Cairan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler |
kTidak ada ringkasan suntingan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
(6 revisi perantara oleh 5 pengguna tidak ditampilkan) | |||
Baris 2:
<!--{{Mekanika kontinum|fluida}}-->
'''Cairan''' adalah [[fluida]] [[kompresibilitas|tak
[[Densitas]] cairan biasanya mendekati padatan, dan jauh lebih tinggi daripada gas. Oleh karena itu, cair dan padat keduanya disebut [[Fisika benda terkondensasi|benda terkondensasi]]. Di sisi lain, karena cairan dan gas berbagi kemampuan untuk mengalir, keduanya disebut [[fluida]]. Meskipun air berlimpah di Bumi, wujud materi ini sebenarnya adalah yang paling tidak umum di alam semesta yang diketahui, karena keberadaan cairan memerlukan rentang suhu/tekanan yang relatif sempit. Materi yang paling dikenal di alam semesta ada dalam bentuk gas (dengan jejak materi padat yang dapat dideteksi) sebagai [[awan antarbintang]] atau dalam bentuk plasma di dalam bintang.
Baris 8:
== Selayang pandang ==
[[Berkas:Hot and cold water immiscibility thermal image.jpg|jmpl|Citra termal bak cuci berisi air panas yang ditambahkan air dingin, menunjukkan air panas dan dingin mengalir satu sama lain.]]
Cairan adalah satu dari [[Wujud materi|empat wujud utama materi]], bersama dengan [[padat]], [[gas]] dan [[plasma (wujud zat)|plasma]]. Cairan adalah [[fluida]]
Cairan, seperti gas, menampilkan sifat fluida. Cairan dapat mengalir,
Partikel-partikel cairan terikat kokoh tetapi tidak kaku. Mereka mampu bergerak bebas, menghasilkan mobilitas partikel pada tingkat terbatas. Seiring dengan kenaikan [[suhu]], vibrasi molekul meningkat menyebabkan jarak
== Contoh ==
Hanya ada dua [[Unsur kimia|unsur]] yang berwujud cairan pada [[suhu dan tekanan standar]]: [[raksa]] dan [[brom]]. Empat unsur lainnya memiliki titik leleh sedikit di atas [[suhu ruang]]: [[fransium]], [[sesium]], [[galium]], dan [[rubidium]].<ref>Theodore Gray, The Elements: A Visual Exploration of Every Known Atom in the Universe New York: Workman Publishing, 2009 p. 127 {{ISBN|1-57912-814-9}}</ref> Paduan logam yang berwujud cairan pada suhu ruang antara lain [[NaK]], logam paduan natrium-kalium, [[galinstan]], dan beberapa [[amalgam]] (logam paduan yang melibatkan raksa).
Zat murni yang berwujud cair pada kondisi normal meliputi [[air]], [[etanol]], dan banyak pelarut organik lainnya. Air adalah cairan vital dalam kimia dan biologi; ia diyakini merupakan kebutuhan vital untuk keberlangsungan [[hidup]].
Cairan anorganik termasuk [[air]], magma, [[pelarut tak berair anorganik]], dan beragam jenis [[asam]].
Cairan sehari-hari yang penting termasuk [[larutan]] berair seperti [[pemutih]] rumah tangga, [[campuran]] lain dari berbagai zat seperti [[minyak mineral]] dan [[bensin]], [[emulsi]] seperti [[vinaigrette]] atau [[mayones]], [[suspensi]] seperti [[darah]], dan [[koloid]] seperti [[cat]] dan [[susu]].
Banyak gas dapat [[Pencairan gas|dicairkan]] dengan pendinginan, menghasilkan cairan seperti [[oksigen cair]], [[nitrogen cair]], [[hidrogen cair]], dan [[helium cair]]. Tidak semua gas dapat dicairkan pada tekanan
Beberapa materi tidak dapat diklasifikasikan dalam tiga wujud materi klasik; mereka memiliki sifat seperti padat dan seperti cair. Contohnya termasuk [[kristal cair]], yang digunakan pada layar LCD, dan [[membran biologis]].
Baris 30:
== Sumber biofuel ==
Cairan memiliki beragam kegunaan, misalnya sebagai pelumas, pelarut, dan pendingin. Dalam sistem hidrolik, cairan berfungsi sebagai penghantar daya.
Dalam [[tribologi]], cairan dipelajari tentang sifat-sifatnya sebagai [[pelumas]]. Pelumas seperti [[minyak]] dipilih karena [[viskositas]] dan karakteristik alirannya yang cocok untuk seluruh rentang [[suhu pengoperasian]] komponen. Minyak sering digunakan dalam [[mesin]], [[Persneling|bak persneling]], [[Pengolahan Logam|karya logam]], dan sistem hidrolik karena sifat lubrikasinya yang baik.<ref>Theo Mang, Wilfried Dressel [https://books.google.com/books?id=UTdfxf2rkNcC& ’’Lubricants and lubrication’’], Wiley-VCH 2007 {{ISBN|3-527-31497-0}}</ref>
Banyak cairan digunakan sebagai [[pelarut]], untuk melarutkan padatan atau cairan lain. [[Larutan]] banyak digunakan untuk beragam aplikasi, termasuk [[cat]], [[bahan segel]] (''sealant''), dan [[lem]]. [[Nafta (kimia)|Nafta]] dan [[aseton]] sering digunakan dalam industri untuk membersihkan minyak,
[[Surfaktan]] umum dijumpai dalam [[sabun]] dan [[deterjen]]. Pelarut seperti [[alkohol]] sering digunakan sebagai [[antimikroba]].
Cairan cenderung memiliki [[konduktivitas termal]] yang lebih baik daripada gas, dan kemampuannya untuk mengalir menjadikan cairan cocok untuk menghilangkan kelebihan panas dari komponen mesin. Panas dapat dihilangkan saat cairan [[Penguapan|menguap]] atau dengan mengalirkan cairan melalui [[penukar panas]], seperti [[radiator
Cairan adalah komponen utama sistem [[hidrolik]], yang memanfaatkan [[hukum Pascal]] untuk menghasilkan [[daya fluida]]. Piranti seperti [[pompa]] dan [[kincir air]] telah digunakan untuk mengubah gerak cairan menjadi [[kerja mekanis]] sejak zaman kuno. [[Minyak]] ditekan melalui [[pompa hidrolik]], yang mengalirkan gaya ke [[tabung hidrolik]]. Hidrolik dapat dijumpai dalam banyak aplikasi, seperti [[rem]] dan [[Persneling|transmisi kendaran]], [[alat berat]], dan sistem pengendali [[pesawat terbang]]. Beragam {{Ill|pengempa hidraulik|en|Hydraulic press}} digunakan secara luas dalam perbaikan dan manufakturing, untuk mengangkat, mengempa, menjepit dan membentuk.<ref>R. Keith Mobley [https://books.google.com/books?id=8DyLdlfJzoMC&pg=PA1 ''Fluid power dynamics''] Butterworth-Heinemann 2000 p. vii {{ISBN|0-7506-7174-2}}</ref>
Baris 47:
=== Volume ===
Kuantitas cairan diukur dalam satuan [[volume]]. Ini meliputi satuan [[Sistem Satuan Internasional|SI]] [[meter kubik]] (m<sup>3</sup>) beserta turunannya, terutama desimeter kubik, yang lebih umum disebut sebagai [[liter]] (1 dm<sup>3</sup> = 1 L = 0,001m<sup>3</sup>), dan sentimeter kubik, yang juga disebut mililiter (1
Volume cairan adalah fungsi dari [[suhu]] dan [[tekanan]]. Cairan biasanya memuai ketika dipanaskan, dan menyusut ketika didinginkan. [[Air]] pada suhu antara {{Val|0|u=°C}} dan {{Val|4|u=°C}} adalah pengecualian. Cairan memiliki sedikit [[kompresibilitas]]. Air, misalnya, hanya 46,4 bagian per jutanya yang akan terkompresi untuk setiap satuan kenaikan tekanan atmoser (bar).<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/tables/compress.html Compressibility of Liquids]</ref> Pada tekanan sekitar {{Convert|4000|bar|psi}}, pada suhu ruang, air hanya mengalami penurunan volume sebesar 11%.<ref name="ReferenceA">{{cite|title=Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations|author=Wenwu Zhang|publisher=CRC Press|year=2011|page=144}}</ref> Dalam studi [[dinamika fluida]], cairan sering diperlakukan sebagai tak termampatkan, terutama ketika mempelajari {{Ill|aliran tak termampatkan|en|Incompressible flow}}. Sifat tak termampatkan membuat cairan cocok untuk menyalurkan daya hidrolik, karena sangat sedikit energi yang hilang dalam bentuk kompresi.<ref name="ReferenceA" /> Namun, kompresibilitas yang sangat kecil memang menyebabkan fenomena lain. Benturan pada pipa, yang disebut [[palu air]] (''water hammer''), terjadi saat katup tiba-tiba ditutup, menciptakan lonjakan tekanan yang sangat besar pada katup yang bergerak berbalik arah melalui sedikit di bawah kecepatan suara. Fenomena lain yang disebabkan oleh ketaktermampatkan cairan adalah [[kavitasi]]. Oleh karena cairan memiliki sedikit [[elastisitas (fisika)|elastisitas]], mereka benar-benar dapat ditarik hingga terpisah di daerah dengan turbulensi tinggi atau perubahan arah yang dramatis, seperti tepi jejak baling-baling perahu atau sudut tajam pada pipa. Cairan di daerah bertekanan rendah (vakum) menguap dan membentuk gelembung, yang kemudian runtuh saat memasuki daerah bertekanan tinggi. Hal ini menyebabkan cairan mengisi rongga yang ditinggalkan oleh gelembung dengan kekuatan lokal yang luar biasa, mengikis permukaan padat yang berdekatan.<ref>{{cite|title=Fluid Mechanics and Hydraulic Machines|first=S.C.|last=Gupta|publisher=Dorling-Kindersley|year=2006|page=85}}</ref>
Baris 113:
[[Berkas:Teilchenmodell Flüssigkeit.svg|jmpl|ka|200px|Struktur cairan monoatomik klasik. Atom-atom memiliki banyak tetangga terdekat yang bersinggungan, namun tidak ada orde jangkau jauh.]]
Dalam cairan, atom-atom tidak membentuk kisi kristal maupun menunjukkan bentuk {{Ill|orde jangkau jauh|en|Long-range order}}. Hal ini dibuktikan dengan tidak adanya {{Ill|puncak Bragg|en|Bragg peak}} pada [[difraksi sinar-X]] maupun [[Difraksi neutron|neutron]]. Di bawah kondisi normal, pola difraksi memiliki simetri sirkular, menunjukkan [[isotropi]] cairan. Pada arah radial, intensitas difraksi berosilasi dengan lancar. Ini biasanya dijelaskan sebagai [[Faktor struktur|faktor struktur statis]] ''S(q)'', dengan bilangan gelombang<blockquote><math>q=\left (
Penjelasan korelasi ini yang lebih intuitif diberikan oleh [[fungsi distribusi radial]] ''g(r)'', yang berdasarkan pada [[transformasi Fourier]] ''S(q)''. Ia menyajikan rata-rata spasial korelasi pasangan dalam cairan.
|