Teori kategori: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
123569yuuift (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Nilynda (bicara | kontrib)
Fitur saranan suntingan: 1 pranala ditambahkan.
 
(6 revisi perantara oleh 4 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Commutative diagram for morphism.svg|ka|jmpl|200px|Teori kategori. Sebuah kategori dengan objek ''X'', ''Y'', ''Z'', dan morfisme ''f'', ''g'', ''g'' ∘ ''f'', dan tiga morfisma identitas (tidak ditunjukkan) 1<sub>''X''</sub>, 1<sub>''Y''</sub>, dan 1<sub>''Z''</sub>.]]
 
'''Teori kategori''' berhubungan dengan struktur [[matematika]] dan hubungan antar struktur tersebut secara abstrak. Saat ini kategori digunakan dalam matematika, informatika teori, dan [[fisika matematis]]. Kategori diperkenalkan pertama kali oleh [[Samuel Eilenberg]] dan [[Saunders Mac Lane]] pada tahun [[1942]]-[[1945]], dalam hubungannya dengan [[topologi aljabar]].
 
== Definisi Kategori ==
Baris 57:
{{cols|colwidth=26em}}
* [[Teori domain]]
* [[Kategori yang diperkaya | Teori kategori yang diperkaya]]
* [[Glosarium teori kategori]]
* [[Teori grup]]
* [[Teori kategori yang lebih tinggi]]
* [[Aljabar berdimensi lebih tinggi]]
* [[Daftar publikasi dalam matematika#Teori kategori | Publikasi penting dalam teori kategori]]
* [[Kalkulus Lambda]]
* [[Garis besar teori kategori]]
Baris 73:
 
=== Sumber ===
* {{cite book |title = Abstract and Concrete Categories |last1 = Adámek |first1 = Jiří |last2 = Herrlich |first2 = Horst |author2-link = Horst Herrlich |last3 = Strecker |first3 = George E. |publisher = Heldermann Verlag Berlin |year = 2004 |url = http://katmat.math.uni-bremen.de/acc/acc.htm |access-date = 2020-11-26 |archive-date = 2021-02-24 |archive-url = https://web.archive.org/web/20210224031815/http://katmat.math.uni-bremen.de/acc/acc.htm |dead-url = yes }}
* {{citation
| last1 = Barr
Baris 111:
* {{cite book |title = Categories, allegories |publisher=North Holland |year=1990 |series=North Holland Mathematical Library |volume=39 |last1=Freyd |first1=Peter J. |author1-link=Peter J. Freyd |last2=Scedrov |first2=Andre |url = https://books.google.com/books?id=fCSJRegkKdoC |isbn = 978-0-08-088701-2 }}
* {{cite book |first=Robert |last=Goldblatt |authorlink=Robert Goldblatt |title = Topoi: The Categorial Analysis of Logic |url = https://books.google.com/books?id=AwLc-12-7LMC |year=2006 |publisher=Dover |isbn = 978-0-486-45026-1 |volume=94 |series=Studies in logic and the foundations of mathematics |origyear = 1979 }}
* {{cite book |last1= Herrlich |first1= Horst |author1-link=Horst Herrlich |last2=Strecker |first2=George E. |year=2007 |edition=3rd |title = Category Theory |url= https://archive.org/details/categorytheoryin0000herr |publisher = Heldermann Verlag Berlin |isbn = 978-3-88538-001-6}}.
* {{cite book |first1=Masaki |last1=Kashiwara |author1-link=Masaki Kashiwara |first2=Pierre |last2=Schapira |author2-link=Pierre Schapira (mathematician) |title = Categories and Sheaves |url = https://books.google.com/books?id=K-SjOw_2gXwC |year=2006 |publisher=Springer |isbn = 978-3-540-27949-5 |volume=332 |series=Grundlehren der Mathematischen Wissenschaften }}
* {{cite book |first1=F. William |last1=Lawvere |author1-link=William Lawvere |first2=Robert |last2=Rosebrugh |title = Sets for Mathematics |url = https://archive.org/details/setsformathemati0000lawv |url-access=registration |year=2003 |publisher=Cambridge University Press |isbn = 978-0-521-01060-3 }}
Baris 123:
* {{cite journal |year=1996|title=Elements of basic category theory |journal=Technical Report|volume=96 |issue=5 |url = http://citeseer.ist.psu.edu/martini96element.html |first1=A. |last1=Martini |first2=H. |last2=Ehrig |first3=D. |last3=Nunes}}
* {{cite book |last=May |first=Peter |authorlink=J. Peter May |title=A Concise Course in Algebraic Topology|publisher=University of Chicago Press|year=1999 |isbn=978-0-226-51183-2}}
* {{cite book |first=Guerino |last=Mazzola |authorlink=Guerino Mazzola |title=The Topos of Music, Geometric Logic of Concepts, Theory, and Performance |url=https://archive.org/details/toposofmusicgeom0000mazz |publisher=Birkhäuser |location= |year=2002 |isbn = 978-3-7643-5731-3 }}
* {{cite book |zbl=1034.18001 |editor1-last=Pedicchio |editor1-first = Maria Cristina |editor2-last = Tholen |editor2-first=Walter |title = Categorical foundations. Special topics in order, topology, algebra, and sheaf theory |series=Encyclopedia of Mathematics and Its Applications |volume=97 |publisher=[[Cambridge University Press]] |year=2004 |isbn = 978-0-521-83414-8 }}
* {{cite book |first=Benjamin C. |last=Pierce |authorlink=Benjamin C. Pierce |title = Basic Category Theory for Computer Scientists |url = https://books.google.com/books?id=ezdeaHfpYPwC |year=1991 |publisher=MIT Press |isbn = 978-0-262-66071-6 }}
Baris 142:
* [http://www.logicmatters.net/categories/ Category Theory], halaman web yang berisi tautan ke catatan kuliah dan buku-buku tentang teori kategori yang tersedia secara gratis.
* {{citation |first=Chris |last=Hillman |title=A Categorical Primer |citeseerx=10.1.1.24.3264}}, pengantar formal untuk teori kategori.
* {{cite web |first1=J. |last1=Adamek |first2=H. |last2=Herrlich |first3=G. |last3=Stecker |title=Abstract and Concrete Categories-The Joy of Cats |url=http://katmat.math.uni-bremen.de/acc/acc.pdf |access-date=2020-11-26 |archive-date=2015-04-21 |archive-url=https://web.archive.org/web/20150421081851/http://katmat.math.uni-bremen.de/acc/acc.pdf |dead-url=yes }}
* {{SEP|category-theory|Category Theory|Jean-Pierre Marquis}}, with an extensive bibliography.
* [http://www.mta.ca/~cat-dist/ List of academic conferences on category theory]
* {{cite web |last=Baez |first=John |title=The Tale of ''n''-categories |year=1996 |website= |publisher= |url=http://math.ucr.edu/home/baez/week73.html}} — An—An informal introduction to higher order categories.
* [http://wildcatsformma.wordpress.com WildCats] is a category theory package for [[Mathematica]]. Manipulation and visualization of objects, [[morphism]]s, categories, [[functor]]s, [[natural transformation]]s, [[universal properties]].
* {{YouTube|user=TheCatsters|title=The catsters}}, a channel about category theory.
Baris 162:
 
{{DEFAULTSORT:Category Theory}}
[[Kategori: Teori kategori | ]]
[[Kategori: Teori kategori yang lebih tinggi]]
[[Kategori:Matematika]]