Luas: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) |
k →Luas dalam [[kalkulus]]: clean up |
||
(5 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 64:
=== Luas ditentukan menggunakan kalkulus ===
Perkembangan [[kalkulus integral]] di akhir abad ke-17 menyediakan alat yang nantinya dapat digunakan untuk menghitung
== Definisi formal ==
Baris 95:
=== Luas dalam [[kalkulus]] ===
{{utama|Kalkulus}}
[[Berkas:Integral as region under curve.svg|jmpl|alt=A diagram showing the area between a given curve and the x-axis|Integral dapat
[[Berkas:Areabetweentwographs.svg|jmpl|alt=A diagram showing the area between two functions|Luas antara dua grafik dapat dievaluasi dengan menghitung
* Luas antara kurva bernilai positif dan sumbu horizontal, diukur antara dua nilai a dan b (b didefinisikan sebagai lebih besar dari dua nilai) pada sumbu horizontal, diberikan oleh integral dari a ke b dari fungsi yang mewakili kurva:
:<math> A = \int_a^{b} f(x) \, dx.</math>
* Luas antara grafik dua fungsi sama dengan integral dari satu fungsi , f ( x ), minus integral dari fungsi lainnya, g ( x ):<math> A = \int_a^{b} ( f(x) - g(x) ) \, dx, </math> where <math> f(x) </math> adalah kurva dengan nilai y yang lebih besar.
* Luas yang dibatasi oleh fungsi r = r (θ) yang dinyatakan dalam koordinat polar adalah:<ref name=MathWorld/>
:<math>A = {1 \over 2} \int r^2 \, d\theta. </math>
Baris 113 ⟶ 112:
di mana <math>f(x)</math> adalah batas atas kuadratik dan <math>g(x)</math> adalah batas bawah kuadratik. Dapat menentukanm diskriminan dari <math>f(x) - g(x)</math> sebagai <ref>{{cite book|title=Matematika|url=https://books.google.com/books?id=NFkVfrZBqpUC&pg=PA51|publisher=PT Grafindo Media Pratama|isbn=978-979-758-477-1|pages=51–|url-status=live|archiveurl=https://web.archive.org/web/20170320100900/https://books.google.com/books?id=NFkVfrZBqpUC&pg=PA51|archivedate=2017-03-20}}</ref><ref>{{cite book|title=Get Success UN +SPMB Matematika|url=https://books.google.com/books?id=uwqvITs8OaUC&pg=PA157|publisher=PT Grafindo Media Pratama|isbn=978-602-00-0090-9|pages=157–|url-status=live|archiveurl=https://web.archive.org/web/20161223115304/https://books.google.com/books?id=uwqvITs8OaUC&pg=PA157|archivedate=2016-12-23}}</ref>
:<math>A=\frac{\Delta\sqrt{\Delta}}{6a^2}=\frac{a}{6}(\beta-\alpha)^3,\qquad a\neq0.</math>
== Rumus luas ==
Baris 119 ⟶ 118:
Luas suatu [[bangun dua dimensi]] dapat dihitung dengan menggunakan elemen satuan luas berupa [[persegi]] (atau bentuk lain) yang diketahui ukurannya. Luas bangun yang akan diukur merupakan jumlah elemen satuan luas yang menutupinya. Untuk bangun-bangun yang memiliki keteraturan terdapat [[rumus]]-rumus yang dapat digunakan bergantung pada [[karakteristik]] bangun [[dua dimensi]] yang dimaksud.
{| class="wikitable" style="text-align:center;"
|+
|