
|journal=Physics in Perspective
|volume=6 |issue=2 |pages=156–183
|bibcode=2004PhP.....6..156B
|doi=10.1007/s00016-003-0202-y
}}</ref> ''[[Large Electron-Positron Collider]]'' (LEP) di [[CERN]] yang beroperasi dari tahun 1989 sampai dengan tahun 2000 berhasil mencapai energi tumbukan sebesar 209 GeV dan berhasil membuat pengukuran untuk [[Model Standar]] fisika partikel.<ref>{{cite web
|year=2008
|title=Testing the Standard Model: The LEP experiments
|url=http://public.web.cern.ch/PUBLIC/en/Research/LEPExp-en.html
|publisher=CERN
|accessdate=2008-09-15
|archive-date=2013-02-13
|archive-url=https://web.archive.org/web/20130213071348/http://public.web.cern.ch/public/en/research/LEPExp-en.html
|dead-url=no
}}</ref><ref>{{cite journal
|year=2000
|title=LEP reaps a final harvest
|url=http://cerncourier.com/cws/article/cern/28335
|journal=CERN Courier
|accessdate=2008-11-01
|archive-date=2010-11-21
|archive-url=https://web.archive.org/web/20101121031107/http://cerncourier.com/cws/article/cern/28335
|dead-url=no
}}</ref>
== Karakteristik ==
=== Klasifikasi ===
[[Berkas:Standard Model of Elementary Particles-id.svg|ka|jmpl|400px|Model Standar partikel elementer. Elektron berada pada bagian kiri bawah.]]
Dalam Model Standar fisika partikel, elektron termasuk ke dalam golongan partikel subatom yang disebut [[lepton]], yang dipercayai sebagai [[partikel elementer]]. Elektron memiliki massa yang terendah di antara lepton bermuatan lainnya dan termasuk ke dalam partikel elementer [[generasi (fisika partikel)|generasi]] pertama.<ref>{{cite journal
|last=Frampton|first=Paul H.
|title=Quarks and Leptons Beyond the Third Generation
|url=https://archive.org/details/sim_physics-reports_2000-06_330_4/page/n74|journal=Physics Reports|year=2000
|volume=330|pages=263–348
|doi=10.1016/S0370-1573(99)00095-2}}</ref>
Generasi kedua dan ketiganya mengandung lepton bermuatan, yaitu [[muon]] dan [[tauon]], yang identik dengan elektron dalam hal muatannya, [[spin]], dan interaksinya, terkecuali keduanya bermassa lebih besar. Lepton berbeda dari konstituen materi lainnya seperti [[kuark]] karena lepton tidak memiliki [[interaksi kuat]]. Semua anggota golongan lepton adalah termasuk fermion karena semuanya memiliki spin {{frac|1|2}}.<ref name="raith">{{cite book
|first=Wilhelm|last=Raith
|coauthors=Mulvey, Thomas|year=2001|title=Constituents of Matter: Atoms, Molecules, Nuclei and Particles
|publisher=CRC Press|isbn=0849312027|pages=777–781}}</ref>
=== Ciri-ciri fundamental ===
[[Massa invarian]] sebuah elektron adalah kira-kira 9,109 × 10<sup>−31</sup> [[kilogram]],<ref name="CODATA"/> ataupun setara dengan 5,489 × 10<sup>−4</sup> [[satuan massa atom]]. Berdasarkan prinsip [[kesetaraan massa-energi]] Einstein, massa ini setara dengan energi rihat 0,511 MeV. Rasio antara massa [[proton]] dengan massa elektron adalah sekitar 1836.<ref name=nist_codata_mu>{{cite web|url=http://physics.nist.gov/cgi-bin/cuu/Value?mpsme|title=CODATA value: proton-electron mass ratio|series=2006 CODATA recommended values|publisher=National Institute of Standards and Technology|accessdate=2009-07-18|archive-date=2020-04-22|archive-url=https://web.archive.org/web/20200422025536/https://physics.nist.gov/cgi-bin/cuu/Value?mpsme|dead-url=no}}</ref><ref>{{cite book|last=Zombeck|first=Martin V.|year=2007|title=Handbook of Space Astronomy and Astrophysics|publisher=Cambridge University Press|page=14|edition=3rd|isbn=0521782422|url=http://books.google.com/books?id=tp_G85jm6IAC&pg=PA14|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121738/https://books.google.com/books?id=tp_G85jm6IAC&pg=PA14&hl=en|dead-url=no}}</ref> Pengukuran astronomi menunjukkan bahwa [[rasio massa proton terhadap elektron]] tetap bernilai sama paling tidak selama setengah [[usia alam semesta]], seperti yang diprediksikan oleh Model Standar.<ref>{{cite journal
|last=Murphy
|first=Michael T.
|title=Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe
|journal=Science
|date=2008-06-20
|volume=320
|issue=5883
|pages=1611–1613
|url=http://www.sciencemag.org/cgi/content/abstract/320/5883/1611
|accessdate=2008-09-03
|doi=10.1126/science.1156352
|pmid=18566280
|last2=Flambaum
|first2=VV
|last3=Muller
|first3=S
|last4=Henkel
|first4=C
|archive-date=2008-08-01
|archive-url=https://web.archive.org/web/20080801071214/http://www.sciencemag.org/cgi/content/abstract/320/5883/1611
|dead-url=no
}}</ref>
Elektron memiliki [[muatan listrik]] sebesar -1,602 × 10<sup>−19</sup> [[coulomb]],<ref name="CODATA">Sumber asli CODATA:
:{{cite journal
|last=Mohr|first=Peter J.
|title=CODATA recommended values of the fundamental physical constants|journal=Reviews of Modern Physics
|date=2006-06-06|volume=80|pages=633–730
|doi=10.1103/RevModPhys.80.633
|last2=Taylor
|first2=Barry N.
|last3=Newell
|first3=David B.}}
Konstanta fisik dari CODATA tersedia di:
:{{cite web
|url=http://physics.nist.gov/cuu/
|title=The NIST Reference on Constants, Units and Uncertainty
|publisher=National Institute of Standards and Technology
|accessdate=2009-01-15
|archive-date=2013-10-14
|archive-url=https://web.archive.org/web/20131014073417/http://physics.nist.gov/cuu
|dead-url=no
}}</ref> yang digunakan sebagai satuan standar untuk muatan partikel subatom. Di bawah ambang batas keakuratan eksperimen, muatan elektron adalah sama dengan muatan proton, namun memiliki tanda positif.<ref>{{cite journal
|last=Zorn|first=Jens C.
|title=Experimental Limits for the Electron-Proton Charge Difference and for the Charge of the Neutron
|journal=Physical Review|year=1963
|volume=129|issue=6|pages=2566–2576
|doi=10.1103/PhysRev.129.2566
|last2=Chamberlain
|first2=George E.
|last3=Hughes
|first3=Vernon W.}}</ref> Oleh karena simbol ''e'' digunakan untuk merujuk pada [[muatan elementer]], elektron umumnya disimbolkan sebagai {{subatomicParticle|electron}}, dengan tanda minus mengindikasikan muatan negatif. Positron disimbolkan sebagai {{subatomicParticle|positron}} karena ia memiliki ciri-ciri yang sama dengan elektron namun bermuatan positif.<ref name="raith"/><ref name="CODATA"/>
Elektron memiliki [[momentum sudut]] intrinsik atau spin senilai {{frac|1|2}}.<ref name="CODATA"/> Sifat ini biasanya dinyatakan dengan merujuk elektron sebagai partikel spin-{{frac|1|2}}.<ref name="raith"/> Untuk partikel seperti ini, besaran spinnya adalah {{frac|{{radical|3}}|2}} ''ħ''<ref group=cat>Besaran ini didapatkan dari bilangan kuantum spin sebagai
:<math>\begin{alignat}{2}
S & = \sqrt{s(s + 1)} \cdot \frac{h}{2\pi} \\
& = \frac{\sqrt{3}}{2} \hbar \\
\end{alignat}</math>
untuk bilangan kuantum ''s'' = {{frac|1|2}}.<br />
Lihat: {{cite book|first=M. C.|last=Gupta|year=2001|title=Atomic and Molecular Spectroscopy|page=81|url=http://books.google.com/books?id=0tIA1M6DiQIC&pg=PA81|publisher=New Age Publishers|isbn=8122413005|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121841/https://books.google.com/books?id=0tIA1M6DiQIC&pg=PA81&hl=en|dead-url=no}}</ref> manakala hasil pengukuran proyeksi spin pada sumbu apapun hanyalah dapat bernilai ±{{frac|''ħ''|2}}. Selain spin, elektron juga memiliki [[momen magnetik]] intrinsik di sepanjang sumbu spinnya.<ref name="CODATA"/> Momen magnetik elektron kira-kira sama dengan satu [[magneton Bohr]],<ref name=Hanneke/>{{#tag:ref|Bohr magneton:
:<math>\textstyle\mu_B=\frac{e\hbar}{2m_e}.</math>|group=cat}} dengan konstanta fisika sebesar {{nowrap|9,274 009 15(23) × 10<sup>−24</sup> [[joule]] per [[tesla (satuan)|tesla]]}}.<ref name="CODATA"/> Orientasi spin terhadap momentum elektron menentukan [[helisitas]] partikel tersebut.<ref name="anastopoulos">{{cite book|first=Charis|last=Anastopoulos|year=2008|title=Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics|publisher=Princeton University Press|pages=261–262|isbn=0691135126|url=http://books.google.com/books?id=rDEvQZhpltEC&pg=PA261|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121732/https://books.google.com/books?id=rDEvQZhpltEC&pg=PA261&hl=en|dead-url=no}}</ref>
Elektron tidak memiliki [[preon|substruktur]] yang diketahui.<ref name="prl50">{{cite journal
|last=Eichten|first=Estia J.
|title=New Tests for Quark and Lepton Substructure
|journal=Physical Review Letters|year=1983
|volume=50|pages=811–814|issue=11
|doi=10.1103/PhysRevLett.50.811
|last2=Peskin
|first2=Michael E.
}}</ref><ref>{{cite journal
|last=Gabrielse|first=G.
|title=New Determination of the Fine Structure Constant from the Electron ''g'' Value and QED
|journal=Physical Review Letters|year=2006
|volume=97|pages=030802(1–4)
|doi=10.1103/PhysRevLett.97.030802
|last2=Hanneke
|first2=D.
|last3=Kinoshita
|first3=T.
|last4=Nio
|first4=M.
|last5=Odom
|first5=B.}}</ref> Oleh karena itu, ia didefinisikan ataupun diasumsikan sebagai [[partikel titik]] ataupun [[muatan titik]] dan tidak beruang.<ref name="curtis74">{{cite book|last=Curtis|first=Lorenzo J.|page=74|year=2003|title=Atomic Structure and Lifetimes: A Conceptual Approach|publisher=Cambridge University Press|isbn=0521536359|url=http://books.google.com/books?id=KmwCsuvxClAC&pg=PA74|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121732/https://books.google.com/books?id=KmwCsuvxClAC&pg=PA74&hl=en|dead-url=no}}</ref> Pemantauan pada satu elektron tunggal dalam [[perangkap Penning]] menunjukkan batasan atas jari-jari partikel sebesar 10<sup>−22</sup> [[meter]].<ref>{{cite journal
|last=Dehmelt|first=Hans
|title=A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius
|journal=Physica Scripta
|year=1988|volume=T22|pages=102–110
|doi=10.1088/0031-8949/1988/T22/016}}</ref> Terdapat sebuah tetapan fisika yang disebut sebagai "[[jari-jari elektron klasik]]" yang bernilai 2,8179 ×10<sup>−15</sup> m. Namun terminologi ini berasal dari perhitungan sederhana yang mengabaikan efek-efek [[mekanika kuantum]]. Dalam kenyataannya, jari-jari elektron klasik tidak memiliki hubungan apapun dengan struktur dasar elektron.<ref>{{cite book|first=Dieter|last=Meschede|year=2004|title=Optics, light and lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics|publisher=Wiley-VCH|page=168|isbn=3527403647|url=http://books.google.com/books?id=PLISLfBLcmgC&pg=PA168|access-date=2010-04-13|archive-date=2014-08-21|archive-url=https://web.archive.org/web/20140821185221/http://books.google.com/books?id=PLISLfBLcmgC&pg=PA168|dead-url=yes}}</ref><ref group=cat>Jari-jari elektron klasik diturunkan sebagai berikut. Asumsikan bahwa muatan elektron tersebar merata di seluruh volume bola partikel. Oleh karena satu bagian bola tersebut akan menolak bagian yag lainnya, bola tersebut mengandung energi potensial elektrostatik. Energi ini diasumsikan sama dengan [[energi rihat]] elektron, yang ditentukan melalui [[teori relativitas khusus]] (E=mc<sup>2</sup>).<br />
Dari teori [[elektrostatistika]], energi potensial suatu bola dengan jari-jari ''r'' dan muatan ''e'' adalah:
:<math>E_{\mathrm p} = \frac{e^2}{8\pi \varepsilon_0 r},</math>
dengan ''ε''<sub>0</sub> adalah [[permitivitas vakum]]. Untuk sebuah elektron dengan massa rihat ''m''<sub>0</sub>, energi rihatnya adalah sama dengan:
:<math>\textstyle E_{\mathrm p} = m_0 c^2,</math>
dengan ''c'' adalah kecepatan cahaya dalam vakum. Dengan menyamakan kedua persamaan ini dan mencari nilai ''r'', kita akan mendapatkan jari-jari elektron klasik.<br />
Lihat: {{cite book|year=2005|first=Hermann|last=Haken|coauthors=Wolf, Hans Christoph; Brewer, W. D.|title=The Physics of Atoms and Quanta: Introduction to Experiments and Theory|url=http://books.google.com/books?id=SPrAMy8glocC&pg=PA70|publisher=Springer|page=70|isbn=3540672745|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121804/https://books.google.com/books?id=SPrAMy8glocC&pg=PA70&hl=en|dead-url=no}}</ref>
Terdapat [[partikel elementer]] yang secara spontan meluruh menjadi partikel yang lebih ringan. Contohnya adalah [[muon]] yang meluruh menjadi elektron, [[neutrino]], dan [[antineutrino]], dengan waktu paruh rata-rata 2,2 × 10<sup>−6</sup> detik. Namun, elektron diperkirakan stabil secara teoretis: elektron merupakan partikel teringan yang bermuatan, sehingga peluruhannya akan melanggar [[kekekalan muatan]].<ref>{{cite journal
|last=Steinberg|first=R. I.
|title=Experimental test of charge conservation and the stability of the electron|journal=Physical Review D
|year=1999|volume=61|issue=2|pages=2582–2586
|doi=10.1103/PhysRevD.12.2582
|last2=Kwiatkowski
|first2=K.
|last3=Maenhaut
|first3=W.
|last4=Wall
|first4=N. S.}}</ref> Ambang bawah eksperimen untuk rata-rata umur paruh elektron adalah 4,6 × 10<sup>26</sup> tahun, dengan taraf keyakinan sebesar 90%.<ref>{{cite journal
|last=Yao|first=W.-M.
|title=Review of Particle Physics
|journal=Journal of Physics G: Nuclear and Particle Physics
|year=2006|volume=33
|issue=1|pages=77–115
|doi=10.1088/0954-3899/33/1/001}}</ref>
=== Sifat-sifat kuantum ===
Seperti semua partikel, elektron dapat berperilaku seperti gelombang. Ini disebut sebagai [[dualitas gelombang-partikel]] dan dapat ditunjukkan menggunakan [[percobaan celah ganda]]. Sifat bak gelombang elektron mengizinkannya melewati kedua celah paralel secara bersamaan dan bukannya hanya melewati satu celah. Dalam mekanika kuantum, sifat bak gelombang suatu partikel dapat dideskripsikan secara matematis sebagai fungsi bernilai [[bilangan kompleks|kompleks]] yang disebut sebagai [[fungsi gelombang]] (''ψ''). Ketika nilai mutlak fungsi ini di [[kuadrat]]kan, nilai pengkuadratan ini akan memberikan probabilitas pemantauan suatu partikel dekat seuatu lokasi, disebut sebagai [[fungsi rapatan probabilitas|rapatan probabilitas]].<ref name="munowitz"><cite id="refMunowitz2005">{{cite book|last=Munowitz|first=Michael|year=2005|title=Knowing, The Nature of Physical Law|publisher=Oxford University Press|isbn=0195167376|url=http://books.google.com/books?id=IjVtDc85CYwC&pg=PA162|pages=162–218|access-date=2010-04-13|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121757/https://books.google.com/books?id=IjVtDc85CYwC&pg=PA162&hl=en|dead-url=no}}</cite></ref>
[[Berkas:Asymmetricwave2.png|ka|jmpl|Contoh gelombang antisimetrik untuk keadaan kuantum dua fermion identik pada kotak dua dimensi. Jika partikel bertukar posisi, fungsi gelombang membalikkan tandanya.]]
Elektron yang satu dengan elektron yang lainnya tidak dapat dibedakan karena sifat fisika intrinsiknya. Dalam mekanika kuantum, hal ini berarti bahwa sepasang elektron yang berinteraksi haruslah dapat bertukar posisi tanpa adanya perubahan keadaan sistem yang terpantau. Fungsi gelombang fermion, termasuk pula elektron, adalah antisimetrik, berarti bahwa ia berubah tanda ketika dua elektron bertukaran; yakni {{nowrap begin}}''ψ''(''r''<sub>1</sub>, ''r''<sub>2</sub>) = −''ψ''(''r''<sub>2</sub>, ''r''<sub>1</sub>){{nowrap end}}, dengan variabel ''r''<sub>1</sub> dan ''r''<sub>2</sub> adalah elektron pertama dan kedua. Oleh karena nilai mutlak tidak berubah ketika berubah tanda, ini berarti bahwa terdapat probabilitas yang tidak berubah. Berbeda dengan [[fermion]], [[boson]] seperti foton memiliki fungsi gelombang simterik.<ref name="munowitz"/>
Dalam kasus antisimetri, penyelesaian fungsi gelombang untuk elektron yang berinteraksi menghasilkan probabilitas yang bernilai nol untuk tiap pasangan elektron menduduki lokasi ataupun keadaan yang sama. Hal ini dikenal dengan nama [[asas pengecualian Pauli]]. Asas ini menjelaskan banyak sifat elektron.
=== Partikel maya ===
{{main article|Partikel maya}}
Para fisikawan percaya bahwa ruang kosong mungkin secara berkesinambungan menciptakan banyak pasang partikel maya seperti positron dengan elektron, yang dengan cepat memusnahkan satu sama lainnya setelah tercipta.<ref>{{cite web|last=Kane|first=Gordon|date=2006-10-09|url=http://www.sciam.com/article.cfm?id=are-virtual-particles-rea&topicID=13|title=Are virtual particles really constantly popping in and out of existence? Or are they merely a mathematical bookkeeping device for quantum mechanics?|publisher=Scientific American|accessdate=2008-09-19|archive-date=2020-05-15|archive-url=https://web.archive.org/web/20200515200715/http://www.scientificamerican.com/article/are-virtual-particles-rea/|dead-url=no}}</ref> Kombinasi variasi energi yang diperlukan untuk menciptakan partikel-partikel ini beserta waktu keberadaan partikel ini berada dalam ambang pendeteksian seperti yang dinyatakan oleh [[Prinsip ketidakpastian Heisenberg]], Δ''E''·Δ''t'' ≥ ''ħ''. Energi yang diperlukan untuk menciptakan partikel maya ini, Δ''E'', dapat "dipinjam" dari [[keadaan vakum]] untuk periode waktu Δ''t'', sedemikian perkalian keduanya tidak lebih dari nilai konstanta Planck tereduksi, {{nowrap|''ħ'' ≈ 6,6 × 10<sup>-16</sup> eV·s}}. Sehingga untuk elektron maya, Δ''t'' terlamanya adalah 1,3 × 10<sup>−21</sup> s.<ref name="taylor">{{ cite book
|last=Taylor|first=John|year=1989
|editor=Davies, Paul|title=The New Physics<!--
|chaptertitle=Gauge Theories in Particle Physics-->
|publisher=Cambridge University Press
|isbn=0521438314|url=http://books.google.com/books?id=akb2FpZSGnMC&pg=PA464|page=464}}</ref>
[[Berkas:Virtual pairs near electron.png|ka|jmpl|Gambaran skematis pasangan elektron-positron maya yang muncul secara acak dekat sebuah elektron (kiri bawah)]]
Ketika pasangan elektron-positron maya terbentuk, [[Hukum Coulomb|gaya coulomb]] dari [[medan listrik]] sekitar elektron menyebabkan positron yang tercipta tertarik ke elektron awal manakala elektron yang tercipta mengalami gaya tolak. Ini menyebabkan [[polarisasi vakum]]. Pada dasarnya, keadaan vakum berperilaku seperti media yang memiliki [[permitivitas dielektrik]] lebih besar dari satu. Sehingga muatan efektif sebuah elektron biasanya lebih kecil daripada nilai aslinya, dan muatan akan berkurang dengan meningkatnya jarak dari elektron.<ref name="genz">{{cite book
|first=Henning|last=Genz|year=2001
|title=Nothingness: The Science of Empty Space
|url=https://archive.org/details/nothingnessscien0000henn|publisher=Da Capo Press|isbn=0738206105
|pages=[https://archive.org/details/nothingnessscien0000henn/page/241 241]–243, 245–247
}}</ref><ref>{{cite news|last=Gribbin|first=John|date=1997-01-25|title=More to electrons than meets the eye|work=New Scientist|url=http://www.newscientist.com/article/mg15320662.300-science--more-to-electrons-than-meets-the-eye.html|accessdate=2008-09-17|archive-date=2011-06-23|archive-url=https://web.archive.org/web/20110623141539/http://www.newscientist.com/article/mg15320662.300-science--more-to-electrons-than-meets-the-eye.html|dead-url=no}}</ref> Polarisasi ini dikonfirmasi secara eksperimental pada tahun 1997 menggunakan pemercepat partikel Jepang.<ref>{{cite journal
|last=Levine|first=I.
|title=Measurement of the Electromagnetic Coupling at Large Momentum Transfer
|journal=Physical Review Letters|year=1997
|volume=78|pages=424–427
|doi=10.1103/PhysRevLett.78.424
|last2=Koltick
|first2=D.
|last3=Howell
|first3=B.
|last4=Shibata
|first4=E.
|last5=Fujimoto
|first5=J.
|last6=Tauchi
|first6=T.
|last7=Abe
|first7=K.
|last8=Abe
|first8=T.
|last9=Adachi
|first9=I.}}</ref> Partikel-partikel maya menyebabkan efek pemerisaian untuk massa elektron.<ref>{{cite conference
|first=Hitoshi|last=Murayama
|title=Supersymmetry Breaking Made Easy, Viable and Generic
|booktitle=Proceedings of the XLIInd Rencontres de Moriond on Electroweak Interactions and Unified Theories
|date=March 10–17, 2006|location=La Thuile, Italy
|id={{arxiv|0709.3041}}
|accessdate=2008-09-30}}—mencantumkan perbedaan massa 9% untuk elektorn yang seukuran [[jarak Planck]].</ref>
Interaksi dengan partikel maya juga menjelaskan penyimpangan momen magnetik intrinsik elektron sebesar 0,1% dari magneton Bohr.<ref name=Hanneke>{{cite journal
|last=Odom|first=B.
|title=New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron
|journal=Physical Review Letters|year=2006
|volume=97|pages=030801(1–4)
|doi=10.1103/PhysRevLett.97.030801
|last2=Hanneke
|first2=D.
|last3=D’urso
|first3=B.
|last4=Gabrielse
|first4=G.}}</ref><ref>{{cite journal
|last=Schwinger|first=Julian|title=On Quantum-Electrodynamics and the Magnetic Moment of the Electron
|journal=Physical Review|year=1948
|volume=73|issue=4|pages=416–417
|doi=10.1103/PhysRev.73.416}}</ref> Kesesuaian yang sangat tepat antara perbedaan yang diprediksikan ini dengan nilai percobaan dipandang sebagai pencapaian besar [[elektrodinamika kuantum]].<ref>{{cite book
|first=Kerson|last=Huang|year=2007
|pages=123–125|publisher=World Scientific
|title=Fundamental Forces of Nature: The Story of Gauge Fields|isbn=9812706453|url=http://books.google.com/books?id=q-CIFHpHxfEC&pg=PA123}}</ref>
Dalam [[fisika klasik]], momentum sudut dan momen magnetik suatu objek bergantung pada dimensi fisikanya. Oleh karena itu, konsep elektron tak berdimensi yang memiliki momentum sudut dan momen magnetik tampaknya tidak konsisten. Paradoks ini dapat dijelaskan menggunakan pembentukan foton maya dalam medan listrik yang dihasilkan oleh elektron. Foton-foton maya ini menyebabkan elektron bergeser secara getar-getir (dinamakan [[Zitterbewegung]]),<ref>{{cite journal
|last=Foldy|first=Leslie L.
|title=On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit
|journal=Physical Review|year=1950
|volume=78|pages=29–36
|doi=10.1103/PhysRev.78.29}}</ref> yang mengakibatkan gerak melingkar dengan [[presesi]]. Gerak ini menghasilkan momen magnetik dan spin elektron.<ref name="curtis74"/><ref>{{cite journal
|last=Sidharth|first=Burra G.
|title=Revisiting Zitterbewegung
|journal=International Journal of Theoretical Physics
|year=2008
|id={{arxiv|0806.0985}}<!--
|access-date=2008-11-10-->|doi=10.1007/s10773-008-9825-8
|volume=48
|pages=497–506}}</ref> Dalam atom, penciptaan foton maya ini menjelaskan [[geseran Lamb]] yang terpantau pada garis spektrum.<ref name="genz"/>
=== Interaksi ===
Elektron menghasilkan medan listrik yang menarik partikel bermuatan positif seperti proton dan menolak partikel lain yang bermuatan negatif. Kekuatan gaya tarik/tolak ini ditentukan oleh [[Hukum Coulomb]].<ref>{{cite journal
|last=Elliott
|first=Robert S.
|title=The history of electromagnetics as Hertz would have known it
|journal=IEEE Transactions on Microwave Theory and Techniques
|year=1978
|volume=36
|issue=5
|pages=806–823
|url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=3600
|accessdate=2008-09-22
|doi=10.1109/22.3600
|archive-date=2023-03-27
|archive-url=https://web.archive.org/web/20230327121828/https://ieeexplore.ieee.org/document/3600/;jsessionid=OzgjAWzMMMgo5nllWYp3qZgX-yU_2zZOMqr09kwfz4kWRCflqQcc!-1193779494
|dead-url=no
}} A subscription required for access.</ref> Ketika elektron bergerak, ia menghasilkan [[medan magnetik]].<ref name="munowitz140">[[#refMunowitz2005|Munowitz (2005:140).]]</ref> [[Hukum sirkuit Ampère|Hukum Ampère-Maxwell]] menghubungkan medan magnetik dengan gerak massa elektron ([[arus listrik]]) terhadap seorang pengamat. Medan elektromagnetik partikel bermuatan yang bergerak diekspresikan menggunakan [[potensial Liénard–Wiechert]], yang berlaku bahkan untuk partikel yang bergerak mendekati kecepatan cahaya.
[[Berkas:Lorentz force.svg|ka|jmpl|Sebuah partikel bermuatan ''q'' (kiri) bergerak dengan kecepatan ''v'' melalui medan magnetik ''B'' yang diorientasikan menuju pembaca. Untuk sebuah elektron, ''q'' bernilai negatif, sehingga ia mengikuti lintasan yang membelok ke atas.]]
Ketika sebuah elektron bergerak melalui medan magnetik, [[gaya Lorentz]] akan memengaruhi arah lintasan elektron tegak lurus terhadap bidang medan magnet dan kecepatan elektron. [[Gaya sentripetal]] ini menyebabkan lintasan elektron berbentuk heliks. Percepatan yang dihasilkan dari gerak melengkung ini menginduksi elektron untuk memancarkan energi dalam bentuk radiasi sinkrotron.<ref>[[#refMunowitz2005|Munowitz (2005:160).]]</ref><ref>{{cite journal
|last=Mahadevan|first=Rohan
|title=Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field
|journal=Astrophysical Journal|year=1996
|volume=465|pages=327–337
|id={{arxiv|astro-ph|9601073v1}}
|accessdate=2008-09-28
|doi=10.1086/177422
|last2=Narayan
|first2=Ramesh
|last3=Yi
|first3=Insu}}</ref><ref group=cat>Radiasi yang berasal dari elektron non-relativistik kadang-kadang disebut [[radiasi siklotron]].</ref> Emisi energi ini kemudian dapat mementalkan elektron, dikenal sebagai [[Gaya Abraham-Lorentz-Dirac]], yang menciptakan gesekan yang memperlambat elektron. Gaya ini disebabkan oleh reaksi balik medan elektron terhadap dirinya sendiri.<ref>{{cite journal
|last=Rohrlich|first=Fritz
|title=The self-force and radiation reaction
|journal=American Journal of Physics
|year=1999|volume=68
|issue=12|pages=1109–1112
|doi=10.1119/1.1286430}}</ref>
Dalam [[elektrodinamika kuantum]], interaksi elektromagnetik antara partikel dimediasi oleh foton. Elektron terisolasi yang tidak dipercepat tidak dapat memancar ataupun menyerap foton; apabila ia menyerap atau memancarkan foton, ini berarti pelanggaran [[hukum kekekalan energi]] dan [[momentum]]. Walau demikian, foton maya dapat mentransfer momentum antar dua partikel bermuatan. Adalah pertukaran foton maya ini yang menghasilkan gaya Coulomb.<ref>{{ cite book
|last=Georgi|first=Howard|year=1989
|title=The New Physics|editor=Davies, Paul<!--
|chaptertitle=Grand Unified Theories-->
|publisher=Cambridge University Press
|isbn=0521438314|url=http://books.google.com/books?id=akb2FpZSGnMC&pg=PA427|page=427}}</ref> Emisi energi dapat terjadi ketika elektron yang bergerak dibelokkan oleh sebuah partikel bermuatan seperti proton. Percepatan elektron menghasilkan pancaran radiasi [[Bremsstrahlung]].<ref>{{cite journal
|last=Blumenthal
|first=George J.
|title=Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases
|journal=Reviews of Modern Physics
|year=1970|volume=42|pages=237–270
|doi=10.1103/RevModPhys.42.237}}</ref>
[[Berkas:Bremsstrahlung.svg|jmpl|kiri|Di sini, Bremsstrahlung dihasilkan oleh elektron ''e'' yang dibelokkan oleh medan listrik dari inti atom. Perubahan energi ''E''<sub>2</sub> − ''E''<sub>1</sub> menentukan frekuensi ''f'' foton yang dipancarkan.]]
Tumbukan lenting antara sebuah foton (cahaya) dengan sebuah elektron bebas disebut sebagai [[hamburan Compton]]. Tumbukan ini menghasilkan transfer momentum dan transfer energi antar partikel, yang mengubah panjang gelombang foton sejumlah [[hamburan Compton|geseran Compton]].<ref group=cat>Perubahan pada panjang gelombang Δ''λ'' bergantung pada sudut pentalan ''θ'' sebagai berikut
:<math>\textstyle \Delta \lambda = \frac{h}{m_ec} (1 - \cos \theta),</math>
dengan ''c'' adalah kecepatan cahaya dalam vakum dan ''m''<sub>e</sub> adalah massa elektron. Lihat Zombeck (2007:393,396).</ref> Besaran maksimum geseran panjang gelombang ini adalah ''h''/''m''<sub>e</sub>c, yang dikenal sebagai [[panjang gelombang Compton]].<ref>{{cite web|author=Staff|year=2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/1927/|title=The Nobel Prize in Physics 1927|publisher=The Nobel Foundation|accessdate=2008-09-28|archive-date=2008-10-24|archive-url=https://web.archive.org/web/20081024124054/http://nobelprize.org/nobel_prizes/physics/laureates/1927/|dead-url=no}}</ref> Untuk sebuah elektron, ini bernilai {{nowrap|2,43 × 10<sup>−12</sup> m}}.<ref name="CODATA"/> Apabila panjang gelombang cahayanya panjang (contohnya panjang gelombang [[cahaya tampak]] adalah 0,4–0,7 μm), geseran panjang gelombang menjadi sangat kecil. Interaksi antara cahaya dengan elektron bebas seperti ini disebut sebagai [[hamburan Thomson]].<ref name="Chen1998">{{cite journal|last=Chen|first=Szu-yuan|title=Experimental observation of relativistic nonlinear Thomson scattering|journal=Nature|year=1998|volume=396|pages=653–655|doi=10.1038/25303|last2=Chen|first2=Szu-Yuan|last3=Maksimchuk|first3=Anatoly}}</ref>
Kekuatan relatif interaksi elektromagnetik antara dua partikel bermuatan seperti elektron dengan proton diberikan oleh [[konstanta struktur halus]]. Nilai konstanta ini tidak memiliki dimensi dan merupakan nisbah dua energi: energi elektrostatik tarikan (ataupun tolakan) pada pemisahan satu panjang gelombang Compton dengan energi rihat muatan. Ia bernilai ''α'' ≈ 7,297353 × 10<sup>−3</sup>, ataupun kira-kira sama dengan {{frac|1|137}}.<ref name="CODATA" />
Ketika elektron dan positron bertumbukan, keduanya akan [[pemusnahan elektron-positron|memusnahkan]] satu sama lainnya, menghasilkan dua atau lebih sinar foton gama. Jika elektron dan positronnya memiliki momentum yang dapat diabaikan, [[positronium|atom positronium]] dapat terbentuk sebelum pemusnahan, menghasilkan dua atau tiga foton sinar gama berenergi sebesar 1,022 MeV.<ref>{{cite journal
|last=Beringer|first=Robert
|title=The Angular Distribution of Positron Annihilation Radiation
|journal=Physical Review|year=1942
|volume=61|issue=5–6|pages=222–224
|doi=10.1103/PhysRev.61.222
|last2=Montgomery
|first2=C. G.}}</ref><ref>{{cite book
|first=Jerry|last=Wilson|coauthors=Buffa, Anthony
|year=2000|title=College Physics|url=https://archive.org/details/collegephysicsvo00jerr|edition=4th
|page=[https://archive.org/details/collegephysicsvo00jerr/page/888 888]|publisher=Prentice Hall|isbn=0130824445}}</ref> Di sisi lain, foton berenergi tinggi dapat berubah menjadi elektron dan positron kembali dalam suatu proses yang dinamakan [[produksi pasangan]], namun hanya terjadi dengan keberadaan partikel bermuatan di dekatnya, seperti inti atom.<ref>{{cite journal
|last=Eichler|first=Jörg
|title=Electron–positron pair production in relativistic ion–atom collisions
|journal=Physics Letters A|date=2005-11-14
|volume=347|issue=1–3|pages=67–72
|doi=10.1016/j.physleta.2005.06.105
}}</ref><ref>{{cite journal
|last=Hubbell|first=J. H.|title=Electron positron pair production by photons: A historical overview
|journal=Radiation Physics and Chemistry
|year=2006|volume=75|issue=6
|pages=614–623|doi=10.1016/j.radphyschem.2005.10.008
|bibcode=2006RaPC...75..614H}}</ref>
=== Atom dan molekul ===
{{main article|Atom}}
[[Berkas:O2 MolecularOrbitals Anim.gif|ka|jmpl|300px|Animasi yang menunjukkan bagaimana dua atom oksigen berinteraksi membentuk molekul oksigen (O<sub>2</sub>). Awan merah yang berpendar mewakili orbital elektron tiap-tiap atom. Orbital atom 2s dan 2p atom oksigen awal dapat terlihat bergabung menjadi orbital sigma dan orbital pi, menjadikan atom terikat bersama. Orbital 1s tidak bergabung dan dapat terlihat sebagai dua bulatan kecil yang terpisah]]
Elektron dapat ''terikat'' pada inti atom melalui gaya tarik menarik Coulomb. Suatu sistem berelektron banyak yang terikat pada inti atom disebut sebagai atom. Jika jumlah elektron berbeda dari muatan listrik inti, atom tersebut dinamakan sebagai [[ion]]. Perilaku elektron terikat yang seperti gelombang dideskripsikan menggunakan fungsi matematika yang disebut [[orbital atom]]. Tiap-tiap orbital atom memiliki satu set bilangan kuantumnya sendiri, yaitu energi, momentum sudut, dan proyeksi momentum sudut. Menurut asas pengecualian Pauli, tiap orbital hanya dapat diduduki oleh dua elektron, yang harus berbeda dalam bilangan kuantum spinnya.
Elektron dapat berpindah dari satu orbital ke orbital lainnya melalui emisi ataupun absorpsi foton yang energinya sesuai dengan perbedaan potensial antar orbital.<ref>{{cite journal
|last=Mulliken|first=Robert S.
|title=Spectroscopy, Molecular Orbitals, and Chemical Bonding
|journal=Science|year=1967
|volume=157|issue=3784|pages=13–24
|doi=10.1126/science.157.3784.13
|pmid=5338306}}</ref> Metode perpindahan orbital lainnya meliputi pertumbukan dengan partikel elektron lain dan [[efek Auger]].<ref>{{cite book
|first=Eric H. S.|last=Burhop|year=1952
|title=The Auger Effect and Other Radiationless Transitions
|publisher=Cambridge University Press|pages=2–3
|location=New York}}</ref> Agar dapat melepaskan diri dari atom, energi elektron haruslah ditingkatkan melebihi [[energi pengikatan elektron|energi pengikatannya]]. Ini terjadi pada [[efek fotolistrik]], di mana foton yang berenergi lebih tinggi dari [[energi ionisasi]] atom diserap oleh elektron.<ref name="grupen">{{cite conference
|last=Grupen|first=Claus
|title=Physics of Particle Detection
|booktitle=AIP Conference Proceedings, Instrumentation in Elementary Particle Physics, VIII
|pages=3–34|volume=536
|publisher=Dordrecht, D. Reidel Publishing Company
|date=June 28–July 10, 1999
|location=Istanbul|doi=10.1063/1.1361756}}</ref>
Momentum sudut orbital elektron terkuantisasi. Oleh karena elektron bermuatan, ia menghasilkan momen magnetik orbital yang proposional terhadap momentum sudut. Keseluruhan momen magnetik sebuah atom adalah setara dengan jumlah vektor momen magnetik orbital dan momen magnetik spin keseluruhan elektron dan inti atom. Namun, momen magnetik inti sangatlah kecil dan dapat diabaikan jika dibandingkan dengan elektron. Momen magnetik dari dua elektron yang menduduki orbital yang sama (disebut elektron berpasangan) akan saling meniadakan.<ref>{{cite book|last=Jiles|first=David|year=1998|pages=280–287|title=Introduction to Magnetism and Magnetic Materials|publisher=CRC Press|isbn=0412798603|url=http://books.google.com/books?id=axyWXjsdorMC&pg=PA280|access-date=2010-04-14|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121739/https://books.google.com/books?id=axyWXjsdorMC&pg=PA280&hl=en|dead-url=no}}</ref>
[[Ikatan kimia]] antaratom terjadi sebagai akibat dari interaksi elektromagnetik, sebagaimana yang dijelaskan oleh hukum mekanika kuantum.<ref>{{cite book|author=Löwdin, Per Olov; Erkki Brändas, Erkki; Kryachko, Eugene S.|title=Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-
Olov Löwdin|pages=393–394|publisher=Springer|year=2003|isbn=140201290X|url=http://books.google.com/books?id=8QiR8lCX_qcC&pg=PA393|access-date=2010-04-14|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121725/https://books.google.com/books?id=8QiR8lCX_qcC&pg=PA393&hl=en|dead-url=no}}</ref> Ikatan yang terkuat terbentuk melalui [[ikatan kovalen|perkongsian]] elektron maupun [[transfer elektron]] di antara atom-atom, mengizinkan terbentuknya [[molekul]].<ref name=Pauling>{{cite book|last=Pauling|first=Linus C.|authorlink=Linus Pauling|year=1960|url=http://books.google.co.uk/books?id=L-1K9HmKmUUC|title=The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an introduction to modern structural chemistry|edition=3rd|publisher=Cornell University Press|isbn=0801403332|pages=4–10|access-date=2010-04-14|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121731/https://books.google.co.uk/books?id=L-1K9HmKmUUC&hl=en|dead-url=no}}</ref> Dalam molekul, pegerakan elektron dipengaruhi oleh beberapa inti atom dan elektron menduduki [[orbital molekul]], sama halnya dengan elektron yang menduduki [[orbital atom]] pada atom bebas.<ref>{{cite book|author=McQuarrie, Donald Allan; Simon, John Douglas|title=Physical Chemistry: A Molecular Approach|publisher=University Science Books|year=1997|pages=325–361|isbn=0935702997|url=http://books.google.com/books?id=f-bje0-DEYUC&pg=PA325|access-date=2010-04-14|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121743/https://books.google.com/books?id=f-bje0-DEYUC&pg=PA325&hl=en|dead-url=no}}</ref> Faktor mendasar pada struktur molekul adalah keberadaan [[pasangan elektron]]. Kedua elektron yang berpasangan memiliki spin yang berlawanan, mengizinkan keduanya menduduki orbital molekul yang sama tanpa melanggar asas pengecualian Pauli. Orbital-orbital molekul yang berbeda memiliki distribusi spasial rapatan elektron yang berbeda pula. Sebagai contohnya, pada elektron berpasangan yang terlibat dalam ikatan, elektron dapat ditemukan dengan probabilitas yang tinggi disekitar daerah inti atom tertentu yang sempit, manakala pada elektron berpasangan yang tidak terlibat dalam ikatan, ia dapat terdistribusi pada ruang yang luas di sekitar inti atom.<ref>{{cite journal
|last=Daudel
|first=R.
|date=1973-10-11
|title=The Electron Pair in Chemistry
|journal=Canadian Journal of Chemistry
|volume=52
|pages=1310–1320
|url=http://article.pubs.nrc-cnrc.gc.ca/ppv/RPViewDoc?issn=1480-3291&volume=52&issue=8&startPage=1310
|accessdate=2008-10-12
|doi=10.1139/v74-201
|last2=Bader
|first2=R.F.W.
|last3=Stephens
|first3=M.E.
|last4=Borrett
|first4=D.S.
|archive-date=2014-01-08
|archive-url=https://web.archive.org/web/20140108105609/http://www.nrcresearchpress.com/action/cookieAbsent
|dead-url=yes
}}</ref>
=== Konduktivitas ===
[[Berkas:Lightning over Oradea Romania cropped.jpg|ka|jmpl|[[Petir]] utamanya terdiri dari aliran elektron.<ref>{{cite book
|author=Rakov, Vladimir A.; Uman, Martin A.
|title=Lightning: Physics and Effects|page=4
|publisher=Cambridge University Press|year=2007
|isbn=0521035414|url=http://books.google.com/books?id=TuMa5lAa3RAC&pg=PA4}}</ref> Potensial listrik yang diperlukan untuk menghasilkan petir dapat dihasilkan melalui efek tribolistrik.<ref>{{cite journal
|last=Freeman|first=Gordon R.
|title=Triboelectricity and some associated phenomena
|url=https://archive.org/details/sim_materials-science-and-technology_1999-12_15_12/page/1454|journal=Materials science and technology
|year=1999|volume=15|issue=12
|pages=1454–1458}}</ref><ref>{{Cite journal
|author=Forward, Keith M.; Lacks, Daniel J.; Sankaran, R. Mohan
|title=Methodology for studying particle–particle triboelectrification in granular materials
|journal=Journal of Electrostatics|volume=67|year=2009|pages=178–183
|doi=10.1016/j.elstat.2008.12.002
|issue=2–3}}</ref>]]
Jika sebuah benda memiliki elektron yang berlebih atau kurang dari yang diperlukan untuk menyeimbangkan muatan inti atom yang positif, benda tersebut akan memiliki muatan listrik. Ketika terdapat elektron berlebih, benda tersebut dikatakan bermuatan negatif. Apabila terdapat elektron yang kurang dari jumlah proton dalam inti atom, benda tersebut dikatakan bermuatan positif. Ketika jumlah elektron dan jumlah proton adalah sama, muatan keduanya meniadakan satu sama lainnya dan benda tersebut dikatakan bermuatan netral. Benda makro dapat menjadi bermuatan listrik melalui penggosokan dan menghasilkan [[efek tribolistrik]].<ref>{{cite book
|last=Weinberg|first=Steven|year=2003
|title=The Discovery of Subatomic Particles
|publisher=Cambridge University Press|pages=15–16
|isbn=052182351X|url=http://books.google.com/books?id=tDpwhp2lOKMC&pg=PA15}}</ref>
Elektron tunggal yang bergerak dalam vakum diistilahkan sebagai elektron ''bebas''. Elektron-elektron dalam logam juga berperilaku seolah-olah bebas. Dalam kenyataannya, partikel yang umumnya diistilahkan elektron dalam logam dan padatan lainnya merupakan kuasi-elektron-[[kuasi-partikel]], yang memiliki muatan listrik, spin, dan momen magnetik yang sama dengan elektron asli, namun bermassa berbeda.<ref name="Liang-fu Lou">{{cite book|last=Lou|first=Liang-fu|title=Introduction to phonons and electrons|isbn=9789812384614|url=http://books.google.com/books?id=XMv-vfsoRF8C&pg=PA162|year=2003|publisher=World Scientific|pages=162,164}}</ref> Ketika elektron bebas bergerak dalam vakum ataupun dalam logam, ia akan menghasilkan aliran muatan yang disebut sebagai [[arus listrik]]. Arus listrik ini kemudian akan menghasilkan medan magnetik. Sebaliknya, arus dapat diciptakan pula dengan mengubah medan magnetik. Interaksi ini dinyatakan secara matematis menggunakan [[persamaan Maxwell]].<ref>{{cite book|first=Bhag S.|last=Guru|coauthors=Hızıroğlu, Hüseyin R.|year=2004|title=Electromagnetic Field Theory|pages=138, 276|publisher=Cambridge University Press|isbn=0521830168|url=http://books.google.com/books?id=b2f8rCngSuAC&pg=PA138}}{{Pranala mati|date=April 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
Pada suhu tertentu, tiap-tiap material memiliki [[konduktivitas listrik]] yang menentukan nilai arus listriknya ketika [[potensial listrik]] dialirkan kepadanya. Contoh benda yang memiliki konduktivitas listrik yang baik (disebut konduktor) misalnya emas dan tembaga, sedangkan gelas dan [[teflon]] adalah konduktor yang buruk. Dalam material [[dielektrik]], elektron tetap terikat pada atom penyusunnya dan material tersebut berperilaku seperti [[insulator]]. Sebaiknya logam memiliki struktur pita elektronik yang mengandung pita elektronik yang terisi sebagian. Keberadaan pita tersebut mengizinkan elektron dalam logam berperilaku seolah-olah bebas ([[elektron terdelokalisasi]]). Elektron yang terdelokalisasi ini tidak terikat pada atom apapun, sehingga ketika dialiri medan listrik, elektron tersebut akan bergerak bebas seperti gas ([[gas fermi]])<ref name="ziman">{{cite book
|first=J. M.|last=Ziman|year=2001|title=Electrons and Phonons: The Theory of Transport Phenomena in Solids
|publisher=Oxford University Press|page=260
|isbn=0198507798|url=http://books.google.com/books?id=UtEy63pjngsC&pg=PA260}}</ref> melalui material tersebut seperti elektron bebas.
Oleh karena tumbukan antara elektron dengan atom, [[kecepatan hanyutan]] elektron dalam konduktor memiliki kisaran milimeter per detik. Namun, [[kecepatan rambatan]] elektron biasanya adalah sekitar 75% kecepatan cahaya.<ref>{{cite journal|last=Main|first=Peter|date=1993-06-12|title=When electrons go with the flow: Remove the obstacles that create electrical resistance, and you get ballistic electrons and a quantum surprise|journal=New Scientist|volume=1887|page=30|url=http://www.newscientist.com/article/mg13818774.500-when-electrons-go-with-the-flow-remove-the-obstacles-thatcreate-electrical-resistance-and-you-get-ballistic-electrons-and-a-quantumsurprise.html|accessdate=2008-10-09|archive-date=2011-06-23|archive-url=https://web.archive.org/web/20110623141546/http://www.newscientist.com/article/mg13818774.500-when-electrons-go-with-the-flow-remove-the-obstacles-thatcreate-electrical-resistance-and-you-get-ballistic-electrons-and-a-quantumsurprise.html|dead-url=no}}</ref> Ini terjadi karena sinyal elektrik merambat sebagai gelombang, yang kecepatannya tergantung dari [[konstanta dielektrik]] material atau bahan.<ref>{{cite book
|first=Glenn R.|last=Blackwell|year=2000
|title=The Electronic Packaging Handbook
|pages=6.39–6.40
|publisher=CRC Press|isbn=0849385911|url=http://books.google.com/books?id=D0PBG53PQlUC&pg=SA6-PA39}}</ref>
[[Logam]] merupakan [[konduktor]] panas yang baik, utamanya disebabkan oleh elektron terdelokalisasi yang bebas untuk mentranspor energi termal antaratom. Namun, berbeda dengan konduktivitas listrik, konduktivitas termal logam hampir tidak tergantung pada suhu. Konduktivitas termal diekspresikan secara matematis menurut [[hukum Wiedemann-Franz]],<ref name="ziman" /> yang menyatakan bahwa rasio [[konduktivitas termal]] terhadap konduktivitas listrik berbanding lurus terhadap temperatur. Kebalauan termal dalam kisi logam meningkatkan [[resistivitas]] listrik material, sehingganya membuat arus listrik tergantung pada temperatur.<ref name="durrant">{{cite book
|first=Alan|last=Durrant|year=2000|isbn=0750307218
|title=Quantum Physics of Matter: The Physical World
|url=https://archive.org/details/quantumphysicsof0000alan|page=[https://archive.org/details/quantumphysicsof0000alan/page/43 43], 71–78|publisher=CRC Press|page=http://books.google.com/books?id=F0JmHRkJHiUC&pg=PA43}}</ref>
Ketika didinginkan di bawah [[titik kritis|temperatur kritis]], material dapat mengalami transisi fase yang menyebabkannya kehilangan semua resistivitas arus listrik. Hal ini dinamakan [[superkonduktivitas]]. Dalam [[teori BCS]], perilaku ini dimodelkan oleh pasangan elektron yang memasuki keadaan kuantum [[kondensat Bose-Einstein]]. [[Pasangan Cooper]] ini memiliki gerakan yang dikopling oleh materi sekitar via getaran kekisi yang disebut [[fonon]], sehingga elektron dapat menghindari tumbukan dengan atom-atom material yang menciptakan hambatan listrik.<ref>{{cite web|author=Staff|year=2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/1972/|title=The Nobel Prize in Physics 1972|publisher=The Nobel Foundation|accessdate=2008-10-13|archive-date=2008-10-11|archive-url=https://web.archive.org/web/20081011050516/http://nobelprize.org/nobel_prizes/physics/laureates/1972/|dead-url=no}}</ref> (Pasangan Cooper memiliki jari-jari sekitar 100 nm, sehingga dapat bertumpang tindih satu sama lain.)<ref>{{cite journal
|last=Kadin|first=Alan M.
|title=Spatial Structure of the Cooper Pair
|journal=Journal of Superconductivity and Novel Magnetism
|year=2007|volume=20|issue=4|pages=285–292
|id={{arxiv|cond-mat|0510279}}
|accessdate=2008-10-13
|doi=10.1007/s10948-006-0198-z}}</ref> Walaupun begitu, mekanisme mengenai bagaimana superkonduktor temperatur tinggi bekerja masih belumlah terpecahkan.
Elektron yang berada dalam padatan konduktor, yang sendirinya juga merupakan kuasipartikel, ketika dikungkung secara ketat pada temperatur yang mendekati [[nol absolut]], akan berperilaku seolah-olah terbelah lebih jauh menjadi dua [[kuasipartikel]]: [[spinon]] dan [[holon (fisika)|holon]].<ref>{{cite web
|url=http://www.sciencedaily.com/releases/2009/07/090730141607.htm
|title=Discovery About Behavior Of Building Block Of Nature Could Lead To Computer Revolution
|date=2009-07-31
|work=ScienceDaily.com
|accessdate=2009-08-01
|archive-date=2019-04-04
|archive-url=https://web.archive.org/web/20190404130054/https://www.sciencedaily.com/releases/2009/07/090730141607.htm
|dead-url=no
}}</ref><ref>{{cite journal
|last=Jompol
|first=Yodchay
|date=2009-07-31
|title=Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid
|journal=Science
|volume=325
|issue=5940
|pages=597–601
|doi=10.1126/science.1171769
|url=http://www.sciencemag.org/cgi/content/abstract/325/5940/597
|accessdate=2009-08-01
|pmid=19644117
|last2=Ford
|first2=CJ
|last3=Griffiths
|first3=JP
|last4=Farrer
|first4=I
|last5=Jones
|first5=GA
|last6=Anderson
|first6=D
|last7=Ritchie
|first7=DA
|last8=Silk
|first8=TW
|last9=Schofield
|first9=AJ
|archive-date=2009-08-08
|archive-url=https://web.archive.org/web/20090808102415/http://www.sciencemag.org/cgi/content/abstract/325/5940/597
|dead-url=no
}}</ref> Spinon memiliki spin dan momen magnetik, sedangkan holon memiliki muatan listrik.
=== Gerak dan energi ===
Menurut teori [[relativitas khusus]] [[Albert Einstein|Einstein]], seiring dengan bertambahnya kecepatan elektron mendekati [[kecepatan cahaya]], [[massa|massa relativitas]] elektron akan meningkat menurut pemantau, sehingga membuatnya semakin sulit mempercepat diri dari kerangka acuan pemantau. Kecepatan elektron dapat mendekati, tetapi tidak dapat mencapai, kecepatan cahaya dalam vakum senilai ''c''. Namun, ketika elektron yang bergerak mendekati kecepatan cahaya ''c'' dimasukkan ke dalam media dielektrik seperti air, kecepatan cahaya lokal secara signifikan kurang dari ''c'', sehingganya elektron bergerak melebihi kecepatan cahaya dalam medium tersebut. Ketika elektron berinteraksi dengan medium tersebut, interaksi ini akan menghasilkan pendaran cahaya yang dinamakan [[radiasi Cherenkov]].<ref>{{cite web|author=Staff|year=2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/1958/|title=The Nobel Prize in Physics 1958, for the discovery and the interpretation of the Cherenkov effect|publisher=The Nobel Foundation|accessdate=2008-09-25|archive-date=2008-10-18|archive-url=https://web.archive.org/web/20081018162638/http://nobelprize.org/nobel_prizes/physics/laureates/1958/|dead-url=no}}</ref>
[[Berkas:Lorentz factor.svg|jmpl|ka|Faktor Lorentz sebagai fungsi kecepatan. Ia bermula dari nilai 1 dan menuju ketakterhinggaan seiring dengan ''v'' mendekati ''c''.]]
Efek relativitas khusus ini didasarkan pada [[faktor Lorentz]], didefinisikan sebagai <math>\scriptstyle\gamma=1/ \sqrt{ 1-{v^2}/{c^2} }</math> dengan ''v'' adalah kecepatan partikel. Energi kinetik ''K''<sub>e</sub> sebuah elektron yang bergerak dengan kecepatan ''v'' adalah:
:<math>\displaystyle K_e = (\gamma - 1)m_e c^2,</math>
dengan ''m''<sub>e</sub> adalah massa elektron. Sebagai contohnya, pemercepat linear Stanford dapat mempercepat elektron mencapai 51 GeV.<ref>{{cite web
|author=Staff
|date=2008-08-26
|url=http://www2.slac.stanford.edu/vvc/theory/relativity.html
|title=Special Relativity
|publisher=Stanford Linear Accelerator Center
|accessdate=2008-09-25
|archive-date=2008-08-28
|archive-url=https://web.archive.org/web/20080828113927/http://www2.slac.stanford.edu/VVC/theory/relativity.html
|dead-url=no
}}</ref> Angka memiliki nilai ''γ'' sebesar hampir 100.000, karena massa sebuah elektron adalah 0,51 MeV/''c''<sup>2</sup>. [[Momentum relativistik]] elektron ini 100.000 kali lebih besar daripada momentum yang diprediksikan oleh mekanika klasik untuk sebuah elektron yang bergerak dengan kecepatan yang sama.<ref group=cat>Dengan mencari kecepatan elektron dan menggunakan pendekatan untuk nilai ''γ'' yang besar, kita akan mendapatkan:
:<math>\begin{alignat}{2}
v & = c\sqrt{1\ - \gamma^{-2}} \\
& = 0,999\,999\,999\,95\,c. \\
\end{alignat}</math></ref>
Oleh karena elektron dapat berperilaku seperti gelombang, ia akan memiliki karakteristik [[panjang gelombang de Broglie]]. Nilai ini adalah ''λ''<sub>e</sub> = ''h''/''p'' dengan ''h'' adalah [[konstanta Planck]] dan ''p'' adalah momentum.<ref name="de_broglie"/> Untuk 51 GeV elektron di atas, panjang gelombangnya adalah sekitar 2,4 × 10<sup>−17</sup> m. Nilai ini cukup kecil untuk menjelajahi struktur yang lebih kecil dari inti atom.<ref>{{cite book|first=Steve|last=Adams|year=2000|title=Frontiers: Twentieth Century Physics|page=215|publisher=CRC Press|isbn=0748408401|url=http://books.google.com/books?id=yIsMaQblCisC&pg=PA215|access-date=2010-04-17|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121849/https://books.google.com/books?id=yIsMaQblCisC&pg=PA215&hl=en|dead-url=no}}</ref>
== Pembentukan ==
[[Berkas:Pairproduction-id.svg|ka|jmpl|[[Produksi pasangan]] yang disebabkan oleh tumbukan foton dengan inti atom]]
<!-- Big bang theory with focus on the electron -->
Teori [[Big Bang]] merupakan teori ilmiah yang paling luas diterima sebagai penjelasan atas berbagai tahapan awal evolusi alam semesta.<ref>{{cite book
|first=Paul F.|last=Lurquin|year=2003
|title=The Origins of Life and the Universe
|url=https://archive.org/details/originslifeunive00lurq_391|page=[https://archive.org/details/originslifeunive00lurq_391/page/n13 2]|publisher=Columbia University Press
|isbn=0231126557}}</ref> Beberapa milidetik setelah ''Big Bang'', temperatur alam semesta lebih dari 10 miliar [[kelvin]] dan foton memiliki energi rata-rata lebih dari satu juta [[elektronvolt]]. Foton ini memiliki energi yang cukup sehingganya dapat bereaksi satu sama lainnya membentuk pasangan elektron dan positron,
:<math>\gamma + \gamma \leftrightharpoons \mathrm e^{+} + \mathrm e^{-},</math>
dengan {{subatomicParticle|photon}} adalah foton, {{subatomicParticle|positron}} adalah positron, dan {{subatomicParticle|electron}} adalah elektron. Sebaliknya pula, positron-elektron memusnahkan satu sama lainnya dan memancarkan foton berenergi tinggi. Kesetimbangan antara elektron, positron, dan foton terjada semasa fase evolusi alam semesta ini. Setelah 15 detik, temperatur alam semesta turun di bawah ambang batas yang mengizinkan pembentukan positron-elektron. Elektron dan positron yang tersisa memusnahkan satu sama lain, melepaskan radiasi gama yang memanaskan kembali alam semesta dalam waktu singkat.<ref>{{cite book
|first=Joseph|last=Silk|year=2000|title=The Big Bang: The Creation and Evolution of the Universe
|edition=3rd|pages=110–112, 134–137
|publisher=Macmillan|isbn=080507256X}}</ref>
Semasa proses [[leptogenesis (fisika)|leptogenesis]], terdapat jumlah elektron yang lebih banyak daripada positron. Sampai sekarang, masihlah belum jelas mengapa elektron dapat berjumlah lebih banyak daripada positron.<ref>{{cite journal|last=Christianto|first=Vic|title=Thirty Unsolved Problems in the Physics of Elementary Particles|journal=Progress in Physics|year=2007|volume=4|pages=112–114|url=http://www.ptep-online.com/index_files/2007/PP-11-16.PDF|format=PDF|accessdate=2008-09-04|archive-date=2008-09-10|archive-url=https://web.archive.org/web/20080910175108/http://www.ptep-online.com/index_files/2007/PP-11-16.PDF|dead-url=yes}}</ref> Sekitar satu dari satu miliar elektron lolos dari proses pemusnahan. Kelebihan jumlah proton dibandingkan antiproton juga terjadi dalam kondisi [[asimetri barion]], menyebabkan muatan total alam semesta menjadi nol.<ref>{{cite journal
|last=Kolb|first=Edward W.
|title=The Development of Baryon Asymmetry in the Early Universe|journal=Physics Letters B
|date=1980-04-07|volume=91|issue=2|pages=217–221
|doi=10.1016/0370-2693(80)90435-9
}}</ref><ref>{{cite web|last=Sather|first=Eric|date=Spring/Summer 1996|url=http://www.slac.stanford.edu/pubs/beamline/26/1/26-1-sather.pdf|format=PDF|title=The Mystery of Matter Asymmetry|work=Beam Line|publisher=University of Stanford|accessdate=2008-11-01|archive-date=2008-10-12|archive-url=https://web.archive.org/web/20081012012543/http://www.slac.stanford.edu/pubs/beamline/26/1/26-1-sather.pdf|dead-url=no}}</ref> Proton dan neutron yang tidak musnah kemudian mulai berpartisipasi dalam reaksi [[nukleosintesis]], membentuk isotop [[hidrogen]] dan [[helium]], serta sekelumit [[litium]]. Proses ini mencapai puncaknya setelah lima menit.<ref>{{cite web
|last=Burles|first=Scott
|coauthors=Nollett, Kenneth M.; Turner, Michael S.
|id={{arxiv|astro-ph|9903300}}
|title=Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space|date=1999-03-19
|publisher=arXiv, University of Chicago|accessdate=2008-10-15}}</ref> Neutron yang tersisa kemudian menjalani [[peluruhan beta]] negatif dengan umur paruh sekitar seribu detik, melepaskan proton dan elektron dalam prosesnya,
:<math>\mathrm n \Rightarrow \mathrm p + \mathrm e^{-} + \bar{\mathrm \nu}_\mathrm e,</math>
dengan {{subatomicParticle|neutron}} adalah neutron, {{subatomicParticle|proton}} adalah proton dan {{subatomicParticle|electron antineutrino}} adalah [[Antineutrino|antineutrino elektron]]. Selama 300.000-400.000 tahun ke depan, energi elektron yang berlebih masih sangat kuat sehingganya tidak berikatan dengan [[inti atom]].<ref>{{cite journal
|last=Boesgaard
|first=A. M.
|title=Big bang nucleosynthesis–Theories and observations
|journal=Annual review of astronomy and astrophysics
|year=1985
|volume=23
|issue=2
|pages=319–378
|url=http://adsabs.harvard.edu/cgi-bin/bib_query?1985ARA%26A..23..319B
|accessdate=2008-08-28
|doi=10.1146/annurev.aa.23.090185.001535
|last2=Steigman
|first2=G
|archive-date=2016-06-03
|archive-url=https://web.archive.org/web/20160603171520/http://adsabs.harvard.edu/cgi-bin/bib_query?1985ARA&A..23..319B
|dead-url=no
}}</ref> Setelah itu, periode rekombinasi terjadi, saat atom netral mulai terbentuk dan alam semesta yang mengembang menjadi transparan terhadap radiasi.<ref name="science5789">{{cite journal|last=Barkana|first=Rennan|title=The First Stars in the Universe and Cosmic Reionization|journal=Science|date=2006-08-18|volume=313|issue=5789|pages=931–934|url=http://www.sciencemag.org/cgi/content/full/313/5789/931|accessdate=2008-11-01|doi=10.1126/science.1125644|pmid=16917052|archive-date=2008-12-07|archive-url=https://web.archive.org/web/20081207051059/http://www.sciencemag.org/cgi/content/full/313/5789/931|dead-url=no}}</ref>
Kira-kira satu juta tahun setelah ''big bang'', generasi [[bintang]] pertama mulai terbentuk.<ref name="science5789"/> Dalam bintang, [[nukleosintesis bintang]] mengakibatkan pembentukan positron dari [[fusi nuklir|penggabungan]] inti atom. Partikel antimateri ini dengan segera memusnahkan elektron dan melepaskan sinar gama. Oleh sebab itu, terjadi penurunan jumlah elektron yang diikuti dengan peningkatan jumlah neutron dengan kuantitas yang sama. Walau demikian, proses [[evolusi bintang]] dapat pula mengakibatkan sintesis isotop-isotop radioaktif. Beberapa isotop tersebut kemudian dapat menjalani peluruhan beta negatif dan memancarkan elektron dan antineutrino dari inti atom.<ref>{{cite journal
|last=Burbidge|first=E. Margaret
|title=Synthesis of Elements in Stars
|journal=Reviews of Modern Physics|year=1957
|volume=29|issue=4|pages=548–647
|doi=10.1103/RevModPhys.29.547
|last2=Burbidge
|first2=G. R.
|last3=Fowler
|first3=William A.
|last4=Hoyle
|first4=F.}}</ref> Salah satu contohnya adalah isotop [[kobalt-60]] (<sup>60</sup>Co) yang meluruh menjadi nikel-60 (<sup>60</sup>Ni).<ref>{{cite journal
|last=Rodberg|first=L. S.
|title=Fall of Parity: Recent Discoveries Related to Symmetry of Laws of Nature
|journal=Science|year=1957|volume=125
|issue=3249|pages=627–633
|doi=10.1126/science.125.3249.627
|pmid=17810563
|last2=Weisskopf
|first2=VF}}</ref>
[[Berkas:AirShower.svg|kiri|jmpl|280px|Hujanan partikel-partikel yang dihasilkan oleh tembakan sinar kosmis ke atmosfer Bumi]]
Pada akhir masa kehidupannya, bintang yang bermassa lebih dari 20 [[massa surya]] dapat menjalani [[keruntuhan gravitasi]] dan membentuk [[lubang hitam]].<ref>{{cite journal
|author=Fryer, Chris L.
|title=Mass Limits For Black Hole Formation
|journal=The Astrophysical Journal|volume=522|issue=1
|pages=413–418|year=1999
|doi=10.1086/307647|bibcode=1999ApJ...522..413F}}</ref> Menurut [[fisika klasik]], objek luar angkasa yang sangat berat ini menghasilkan gaya tarik gravitasi yang sangat besar sehingganya tiada benda apapun, termasuk [[radiasi elektromagnetik]], yang dapat lolos dari [[jari-jari Schwarzschild]]. Namun, dipercayai bahwa efek mekanika kuantum mengizinkan [[radiasi Hawking]] dipancarkan pada jarak ini. Elektron (dan positron) diperkirakan diciptakan di [[horizon peristiwa]] lubang hitam.
Ketika pasangan-pasangan partikel maya (seperti elektron dan positron) tercipta disekitar horizon peristiwa, distribusi spasial acak partikel-partikel ini mengizinkan salah satu partikel muncul pada bagian eksterior; proses ini disebut sebagai [[penerowongan kuantum]]. [[Potensial gravitasi]] lubang hitam kemudian dapat memasok energi yang mengubah partikel maya menjadi partikel nyata, mengizinkannya beradiasi keluar menuju luar angkasa.<ref>{{cite journal
|last=Parikh|first=Maulik K.
|title=Hawking Radiation As Tunneling
|journal=Physical Review Letters|year=2000
|volume=85|issue=24|pages=5042–5045
|doi=10.1103/PhysRevLett.85.5042
|pmid=11102182
|last2=Wilczek
|first2=F}}</ref> Sebagai gantinya, pasangan lainnya akan mendapatkan energi negatif, yang menyebabkan penurunan massa-energi lubang hitam. Laju radiasi Hawking meningkat seiring dengan menurunnya massa, pada akhirnya akan menyebabkan lubang hitam "menguap" sampai akhirnya meledak.<ref>{{cite journal
|last=Hawking|first=S. W.
|title=Black hole explosions?
|journal=Nature|date=1974-03-01
|volume=248|pages=30–31
|doi=10.1038/248030a0}}</ref>
<!-- Other sources -->
[[Sinar kosmis]] adalah partikel-partikel yang bergerak di luar angkasa dengan energi yang tinggi. Energi sebesar {{nowrap|3,0 × 10<sup>20</sup> eV}} telah tercatat.<ref>{{cite journal
|last=Halzen
|first=F.
|title=High-energy neutrino astronomy: the cosmic ray connection
|journal=Reports on Progress in Physics
|year=2002
|volume=66
|pages=1025–1078
|url=http://adsabs.harvard.edu/abs/2002astro.ph..4527H
|accessdate=2008-08-28
|doi=10.1088/0034-4885/65/7/201
|last2=Hooper
|first2=Dan
|archive-date=2013-08-27
|archive-url=https://web.archive.org/web/20130827115413/http://adsabs.harvard.edu/abs/2002astro.ph..4527H
|dead-url=no
}}</ref> Ketika partikel-partikel ini bertumbukan dengan nukleon di atmosfer [[Bumi]], hujanan partikel-partikel dihasilkan, termasuk pula [[pion]].<ref>{{cite journal|first=James F|last=Ziegler
|title=Terrestrial cosmic ray intensities
|journal=IBM Journal of Research and Development
|pages=117–139|volume=42|issue=1
|doi=10.1147/rd.421.0117}}</ref> Lebih dari setengah radiasi kosmis yang terpantau dari permukaan Bumi terdiri dari [[muon]]. Partikel ini merupakan sejenis lepton yang dihasilkan di atmosfer bagian atas melalui peluruhan pion. Muon, pada gilirannya, dapat meluruh menjadi elektron maupun positron. Oleh karena itu, untuk pion bermuatan negatif {{subatomicParticle|Pion-}},<ref>{{cite news|last=Sutton|first=Christine|date=1990-08-04|title=Muons, pions and other strange particles|work=New Scientist|url=http://www.newscientist.com/article/mg12717284.700-muons-pions-and-other-strange-particles-.html|accessdate=2008-08-28|archive-date=2011-06-23|archive-url=https://web.archive.org/web/20110623141531/http://www.newscientist.com/article/mg12717284.700-muons-pions-and-other-strange-particles-.html|dead-url=no}}</ref>
:<math>\displaystyle \mathrm \pi^{-} \rightarrow \mathrm \mu^{-} + \bar{\mathrm \nu_{\mathrm \mu}},</math>
:<math>\displaystyle \mathrm \mu^{-} \rightarrow \mathrm e^{-} + \bar{\mathrm \nu}_\mathrm e +\mathrm \nu_{\mathrm \mu},</math>
dengan {{subatomicParticle|Muon}} adalah muon dan {{subatomicParticle|muon neutrino}} adalah [[Neutrino|neutrino muon]].
== Pengamatan ==
[[Berkas:Aurore australe - Aurora australis.jpg|ka|jmpl|Kebanyakan [[aurora]] disebabkan oleh elektron energetik yang mengendap ke dalam [[atmosfer]].<ref>{{cite news|last=Wolpert|first=Stuart|date=2008-07-24|title=Scientists solve 30-year-old aurora borealis mystery|publisher=University of California|url=http://www.universityofcalifornia.edu/news/article/18277|accessdate=2008-10-11|archive-date=2008-08-17|archive-url=https://web.archive.org/web/20080817094058/http://www.universityofcalifornia.edu/news/article/18277|dead-url=yes}}</ref>]]
Pengamatan elektron dari jauh memerlukan alat yang mampu mendeteksi energi radiasi elektron tersebut. Sebagai contohnya, dalam lingkungan berenergi tinggi seperti [[korona]] bintang, elektron bebas yang berbentuk [[plasma]] meradiasikan energinya oleh karena ''[[Bremsstrahlung]]''. Gas elektron dapat menjalani [[osilasi plasma]], yang merupakan gelombang yang disebabkan oleh variasi pada rapatan elektron yang sinkron. Hal ini kemudian menghasilkan emisi energi yang dapat dideteksi menggunakan [[teleskop radio]].<ref>{{cite journal
|last=Gurnett|first=Donald A.
|title=Electron Plasma Oscillations Associated with Type III Radio Bursts|journal=Science|date=1976-12-10|volume=194
|issue=4270|pages=1159–1162
|doi=10.1126/science.194.4270.1159
|pmid=17790910
|last2=Anderson
|first2=RR}}</ref>
[[Frekuensi]] sebuah [[foton]] berbanding lurus dengan energinya. Elektron yang terikat pada inti atom dengan aras energi tertentu akan menyerap ataupun memancarkan foton pada frekuensi aras energi tersebut. Contohnya, ketika atom diiradiasi oleh sumber energi berspektrum lebar, garis-garis absorpsi tertentu akan muncul pada spektrum radiasi yang ditransmisikan. Tiap-tiap unsur ataupun molekul yang berbeda akan menampakkan garis-garis spektrum yang berbeda-beda pula. Pengukuran [[spektroskopi]] terhadap kekuatan dan lebar garis-garis spektrum ini memungkinkan penentuan komposisi kimia dan sifat fisika suatu zat.<ref>{{cite web|last=Martin|first=W. C.|coauthors=Wiese, W. L.|year=2007|url=http://physics.nist.gov/Pubs/AtSpec/|title=Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas|publisher=National Institute of Standards and Technology|accessdate=2007-01-08|archive-date=2007-02-08|archive-url=https://web.archive.org/web/20070208113156/http://physics.nist.gov/Pubs/AtSpec/|dead-url=no}}</ref><ref>{{cite book|last=Fowles|first=Grant R.|year=1989|title=Introduction to Modern Optics|publisher=Courier Dover Publications|isbn=0486659577|url=http://books.google.com/books?id=SL1n9TuJ5YMC&pg=PA227|pages=227–233|access-date=2010-04-29|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121737/https://books.google.com/books?id=SL1n9TuJ5YMC&pg=PA227&hl=en|dead-url=no}}</ref>
Dalam laboratorium, interaksi elektron individu dapat dipantau menggunakan [[detektor partikel]], yang memungkinkan pengukuran sifat-sifat fisika elektron seperti energi, spin, dan muatannya.<ref name="grupen"/> Dikembangkannya [[perangkap ion caturkutub|perangkap Paul]] dan [[perangkap Penning]] mengizinkan partikel bermuatan diperangkap ke dalam suatu daerah tertentu untuk masa yang lama. Hal ini mengizinkan pengukuran yang cermat mengenai sifat dan ciri partikel. Dalam satu percobaan, perangkap Penning dapat memerangkap satu elektron tunggal dalam periode waktu 10 bulan.<ref name="nobel1989">{{cite web|author=Staff|year=2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/1989/illpres/|title=The Nobel Prize in Physics 1989|publisher=The Nobel Foundation|accessdate=2008-09-24|archive-date=2008-09-28|archive-url=https://web.archive.org/web/20080928042325/http://nobelprize.org/nobel_prizes/physics/laureates/1989/illpres/|dead-url=no}}</ref> Momen magnetik elektron yang telah diukur, telah mencapai presisi pengukuran hingga 11 digit. Pada saat itu (1980), pengukuran ini lebih akurat daripada pengukuran konstanta fisika lainnya.<ref>{{cite journal|last=Ekstrom|first=Philip|title=The isolated Electron|journal=Scientific American|year=1980|volume=243|issue=2|pages=91–101|url=http://tf.nist.gov/general/pdf/166.pdf|format=PDF|accessdate=2008-09-24|archive-date=2008-10-02|archive-url=https://web.archive.org/web/20081002032952/http://tf.nist.gov/general/pdf/166.pdf|dead-url=no}}</ref>
Gambar video pertama yang memperlihatkan distribusi energi elektron direkam oleh sekelompok ilmuwan di [[Universitas Lund]] Swedia pada Februari 2008. Para ilmuwan ini menggunakan kilatan cahaya yang sangat pendek, disebut sebagai pulsa attosekon (10<sup>−18</sup>), mengizinkan gerak elektron dipantau untuk pertama kalinya.<ref>{{cite web
|last=Mauritsson
|first=Johan
|url=http://www.atto.fysik.lth.se/video/pressrelen.pdf
|title=Electron filmed for the first time ever
|format=PDF
|publisher=Lunds Universitet
|accessdate=2008-09-17
|archive-date=2009-03-25
|archive-url=https://web.archive.org/web/20090325194101/http://www.atto.fysik.lth.se/video/pressrelen.pdf
|dead-url=yes
}}</ref><ref name=Mauritsson>{{cite journal
|last=Mauritsson
|first=J.
|year=2008
|url=http://www.atto.fysik.lth.se/publications/papers/MauritssonPRL2008.pdf
|format=pdf
|title=Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope
|journal=Physical Review Letters
|volume=100
|page=073003
|doi=10.1103/PhysRevLett.100.073003
|last2=Johnsson
|first2=P.
|last3=Mansten
|first3=E.
|last4=Swoboda
|first4=M.
|last5=Ruchon
|first5=T.
|last6=L’huillier
|first6=A.
|last7=Schafer
|first7=K. J.
|access-date=2010-04-29
|archive-date=2017-02-27
|archive-url=https://web.archive.org/web/20170227150021/http://www.atomic.physics.lu.se/research/attosecond-physics/
|dead-url=no
}}</ref>
Distribusi elektron dalam material padat dapat divisualisasikan menggunakan [[ARPES]] (''angle resolved photoemission spectroscopy''). Teknik ini menggunakan efek fotolistrik untuk mengukur ruang timbal-balik, yaitu suatu representasi struktur periodik yang digunakan untuk menduga struktur awal material. ARPES dapat digunakan untuk menentukan arah, kecepatan, dan sebaran elektron dalam material.<ref>{{cite journal
|last=Damascelli|first=Andrea
|title=Probing the Electronic Structure of Complex Systems by ARPES|journal=Physica Scripta|year=2004
|volume=T109|pages=61–74
|doi=10.1238/Physica.Topical.109a00061}}</ref>
== Aplikasi ==
=== Berkas partikel ===
[[Berkas:Nasa Shuttle Test Using Electron Beam full.jpg|ka|jmpl|Semasa uji [[terowongan angin]] [[NASA]], sebuah model [[Pesawat ulang-alik]] ditembakkan hujan elektron untuk mensimulasikan efek gas pengion sewaktu memasuki bumi.<ref>{{cite web
|author=Staff
|date=1975-04-14
|url=http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-003012.html
|title=Image # L-1975-02972
|publisher=Langley Research Center, NASA
|accessdate=2008-09-20
|archive-date=2008-12-07
|archive-url=https://web.archive.org/web/20081207041522/http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-003012.html
|dead-url=yes
}}</ref>]]
[[Sinar katode|Berkas elektron]] digunakan dalam proses [[pengelasan berkas elektron|pengelasan]],<ref>{{cite web|last=Elmer|first=John|date=2008-03-03|url=https://www.llnl.gov/str/MarApr08/elmer.html|title=Standardizing the Art of Electron-Beam Welding|publisher=Lawrence Livermore National Laboratory|accessdate=2008-10-16|archive-date=2013-08-29|archive-url=https://web.archive.org/web/20130829210841/https://www.llnl.gov/str/MarApr08/elmer.html|dead-url=yes}}</ref> yang mengizinkan rapatan energi sampai sebesar {{nowrap|10<sup>7</sup> W·cm<sup>−2</sup>}} diterapkan pada sasaran sempit berdiameter {{nowrap|0,1–1,3 mm}} dan biasanya tidak memerlukan bahan isi. Teknik pengelasan ini harus dilakukan dalam kondisi vakum, sehingga berkas elektron tidak berinteraksi dengan gas sebelum mencapai target. Tekni ini dapat digunakan untuk menyatukan bahan-bahan konduktif yang tidak cocok dilas menggunakan teknik pengelasan biasa.<ref>{{cite book
|first=Helmut|last=Schultz|year=1993
|title=Electron Beam Welding|pages=2–3
|publisher=Woodhead Publishing|isbn=1855730502|url=http://books.google.com/books?id=I0xMo28DwcIC&pg=PA2}}</ref><ref>{{cite book
|first=Gary F.|last=Benedict|year=1987
|title=Nontraditional Manufacturing Processes|page=273
|volume=19|series=Manufacturing engineering and materials processing|publisher=CRC Press|isbn=0824773527|url=http://books.google.com/books?id=xdmNVSio8jUC&pg=PA273}}</ref>
[[Litografi berkas elektron]] (EBL) merupakan suatu metode pengetsaan semikonduktor dengan resolusi lebih kecil dari satu [[mikron]].<ref>{{cite conference
|first=Faik S.|last=Ozdemir
|title=Electron beam lithography
|booktitle=Proceedings of the 16th Conference on Design automation
|pages=383–391|publisher=IEEE Press
|date=June 25–27, 1979
|location=San Diego, CA, USA
|url=http://portal.acm.org/citation.cfm?id=800292.811744|accessdate=2008-10-16}}</ref> Teknik ini berbiaya tinggi, lambat, dan perlu dioperasikan secara vakum dan cenderung mengakibatkan sebaran elektron pada padatan. Oleh karena sebaran ini, resolusinya terbatas pada 10 nm. Oleh karenanya, EBL utamanya digunakan pada produksi sejumlah kecil [[sirkuit terpadu]] yang terspesialisasi.<ref>{{cite book
|first=Marc J.|last=Madou|year=2002|edition=2nd
|title=Fundamentals of Microfabrication: the Science of Miniaturization|pages=53–54
|publisher=CRC Press|url=http://books.google.com/books?id=9bk3gJeQKBYC&pg=PA53|isbn=0849308267}}</ref>
[[Pemrosesan berkas elektron]] digunakan untuk mengiradiasi material agar sifat-sifat fisikanya berubah ataupun untuk tujuan [[sterilisasi]] produk makanan dan medis.<ref>{{cite conference|first=Yves|last=Jongen|coauthors=Herer, Arnold|title=Electron Beam Scanning in Industrial Applications|booktitle=APS/AAPT Joint Meeting|date=May 2–5, 1996|publisher=American Physical Society|url=http://adsabs.harvard.edu/abs/1996APS..MAY.H9902J|accessdate=2008-10-16|archive-date=2013-08-27|archive-url=https://web.archive.org/web/20130827120516/http://adsabs.harvard.edu/abs/1996APS..MAY.H9902J|dead-url=no}}</ref> Dalam [[terapi radiasi]] berkas elektron dihasilkan oleh pemercepat liner untuk pengobatan tumor superfisial. Oleh karena berkas elektron hanya menembus kedalaman yang terbatas sebelum diserap, biasanya sampai dengan 5 cm untuk elektron berenergi 5–20 MeV, [[terapi elektron]] berguna untuk mengobati lesi kulit seperti [[karsinoma sel basal]]. Berkas elektron dapat digunakan untuk mensuplemen perawatan daerah-daerah yang telah diiradiasi oleh [[sinar-X]].<ref>{{cite journal|last=Beddar|first=A. S.|title=Mobile linear accelerators for intraoperative radiation therapy|journal=AORN Journal|year=2001|url=http://findarticles.com/p/articles/mi_m0FSL/is_/ai_81161386|accessdate=2008-10-26|volume=74|page=700|doi=10.1016/S0001-2092(06)61769-9|archive-date=2015-08-12|archive-url=https://web.archive.org/web/20150812070619/http://findarticles.com/p/articles/mi_m0FSL/is_/ai_81161386|dead-url=no}}</ref><ref>{{cite web|last=Gazda|first=Michael J.|coauthors=Coia, Lawrence R.|date=2007-06-01|url=http://www.cancernetwork.com/cancer-management/chapter02/article/10165/1165822|title=Principles of Radiation Therapy|publisher=Cancer Network|accessdate=2008-10-26|archive-date=2009-04-06|archive-url=https://web.archive.org/web/20090406144402/http://www.cancernetwork.com/cancer-management/chapter02/article/10165/1165822|dead-url=no}}</ref>
[[Pemercepat partikel]] menggunakan medan listrik untuk membelokkan elektron dan antipartikelnya mencapai energi tinggi. Oleh karena partikel ini bergerak melalui medan magnetik, ia memancarkan radiasi sinkrotron. Intensitas radiasi ini bergantung pada spin, yang menyebabkan polarisasi berkas elektron (dikenal sebagai [[efek Sokolov-Ternov]]). Berkas elektron yang terpolarisasi ini dapat digunakan dalam berbagai eksperimen. Radiasi [[sinkotron]] juga dapat digunakan untuk pendinginan berkas elektron, yang menurunkan sebaran momentum partikel. Seketika partikel telah dipercepat sampai pada energi yang ditentukan, elektron dan positron ditumbukkan. Emisi energi yang dihasilkan oleh tumbukan tersebut dipantau menggunakan [[detektor partikel]] dan dipelajari dalam [[fisika partikel]].<ref>{{cite book
|first=Alexander W.|last=Chao|coauthors=Tigner, Maury
|title=Handbook of Accelerator Physics and Engineering
|publisher=World Scientific Publishing Company
|year=1999|pages=155, 188|isbn=9810235003|url=http://books.google.com/books?id=Z3J4SjftF1YC&pg=PA155}}</ref>
=== Pencitraan ===
[[Difraksi elektron berenergi rendah]] (''Low-energy electron diffraction'') adalah suatu metode penghujanan bahan-bahan kristalin dengan [[cahaya kolimasi|berkas kolimasi]] elektron untuk kemudian dipantau pola-pola difraksi yang dihasilkan untuk menentukan struktur material tersebut. Energi yang diperlukan pada umumnya berkisar antara 20–200 eV.<ref>{{cite book
|author=Oura, K.; Lifshifts, V. G.; Saranin, A. A.; Zotov, A. V.; Katayama, M.|title=Surface Science: An Introduction
|url=https://archive.org/details/surfacesciencein0000unse_n1m1|publisher=Springer-Verlag|year=2003|pages=[https://archive.org/details/surfacesciencein0000unse_n1m1/page/1 1]–45
|isbn=3540005455}}</ref> [[Difraksi elektron berenergi tinggi refleksi]] (''reflection high energy electron diffraction'') adalah teknik yang menggunakan refleksi berkas elektron yang ditembakkan pada berbagai sudut rendah untuk mengkarakterisasikan permukaan material kritsalin. Energi berkas biasanya berkisar antara 8–20 keV dan sudut tembakan adalah 1–4°.<ref>{{cite book|author=Ichimiya, Ayahiko; Cohen, Philip I.|year=2004|title=Reflection High-energy Electron Diffraction|publisher=Cambridge University Press|page=1|isbn=0521453739|url=http://books.google.com/books?id=AUVbPerNxTcC&pg=PA1|access-date=2010-05-01|archive-date=2023-03-27|archive-url=https://web.archive.org/web/20230327121732/https://books.google.com/books?id=AUVbPerNxTcC&pg=PA1&hl=en|dead-url=no}}</ref><ref>{{cite journal
|last=Heppell|first=T. A.|title=A combined low energy and reflection high energy electron diffraction apparatus
|journal=Journal of Scientific Instruments
|year=1967|volume=44|pages=686–688
|doi=10.1088/0950-7671/44/9/311}}</ref>
[[Mikroskop elektron]] mengarahkan berkas elektron yang difokuskan kepada suatu spesimen. Pada saat berkas berinteraksi dengan spesimen, beberapa elektron berubah sifatnya, misalnya pada arah pergerakan, sudut, energi, dan fase relatif elektron. Dengan mencatat perubahan pada berkas elektron, para ilmuwan dapat menghasilkan citra material yang diperbesar tersebut.<ref>{{cite web|first=D.|last=McMullan|year=1993|title=Scanning Electron Microscopy: 1928–1965|publisher=University of Cambridge|url=http://www-g.eng.cam.ac.uk/125/achievements/mcmullan/mcm.htm|accessdate=2009-03-23|archive-date=2018-01-22|archive-url=https://web.archive.org/web/20180122104847/http://www-g.eng.cam.ac.uk/125/achievements/mcmullan/mcm.htm|dead-url=no}}</ref>
== Lihat pula ==
* [[Model Standar]]
* [[Proton]]
* [[Neutron]]
== Catatan kaki ==
{{reflist|group=cat}}
== Referensi ==
{{Reflist|colwidth=30em}}
== Pranala luar ==
{{Commons category|Electrons|Elektron}}
* {{cite web
| title = The Discovery of the Electron
| url = http://www.aip.org/history/electron/
| publisher = [[American Institute of Physics]], Center for History of Physics
| access-date = 2011-09-30
| archive-date = 2008-03-16
| archive-url = https://web.archive.org/web/20080316233916/http://www.aip.org/history/electron/
| dead-url = yes
}}
* {{cite web
| title = Particle Data Group
| url = http://pdg.lbl.gov/
| publisher = [[University of California]]
}}
* {{cite book
|last = Bock|first = R.K.
|last2 = Vasilescu|first2 = A.
|year = 1998
|title = The Particle Detector BriefBook
|url = http://physics.web.cern.ch/Physics/ParticleDetector/BriefBook/
|edition = 14th
|publisher = [[Springer (penerbit)|Springer]]
|isbn = 3-540-64120-3
}}
{{featured article}}
{{Authority control}}
[[Kategori:Elektron| ]]
[[Kategori:Fisika atom]]
[[Kategori:Kimia]]
[[Kategori:Atom]]
[[Kategori:Partikel elementer]]
|