Bahan bakar nuklir: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Rescuing 16 sources and tagging 0 as dead.) #IABot (v2.0.8 |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(14 revisi perantara oleh 7 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:The Nuclear Fuel Cycle (44021369082) (cropped).jpg|300px|jmpl|Siklus bahan bakar nuklir menggambarkan bagaimana bahan bakar nuklir diekstraksi, diproses, digunakan, didaurulang dan dibuang]]
'''Bahan bakar nuklir''' adalah semua jenis material yang dapat digunakan untuk menghasilkan [[energi nuklir]], demikian bila dianalogikan dengan bahan bakar kimia yang dibakar untuk menghasilkan energi. Hingga saat ini, bahan bakar nuklir yang umum dipakai adalah unsur berat [[fissil]] yang dapat menghasilkan [[reaksi nuklir]] berantai di dalam [[reaktor nuklir]]; ''Bahan bakar nuklir'' dapat juga berarti material atau objek fisik (sebagai contoh bundel bahan bakar yang terdiri dari [[batang bahan bakar]] yang disusun oleh material bahan bakar, bisa juga dicampur dengan material struktural, material moderator atau material pemantul (reflector) neturon. Bahan bakar nuklir fissil yang sering digunakan adalah [[U-235|<sup>235</sup>U]] dan [[Pu-239|<sup>239</sup>Pu]], dan kegiatan yang berkaitan dengan penambangan, pemurnian, penggunaan dan pembuangan dari material-material ini termasuk dalam [[siklus bahan bakar nuklir]]. Siklus bahan bakar nuklir penting adanya karena terkait dengan [[PLTN]] dan [[senjata nuklir]].
Tidak semua bahan bakar nuklir digunakan dalam reaksi fissi berantai. Sebagai contoh, [[Pu|<sup>238</sup>Pu]] dan beberapa unsur ringan lainnya digunakan untuk menghasilkan sejumlah [[daya nuklir]] melalui proses [[peluruhan radioaktif]] dalam [[generator radiothermal]], dan [[baterai atom]]. Isotop ringan seperti <sup>3</sup>H ([[tritium]]) digunakan sebagai bahan bakar [[fusi nuklir]]. Bila melihat pada [[energi ikat]] pada isotop tertentu, terdapat sejumlah energi yang bisa diperoleh dengan memfusikan unsur-unsur dengan [[nomor atom]] lebih kecil dari besi, dan memfisikan unsur-unsur dengan nomor atom yang lebih besar dari besi.
== Bahan bakar nuklir untuk reaksi fissi ==
Baris 15 ⟶ 13:
</gallery>
Bahan bakar nuklir tradisional yang digunakan di USA dan beberapa negara yang tidak melakukan mendaur ulang [[bahan bakar nuklir bekas]] mengikuti empat tahapan seperti yang tampak dalam gambar di atas. Proses di atas berdasarkan siklus bahan bakar nuklir. Pertama, uranium diperoleh dari pertambangan. Kedua, uranium di proses menjadi "yellow cake". Langkah berikutnya bisa berupa mengubah "yellow cake" menjadi UF<sub>6</sub> guna proses pengkayaan dan kemudian diubah menjadi uranium dioksida, atau tanpa proses pengkayaan untuk kemudian langsung ke tahap 4 sebagaimana yang terjadi untuk bahan bakar reaktor CANDU.
== Bahan fisil ==
[[Berkas:Fuel Pellet.jpg|250px|jmpl]]
[[Berkas:CASL 17.jpg|250px|jmpl]]
[[Bahan fisil]] adalah [[bahan bakar]] yang mampu mempertahankan [[Reaksi rantai nuklir#Reaksi rantai fisi|reaksi berantai]] [[fisi nuklir]] dengan memanfaatkan [[energi termal]] [[neutron]].<ref name="fissile">{{cite web|url=https://www.nrc.gov/reading-rm/basic-ref/glossary/fissile-material.html|title=NRC: Glossary -- Fissile material|website=www.nrc.gov}}</ref> Perubahan [[Bahan|material]] pada bahan fisil digunakan untuk mengatur [[Deret reaktivitas|reaktivitas]], [[optimasi]] dan pemuatan bahan bakar dalam teras reaktor nuklir serta menghasilkan bahan selongsong dan air pendingin yang berinteraksi dengan [[Sinar gama|sinar gamma]] dan neutron.<ref>{{Cite journal|last=Rohanda|first=Anis|date=2015|title=Analisis Perubahan Massa Bahan Fisil dan.Non Fisil dalam Teras PWR 1000 MWe dengan Origen-ARP 5.1|url=http://jurnal.batan.go.id/index.php/tridam/article/download/2234/2092|journal=Tri Dasa Mega|volume=17|issue=1|pages=14|doi=}}</ref> Sebagian besar bahan bakar nuklir mengandung elemen aktinida fisil berat yang mampu menjalani dan mempertahankan [[fisi nuklir]]. Tiga [[isotop]] fisil yang paling relevan adalah [[uranium-233]] , [[uranium-235]] dan [[plutonium-239]].
Bahan fisil dari [[uranium]] dan [[plutonium]] dapat dimanfaatkan sebagai [[bahan bakar nuklir]] bekas untuk menghasilkan [[energi listrik]]. Hasil [[Absorpsi (kimia)|absorpsi]] neutron pada [[uranium-238]] akan menghasilkan [[plutonium-239]] dan isotop [[uranium-235]] yang tidak terbakar yang memiliki kandungan bahan fisil yang lebih banyak dibandingkan [[uranium alam]]. Kandungan uranium-235 pada hasil pembakaran uranium alam hanya 0,7% Urainum-235. Sedangkan uranium-235 menghasilkan bahan fisil sebanyak 0.9% dan plutonium-239 sebanyak 0,6% sehingga totalnya menjadi 1,5%. Jumlah ini masih dapat digunakan untuk berbagai reaktor [[termal]] konvensional, [[reaktor pendingan gas maju]] dengan [[bahan bakar MOX]], atau reaktor cepat dengan bahan bakar plutonium.<ref>{{Cite journal|last=Dewita, E., dan Alimah, S.|first=|date=Juni 2005|title=Studi Teknologi Daur Bahan Bakar DUPIC|url=http://jurnal.batan.go.id/index.php/jpen/article/download/1938/1834|journal=Jurnal Pengembangan Energi Nuklir|volume=7|issue=1|pages=44|doi=|issn=2502-9479}}</ref>{{reflist|group="note"}}
Untuk menjadi bahan bakar yang berguna untuk reaksi berantai fisi nuklir, bahan tersebut harus:
* Berada di wilayah kurva energi ikat di mana reaksi berantai fisi dimungkinkan (yaitu, di atas radium)
* Memiliki probabilitas fisi yang tinggi pada penangkapan neutron
* Melepaskan rata-rata lebih dari satu neutron per penangkapan neutron. (Cukup pada setiap fisi, untuk mengkompensasi non-fisi dan penyerapan dalam bahan non-bahan bakar)
* Memiliki [[waktu paruh]] yang cukup lama
* Tersedia dalam jumlah yang sesuai
{| class="wikitable" align="right" id="Capture-fission-ratios"
|+Rasio tangkap-fisi dari nuklida fisil
!colspan=3|Neutron termal<ref>{{cite web |url=http://www.nndc.bnl.gov/chart/reColor.jsp?newColor=sigf |title=Interactive Chart of Nuclides |publisher=Brookhaven National Laboratory |access-date=2013-08-12 |archive-date=2017-01-24 |archive-url=https://web.archive.org/web/20170124175936/http://www.nndc.bnl.gov/chart/reColor.jsp?newColor=sigf |url-status=dead }}</ref>!! !!colspan=3|Neutron epitermal
|-
!σ<sub>F</sub> (b)!!σ<sub>γ</sub> (b)!!%!! !!σ<sub>F</sub> (b)!!σ<sub>γ</sub> (b)!!%
|-
|531||46||8.0%||<sup>233</sup>U||760||140||16%
|-
|585||99||14.5%||<sup>235</sup>U||275||140||34%
|-
|750||271||26.5%||<sup>239</sup>Pu||300||200||40%
|-
|1010||361||26.3%||<sup>241</sup>Pu||570||160||22%
|}
Nuklida fisil dalam bahan bakar nuklir meliputi:
* [[Uranium-233]] dibiakkan dari [[thorium-232]] dengan penangkapan neutron dengan langkah-langkah peluruhan menengah dihilangkan.
* [[Uranium-235]] yang terdapat dalam uranium alam dan uranium yang diperkaya
* [[Plutonium-239]] dibiakkan dari [[uranium-238]] dengan penangkapan neutron dengan langkah-langkah peluruhan menengah dihilangkan.
* [[Plutonium-241]] dibiakkan dari [[plutonium-240]] secara langsung dengan penangkapan neutron.
Nuklida fisil tidak memiliki peluang 100% mengalami fisi pada penyerapan neutron. Kesempatan tergantung pada nuklida serta energi neutron.
== Racun neutron ==
Dalam aplikasi seperti [[reaktor nuklir]], sebuah [[racun neutron]] (juga disebut sebuah 'pengisap neutron' atau 'racun nuklir') adalah sebuah zat dengan sebuah [[penampang (fisika)|penampang pengisapan neutron]] besar. Dalam aplikasi tersebut, menyerap [[neutron]] biasanya merupakan efek yang tidak diinginkan. Namun, bahan penyerap neutron, juga disebut racun, sengaja dimasukkan ke dalam beberapa jenis [[reaktor]] untuk menurunkan reaktivitas tinggi dari beban [[bahan bakar]] segar awalnya. Beberapa dari racun ini habis karena menyerap neutron selama operasi reaktor, sementara yang lain relatif konstan.<ref>{{cite web |url=https://www.nrc.gov/reading-rm/basic-ref/glossary/nuclear-poison-or-neutron-poison.html |title=Nuclear poison (or neutron poison) |work=Glossary |date=7 May 2014 |publisher=[[Nuclear Regulatory Commission|United States Nuclear Regulatory Commission]] |access-date=4 July 2014 |archive-date=14 July 2014 |archive-url=https://web.archive.org/web/20140714202002/http://www.nrc.gov/reading-rm/basic-ref/glossary/nuclear-poison-or-neutron-poison.html |url-status=live }}</ref><ref>{{Cite book |last=Kruglov |first=Arkadii |url=https://books.google.com/books?id=oSriY07qvdIC&pg=PA57 |title=The History of the Soviet Atomic Industry |others=Trans. by Andrei Lokhov |location=London |publisher=Taylor & Francis |year=2002 |isbn=0-415-26970-9 |oclc=50952983 |page=57 |access-date=4 July 2014}}</ref>
Penangkapan neutron oleh [[produk fisi]] paruh pendek dikenal sebagai keracunan reaktor ; Penangkapan neutron oleh produk fisi yang berumur panjang atau stabil disebut slagging reaktor.
== Fabrikasi bahan bakar nuklir, pengayaan dan pemrosesan ulang==
[[Berkas:CANDU fuel bundles.jpg|300px|jmpl|Bundel bahan bakar nuklir.]]
[[Berkas:Binding energy curve - common isotopes.svg|ka|jmpl|250px|Grafik yang membandingkan [[nomor nukleon]] dengan [[energi ikat]].]]
Siklus bahan bakar nuklir terdiri dari langkah-langkah front-end yang mempersiapkan uranium untuk digunakan dalam reaktor nuklir dan langkah-langkah back-end untuk secara aman mengelola, menyiapkan, dan membuang bahan bakar bekas—atau bekas —namun masih mengandung radioaktif tinggi.
Berbagai kegiatan yang berhubungan dengan produksi listrik dari reaktor tenaga nuklir disebut secara kolektif sebagai [[siklus bahan bakar nuklir]]. Siklus dimulai dengan [[penambangan]] [[uranium]] dan diakhiri dengan pembuangan [[limbah nuklir]]. [[Bahan baku]] bahan bakar nuklir saat ini sebagian besar adalah uranium. Bahan itu harus diproses melalui serangkaian tahapan untuk menghasilkan bahan bakar yang efisien untuk menghasilkan listrik. Bahan bakar bekas juga perlu diperhatikan untuk daur ulang atau pembuangan. Siklus bahan bakar nuklir terdiri dari 'ujung depan', yaitu persiapan bahan bakar, 'masa kerja' di mana bahan bakar digunakan selama operasi reaktor untuk menghasilkan listrik, dan 'ujung akhir', yaitu pengelolaan yang aman bahan bakar nuklir bekas termasuk pemrosesan ulang dan daur ulang, dan pembuangan. Jika bahan bakar bekas tidak diproses ulang, siklus bahan bakar disebut sebagai 'terbuka' atau siklus bahan bakar 'sekali lewat'; jika bahan bakar bekas diproses ulang, dan didaur ulang, itu benar disebut sebagai siklus bahan bakar nuklir 'tertutup'.
Uranium adalah bahan bakar yang paling banyak digunakan oleh pembangkit listrik tenaga nuklir untuk fisi nuklir. Pembangkit listrik tenaga nuklir menggunakan jenis uranium tertentu—U-235—sebagai bahan bakar karena atom-atomnya mudah terbelah. Meskipun uranium sekitar 100 kali lebih umum daripada perak, U-235 relatif jarang hanya di atas 0,7% uranium alami. Konsentrat uranium dipisahkan dari bijih uranium di pabrik uranium atau dari bubur di fasilitas pelindian di tempat. Kemudian diproses di fasilitas konversi dan pengayaan, yang meningkatkan kadar U-235 menjadi 3%–5% untuk reaktor nuklir komersial, dan dibuat menjadi pelet bahan bakar reaktor dan batang bahan bakar di pabrik fabrikasi bahan bakar reaktor.
Ada tiga tahap utama dalam pembuatan struktur bahan bakar nuklir yang digunakan dalam LWR dan PHWR:
* Memproduksi uranium dioksida (UO2) murni dari UF6 atau UO3 yang masuk.
* Memproduksi pelet UO2 keramik dengan kepadatan tinggi dan berbentuk akurat.
* Memproduksi kerangka logam kaku untuk rakitan bahan bakar– terutama dari paduan zirkonium; dan memuat pelet bahan bakar ke dalam batang bahan bakar, menyegelnya dan memasang batang ke dalam struktur perakitan bahan bakar akhir.
Bahan bakar nuklir dimuat ke dalam reaktor dan digunakan sampai rakitan bahan bakar menjadi sangat radioaktif dan harus dipindahkan untuk penyimpanan sementara dan akhirnya dibuang. Pemrosesan bahan bakar bekas secara kimiawi untuk memulihkan sisa produk yang dapat mengalami fisi lagi dalam perakitan bahan bakar baru secara teknis dapat dilakukan, tetapi tidak diizinkan di Amerika Serikat.
=== Eksplorasi ===
Siklus bahan bakar nuklir dimulai dengan eksplorasi uranium dan pengembangan tambang untuk mengekstraksi bijih uranium. Berbagai teknik digunakan untuk menemukan uranium, seperti survei radiometri udara, pengambilan sampel kimia air tanah dan tanah, dan pengeboran eksplorasi untuk memahami geologi yang mendasarinya. Setelah endapan bijih uranium ditemukan, pengembang tambang biasanya menindaklanjuti dengan pengisian yang berjarak lebih dekat, atau pengeboran pengembangan, untuk menentukan berapa banyak uranium yang tersedia dan berapa biaya untuk memulihkannya.
=== Penambangan uranium ===
Uranium adalah logam umum yang dapat ditemukan di seluruh dunia. Dia hadir di sebagian besar batuan dan tanah, di banyak sungai dan di air laut. Uranium sekitar 500 kali lebih banyak daripada emas dan sama banyaknya dengan timah. Ada tiga cara untuk menambang uranium: tambang terbuka, tambang bawah tanah
dan pencucian in situ di mana uranium dilindi langsung dari bijihnya. Produsen bijih uranium terbesar adalah [[Kazakhstan]], [[Kanada]] dan [[Australia]]. Konsentrasi uranium dalam bijih bisa berkisar dari 0,03% sampai 20%.
Sebelum tahun 1980, sebagian besar uranium AS diproduksi menggunakan teknik tambang terbuka dan tambang bawah tanah. Saat ini, sebagian besar uranium AS diproduksi menggunakan teknik penambangan solusi yang biasa disebut in-situ-leach (ISL) atau in-situ-recovery (ISR). Proses ini mengekstraksi uranium yang melapisi partikel pasir dan kerikil dari reservoir air tanah. Partikel pasir dan kerikil dipaparkan ke larutan dengan pH yang sedikit dinaikkan dengan menggunakan oksigen, karbon dioksida, atau soda kaustik. Uranium larut ke dalam air tanah, yang dipompa keluar dari reservoir dan diproses di pabrik uranium. Pencucian tumpukan melibatkan penyemprotan larutan cairan asam ke tumpukan bijih uranium yang dihancurkan. Solusinya mengalir ke bawah melalui bijih yang dihancurkan dan melepaskan uranium dari batuan, yang diambil dari bawah tumpukan.
=== Penggilingan uranium ===
Setelah bijih uranium diekstraksi dari tambang terbuka atau tambang bawah tanah, bijih tersebut disuling menjadi konsentrat uranium di pabrik uranium. Bijih dihancurkan, dihaluskan, dan digiling menjadi bubuk halus. Bahan kimia ditambahkan ke bubuk halus, yang menyebabkan reaksi yang memisahkan uranium dari mineral lainnya. Air tanah dari operasi penambangan solusi diedarkan melalui lapisan resin untuk mengekstraksi dan memekatkan uranium.
Penggilingan umumnya dilakukan di dekat tambang uranium. Yang ditambang bijih uranium dihancurkan dan diolah secara kimia untuk memisahkan uranium. Hasilnya adalah 'yellowcake kue kuning', bubuk kuning uranium oksida (U3O8). Di dalam yellowcake konsentrasi uranium dinaikkan menjadi lebih dari 80%. Setelah penggilingan, konsentrat kue kuning dikirim ke fasilitas konversi.
Terlepas dari namanya, produk uranium pekat biasanya berwarna hitam atau coklat yang disebut yellowcake (U 3 O 8 ). Bijih uranium yang ditambang biasanya menghasilkan satu hingga empat pon U3O8 per ton bijih, atau 0,05% hingga 0,20% yellowcake . Bahan limbah padat dari operasi tambang pit dan bawah tanah disebut tailing pabrik . Air olahan dari penambangan solusi dikembalikan ke reservoir air tanah tempat proses penambangan diulang.
=== Konversi yellowcake ===
Langkah selanjutnya dalam siklus bahan bakar nuklir adalah mengubah kue kuning menjadi gas uranium heksafluorida (UF 6 ) di fasilitas konverter. Tiga bentuk (isotop) uranium terjadi di alam: U-234, U-235, dan U-238. Desain reaktor nuklir AS saat ini membutuhkan konsentrasi (pengayaan) yang lebih kuat dari isotop U-235 untuk beroperasi secara efisien. Gas heksafluorida uranium yang diproduksi di fasilitas konverter disebut UF 6 alami karena konsentrasi asli isotop uranium tidak berubah.
Uranium alami terutama terdiri dari dua isotop, 99,3% adalah 238U dan 0,7% adalah 235U. Proses fisi dimana energi panas dilepaskan dalam reaktor nuklir, berlangsung terutama di 235U. Sebagian besar pembangkit listrik tenaga nuklir membutuhkan bahan bakar dengan ''235U yang diperkaya hingga level 3–5%''. Untuk meningkatkan [[rasio]] 235U terhadap 238U, uranium harus diperkaya. Karena pengayaan terjadi dalam bentuk gas, kue kuning diubah menjadi gas uranium heksafluorida (UF6) di fasilitas konversi. Gas UF6 diisi ke dalam silinder besar di mana ia mengeras. Silinder dimuat ke dalam wadah logam yang kuat dan dikirim ke pabrik pengayaan.
=== [[Pengayaan uranium]] ===
Setelah konversi, gas UF 6 dikirim ke pabrik pengayaan di mana masing-masing isotop uranium dipisahkan untuk menghasilkan UF 6 yang diperkaya, yang memiliki konsentrasi U-235 3% hingga 5%.
Gas uranium heksafluorida diperkaya dalam 235U dengan memasukkan gas ke dalam silinder berputar cepat ('sentrifugal'), di mana isotop yang lebih berat didorong keluar ke dinding silinder. Uranium juga dapat diperkaya menggunakan teknologi lama (difusi gas) dengan memompa gas UF6 melalui membran berpori yang memungkinkan 235U untuk melewati lebih mudah daripada isotop yang lebih berat, seperti 238U. Riset
dan aktivitas pengembangan sedang berlangsung untuk memperkaya uap 235U dengan teknik laser.
Dua jenis proses pengayaan uranium telah digunakan di Amerika Serikat: difusi gas dan sentrifus gas. Amerika Serikat saat ini memiliki satu pabrik pengayaan yang beroperasi, yang menggunakan proses sentrifus gas. UF 6 yang diperkaya disegel dalam tabung dan dibiarkan dingin dan mengeras sebelum diangkut ke pabrik perakitan bahan bakar reaktor nuklir dengan kereta api, truk, atau tongkang.
Pemisahan isotop laser uap atom (AVLIS) dan pemisahan isotop laser molekuler (MLIS) adalah teknologi pengayaan baru yang saat ini sedang dikembangkan. Proses pengayaan berbasis laser ini dapat mencapai faktor pengayaan awal (pemisahan isotop) yang lebih tinggi daripada proses difusi atau sentrifus dan dapat menghasilkan uranium yang diperkaya lebih cepat daripada teknik lainnya.
=== Rekonversi uranium dan fabrikasi bahan bakar nuklir ===
Setelah uranium diperkaya, ia siap untuk diubah menjadi bahan bakar nuklir. Di fasilitas fabrikasi bahan bakar nuklir, UF 6, dalam bentuk padat, dipanaskan menjadi bentuk gas, dan kemudian gas UF 6 diproses secara kimia untuk membentuk bubuk uranium dioksida (UO 2). Serbuk tersebut kemudian dikompresi dan dibentuk menjadi pelet bahan bakar keramik kecil. Pelet ditumpuk dan disegel ke dalam tabung logam panjang berdiameter sekitar 1 sentimeter untuk membentuk batang bahan bakar. Batang bahan bakar kemudian dibundel bersama untuk membuat rakitan bahan bakar. Tergantung pada jenis reaktornya, setiap rakitan bahan bakar memiliki sekitar 179 hingga 264 batang bahan bakar. Inti reaktor tipikal menampung 121 hingga 193 rakitan bahan bakar.
Padat diperkaya uranium hexafluoride (UF6) diubah menjadi pelet uranium oksida (UO2), dengan menekan dan sintering (memanggang) UO2 pada suhu lebih dari 1400 ° C untuk mencapai kepadatan tinggi dan stabilitas. Pelet adalah berbentuk silinder dan biasanya berdiameter 8–15 mm dan panjang 10–15 mm. Mereka dikemas dalam tabung logam panjang untuk membentuk batang bahan bakar, yang bisa menahan suhu dan tekanan tinggi. Batang bahan bakar kemudian dikelompokkan dalam 'bundel rakitan bahan bakar' untuk dimasukkan ke dalam reaktor nuklir. Proses yang sama digunakan untuk membuat campuran bahan bakar oksida (MOX), tersusun uranium dan plutonium oksida.
Ada banyak variasi di antara rakitan bahan bakar yang dirancang untuk berbagai jenis reaktor. Ini berarti bahwa pelanggan memiliki pilihan terbatas pada pemasok rakitan bahan bakar buatan, terutama untuk PWR.
=== Pembangkit tenaga listrik ===
Setelah rakitan bahan bakar dibuat, truk mengangkutnya ke lokasi reaktor. Rakitan bahan bakar disimpan di tempat di tempat penyimpanan bahan bakar baru sampai operator reaktor membutuhkannya. Pada tahap ini, uranium hanya bersifat radioaktif ringan, dan pada dasarnya semua radiasi terkandung di dalam tabung logam. Biasanya, operator reaktor mengganti sekitar sepertiga teras reaktor (40 sampai 90 rakitan bahan bakar) setiap 12 sampai 24 bulan.
Inti reaktor adalah susunan silinder bundel bahan bakar yang berdiameter sekitar 12 kaki dan tinggi 14 kaki dan terbungkus dalam bejana tekan baja dengan dinding setebal beberapa inci. Inti reaktor pada dasarnya tidak memiliki bagian yang bergerak kecuali sejumlah kecil batang kendali yang dimasukkan untuk mengatur reaksi fisi nuklir. Menempatkan rakitan bahan bakar di samping satu sama lain dan menambahkan air memulai reaksi nuklir.
Setelah bahan bakar dimuat di dalam reaktor nuklir, fisi yang dikendalikan dapat terjadi. Fisi berarti pemisahan radionuklida fisil (misalnya 235U dan 239Pu). Pemisahan melepaskan energi yang digunakan untuk memanaskan air dan menghasilkan uap tekanan tinggi. Uap memutar turbin yang terhubung ke generator, yang
menghasilkan listrik. Bahan bakar tersebut digunakan dalam reaktor selama 3-6 tahun. Sekitar setahun sekali, bagian dari bahan bakar dibongkar dan diganti dengan bahan bakar baru. Hasil fisi terkendali dalam produksi beberapa elemen, seperti plutonium yang dapat didaur ulang, dan lainnya yang merupakan limbah.
=== Penyimpanan bahan bakar bekas ===
Rakitan bahan bakar bekas yang dikeluarkan dari reaktor sangat panas dan radioaktif. Oleh karena itu, bahan bakar bekas disimpan di kolam reaktor, di mana air memberikan pendinginan dan pelindung radiasi.
Setelah beberapa tahun, bahan bakar bekas dapat dipindahkan ke tempat fasilitas penyimpanan sementara.
Setelah digunakan dalam reaktor, rakitan bahan bakar menjadi sangat radioaktif dan harus dipindahkan dan disimpan di bawah air di lokasi reaktor dalam kolam bahan bakar bekas selama beberapa tahun. Meskipun reaksi fisi telah berhenti, bahan bakar bekas terus mengeluarkan panas dari peluruhan unsur radioaktif yang tercipta saat atom uranium terbelah. Air di kolam berfungsi untuk mendinginkan bahan bakar dan menghalangi pelepasan radiasi. Dari tahun 1968 hingga 31 Desember 2017, total 276.879 rakitan bahan bakar telah dibuang dan disimpan di lokasi 119 reaktor nuklir komersial yang ditutup dan beroperasi di Amerika Serikat.
Dalam beberapa tahun, bahan bakar bekas mendingin di kolam dan dapat dipindahkan ke wadah penyimpanan tong kering di lokasi pembangkit listrik. Banyak operator reaktor menyimpan bahan bakar bekas mereka di wadah beton atau baja luar ruangan khusus ini dengan pendingin udara.
Langkah terakhir dalam siklus bahan bakar nuklir adalah pengumpulan rakitan bahan bakar bekas dari tempat penyimpanan sementara untuk disposisi akhir di gudang bawah tanah permanen. Amerika Serikat saat ini tidak memiliki gudang bawah tanah permanen untuk limbah nuklir tingkat tinggi.
=== Pengolahan bahan bakar nuklir bekas ===
Bahan bakar nuklir bekas telah lama diproses ulang untuk mengekstrak bahan fisil untuk didaur ulang dan untuk mengurangi volume limbah tingkat tinggi. Daur ulang hari ini sebagian besar didasarkan pada konversi U-238 yang subur menjadi plutonium fisil. Teknologi pemrosesan ulang baru sedang dikembangkan untuk digunakan bersamaan dengan reaktor neutron cepat yang akan membakar semua aktinida berumur panjang, termasuk semua uranium dan plutonium, tanpa memisahkannya satu sama lain. Sejumlah besar plutonium yang diambil dari bahan bakar bekas saat ini didaur ulang menjadi bahan bakar MOX; sejumlah kecil uranium pulih didaur ulang sejauh ini.
Secara konseptual, mengolah bahan bakar bekas sama dengan mengolah konsentrat mineral logam apa pun untuk memulihkan logam berharga yang terkandung di dalamnya. Di sini 'bijih' (atau secara efektif konsentrat darinya) adalah uranium oksida keramik keras dengan susunan unsur lain (total sekitar 4%), termasuk produk fisi dan aktinida yang terbentuk di dalam reaktor.Ada tiga jenis perawatan metalurgi di peleburan dan kilang logam:
* Pirometalurgi menggunakan panas untuk memulai pemisahan logam dari konsentrat mineralnya ( misalnya peleburan tembaga untuk menghasilkan tembaga melepuh, peleburan timah).
* Elektrometalurgi menggunakan arus listrik untuk memisahkan logam ( misalnya peleburan alumina untuk menghasilkan aluminium).
* Hidrometalurgi menggunakan larutan encer yang melarutkan logam, terkadang dengan sel elektrolisis untuk memisahkannya ( misalnya produksi seng, pemurnian tembaga).
Proses historis dan terkini yang utama adalah Purex, sebuah proses hidrometalurgi. Calon utama adalah elektrometalurgi – sering disebut pyroprocessing karena kebetulan panas. Dengan itu, semua anion aktinida (terutama uranium dan plutonium) dipulihkan bersama.Bahan bakar bekas mengandung beragam nuklida dalam berbagai kondisi valensi. Memprosesnya dengan demikian secara kimiawi rumit, dan menjadi lebih sulit karena banyak dari nuklida tersebut juga bersifat radioaktif.Komposisi uranium yang diproses ulang (RepU) tergantung pada pengayaan awal dan waktu bahan bakar berada di dalam reaktor, tetapi sebagian besar adalah U-238. Biasanya akan memiliki kurang dari 1% U-235 (biasanya sekitar 0,5% U-235) dan juga sejumlah kecil U-232 dan U-236 dibuat dalam reaktor. U-232, meskipun hanya dalam jumlah kecil, memiliki anak nuklida yang merupakan pemancar gamma yang kuat, membuat material tersebut sulit untuk ditangani. Namun, begitu berada di reaktor, U-232 tidak menjadi masalah (menangkap neutron dan menjadi U-233 fisil). Ini sebagian besar terbentuk melalui peluruhan alfa Pu-236, dan konsentrasinya memuncak setelah sekitar 10 tahun penyimpanan.
Pemrosesan ulang secara konseptual dapat mengambil beberapa kursus, memisahkan elemen tertentu dari sisanya, yang menjadi pemborosan tingkat tinggi. Opsi pemrosesan ulang meliputi:
* Pisahkan U, Pu, (seperti hari ini).
* Pisahkan U, Pu+U (sejumlah kecil U).
* Pisahkan U, Pu, aktinida minor f .
* Pisahkan U, Pu+Np, Am+Cm.
* Pisahkan U+Pu bersama-sama.
* Pisahkan U, Pu+aktinida, produk fisi tertentu.
Dalam reaktor saat ini, uranium yang diproses ulang (RepU) perlu diperkaya, sedangkan plutonium langsung digunakan untuk fabrikasi bahan bakar campuran oksida (MOX). Situasi ini memiliki dua masalah yang dirasakan: plutonium yang terpisah adalah potensi risiko proliferasi, dan aktinida minor tetap berada dalam limbah yang dipisahkan, yang berarti radioaktivitasnya berumur lebih panjang daripada jika hanya terdiri dari produk fisi.
==== Bahan bakar oksida ====
[[Berkas:Pellet rod.jpg|200px|jmpl]]
Baris 98 ⟶ 228:
=== Bahan bakar CANDU ===
* [http://canteach.candu.org/imagelib/37000-fuel.htm CANDU Fuel pictures and FAQ] {{Webarchive|url=https://web.archive.org/web/20060315091457/http://canteach.candu.org/imagelib/37000-fuel.htm |date=2006-03-15 }}
* [http://www.nucleartourist.com/systems/candu-rx.htm Basics on CANDU design]
* [http://www.nuclearfaq.ca/brat_fuel.htm THE EVOLUTION OF CANDUÒ FUEL CYCLES AND THEIR POTENTIAL CONTRIBUTION TO WORLD PEACE]
Baris 106 ⟶ 236:
=== Bahan bakar TRISO ===
* [http://www.romawa.nl/nereus/fuel.html TRISO fuel descripción] {{Webarchive|url=https://web.archive.org/web/20060613195033/http://www.romawa.nl/nereus/fuel.html |date=2006-06-13 }}
* [http://www.ndt.net/article/wcndt00/papers/idn540/idn540.htm NON-DESTRUCTIVE EXAMINATION OF SiC NUCLEAR FUEL SHELL USING X-RAY FLUORESCENCE MICROTOMOGRAPHY TECHNIQUE]
* [http://www.world-nuclear.org/sym/2003/fig-htm/labf5-h.htm GT-MHR fuel compact process] {{Webarchive|url=https://web.archive.org/web/20060306191056/http://www.world-nuclear.org/sym/2003/fig-htm/labf5-h.htm |date=2006-03-06 }}
* [http://www.min.uc.edu/nuclear/kadak/sld009.htm Description of TRISO fuel for "pebbles"] {{Webarchive|url=https://web.archive.org/web/20051112023757/http://www.min.uc.edu/nuclear/kadak/sld009.htm |date=2005-11-12 }}
* [http://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/03springsummer/AFCI.html LANL webpage showing various stages of TRISO fuel production]
Baris 129 ⟶ 259:
=== Bahan bakar fusi ===
* [http://fti.neep.wisc.edu/presentations/glk_ans00.pdf Advanced fusion fuels presentation] {{Webarchive|url=https://web.archive.org/web/20160415144307/http://fti.neep.wisc.edu/presentations/glk_ans00.pdf |date=2016-04-15 }}
mantap
[[Kategori:Bahan bakar nuklir| ]]
[[Kategori:Nuklir]]
|