Pengguna:Dedhert.Jr/Uji halaman 01/8: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
 
(4 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 1:
'''Teorema Euklides–Euler''' adalah sebuah [[teorema]] dalam [[teori bilangan]] yang mengaitkan [[bilangan sempurna]] dengan [[bilangan prima Mersenne]]. Teorema ini mengatakan bahwa bilangan genap dikatakan sempurna [[jika dan hanya jika]] bilangan tersebut mempunyai bentuk {{math|2<sup>''p''−1</sup>(2<sup>''p''</sup> − 1)}}, dengan {{math|2<sup>''p''</sup> − 1}} adalah [[bilangan prima]]. Teorema ini dinamai dari matematikawan bernama [[Euklides]] yang membuktikan aspek dari teorema "jika", dan [[Leonhard Euler]] yang membuktikan aspek dari teorema "hanya jika".
{{Infobox Symbols|mark=∞|name=Simbol takhingga|unicode={{unichar|221E|Infinity|html=}}|different from={{unichar|267E|Permanent Paper Sign |nlink= Kertas bebas asam}}<br />{{unichar|26AD|Marriage symbol}}}}'''Simbol takhingga''' atau '''simbol ananta''' ('''{{Math|∞}}''') merupakan [[Daftar simbol matematika|simbol matematika]] yang mewakili konsep [[takhingga]]. Simbol ini disebut juga sebagai lemniskat,{{r|mind}} dinamai dari bentuk yang serupa dalam [[geometri aljabar]], yaitu kurva [[Kurva lemniskat|lemniskat]].{{r|beautiful}} Dalam [[pencitraan merek ternak]], istilah simbol ini juga disebut sebagai "angka delapan malas".{{r|zero}}
 
Teorema ini telah diduga bahwa ada tak berhingga banyaknya bilangan prima Mersenne. Walaupun kebenaran dari konjektur ini masih belum terungkap, tetapi menurut teorema Euklides–Euler, ini menyerupai dengan sebuah konjektur yang katanya ada tak berhingga banyaknya bilangan sempurna genap. Sayangnya, masih dibelum ketahui adakah bilangan sempurna ganjil yang tunggal.<ref name="stillwell" />
Simbol takhingga pertama kali dipakai dalam matematika oleh [[John Wallis]] pada abad ke-17, walaupun simbol ini memiliki sejarah yang panjang dalam pemakaian lainnya. Dalam [[matematika]], simbol takhingga seringkali diartikan sebagai proses takhingga ([[takhingga potensial]]) daripada nilai takhingga ([[takhingga aktual]]). Simbol takhingga memiliki arti teknis lain yang berkaitan dengannya, seperti pemakaian kertas yang tahan lama dalam [[Penjilidan|penjilidan buku]]<u>,</u> dan dipakai sebagai nilai simbolis takhingga dalam kesusasteraan dan mistisisme modern. Dalam [[desain grafis]], simbol takhingga umumnya dipakai sebagai elemen logo; contohnya dalam badan logo dan desain lama seperti [[bendera Métis]].
 
== Pernyataan dan contoh ==
Simbol takhingga dan beberapa variasi lainnya tersedia di berbagai [[pengodean karakter]].
Sebuah billngan sempurna adalah sebuah [[bilangan asli]] yang sama dengan jumlah dari [[pembagi]] wajarnya, dan bilangan-bilangan tersebut lebih dari kecilnya dan kemudian membaginya sama rata (sampai tidak ada [[sisa]]). Sebagai contoh, pembagi wajar dari 6 adalah 1, 2, dan 3, yang hasilnya menjadi 6 saat dijumlahkan. Dengan demikian, 6 adalah bilangan sempurna.
 
Sebuah bilangan prima Mersenne adalah sebuah bilangan prima yang berbentuk {{math|1=''M''<sub>''p''</sub> = 2<sup>''p''</sup> − 1}}, sebuah bilangan yang lebih kecil dari [[Perpangkatan bilangan dua|perpangkatan dari dua]]. Agar bilangan dari bentuk tersebut berupa bilangan prima, maka {{mvar|p}} sendiri juga harus bilangan prima, tetapi tak semua bilangan prima menghasilkan bilangan prima Mersenne melalui cara ini. Sebagai contoh, {{nowrap|1=2<sup>3</sup> − 1 = 7}} adalah bilangan prima Mersenne, sedangkan {{nowrap|1=2<sup>11</sup> − 1 = 2047 = 23 × 89}} bukan.
== Sejarah ==
[[Berkas:First_known_usage_of_the_infinity_symbol.jpg|jmpl|Simbol takhingga dipakai pertama kali oleh [[John Wallis]] pada tahun 1655]]
{{multiple image
| total_width = 480
| image1 = John Wallis by Sir Godfrey Kneller, Bt.jpg
| alt1 = Gambar John Wallis, dilukis oleh Sir Godfrey Kneller pada tahun 1701, dari National Portrait Gallery
| caption1 = [[John Wallis]] memperkenalkan simbol takhingga {{char|<math>\infty</math>}} dalam sastra matematika.
| image2 = Infinity symbol.svg
| alt2 = Ada delapan variasi simbol takhingga
| caption2 = Simbol <math>\infty</math> dalam berbagai [[rupa huruf]].
}}
 
Teorema Eukildes–Euler mengatakan bahwa sebuah bilangan asli genap disebut sempurna jika dan hanya jika bilangan tersebut berbentuk {{math|2<sup>''p''−1</sup>''M''<sub>''p''</sub>}}, dengan {{math|''M''<sub>''p''</sub>}} adalah bilangan prima Mersenne.<ref name="stillwell">{{citation|title=Mathematics and Its History|series=[[Undergraduate Texts in Mathematics]]|first=John|last=Stillwell|authorlink=John Stillwell|publisher=Springer|year=2010|isbn=978-1-4419-6052-8|page=40|url=https://books.google.com/books?id=V7mxZqjs5yUC&pg=PA40}}.</ref> Sebagai contoh, bilangan sempurna 6 didapatkan ketika memasukkan {{math|1=''p'' = 2}} ke {{nowrap|1=2<sup>2−1</sup>{{mvar|M}}<sub>2</sub> = 2 × 3 = 6}}; dan memasukkan bilangan prima Mersenne 7 ke ekspresi yang serupa memperoleh bilangan sempurna 28.
Sejak zaman dahulu, simbol lemniskat ini merupakan sebuah ragam hias yang umum. Contoh mengenai simbol ini umumnya dapat dilihat pada sisir [[zaman Viking]].{{r|viking}}
 
== Sejarah ==
[[John Wallis]], seorang matematikawan asal Inggris, diakui bahwa ia telah memperkenalkan simbol takhingga beserta pengertiannya dalam matematika pada tahun 1655, dalam karyanya ''De sectionibus conicis'',{{r|sectionibus|wallis|notations}} namun ia tidak menjelaskan simbol yang ia pilih. Simbol yang dipilih diduga berupa bentuk bilangan Romawi yang berbeda, namun bilangan yang dipilih masih belum jelas. Ada teori yang mengemukakan bahwa simbol tersebut berasal dari bilangan Romawi 100 juta, yang menyerupai simbol yang sama sangat berkaitan dengan bingkai foto.{{r|beyond}} Adapula teori yang mengemukakan bahwa simbol tersebut berasal dari notasi CIↃ yang dipakai untuk mewakili 1000.{{r|unthinkable}} Selain bilangan Romawi, simbol tersebut juga berasal dari huruf {{char|ω}} yang berbeda (dimana {{char|ω}} adalah huruf kecil dari [[omega]] dan huruf terakhir dalam [[alfabet Yunani]]).{{r|unthinkable}}
Euklides membuktikan bahwa {{math|2<sup>''p''−1</sup>(2<sup>''p''</sup> − 1)}} adalah sebuah bilangna prima genap dengan {{math|2<sup>''p''</sup> − 1}} adalah bilangan prima. Bukti tersebut adalah hasil terakhir tentang [[teori bilangan]] dalam buku miliknya, ''[[Elemen Euklides|Elements]]''; buku terakhir di ''Elements'' melibatkan [[bilangan irasional]], [[geometri padat]], dan [[rasio emas]]. Eukildes mengemukakan hasilnya dengan mengatakan bahwa jika [[deret geometrik]] terhingga dimulai dari 1 dengan rasio 2 mempunyai jumlah bilangan prima {{mvar|q}}, maka jumlah tersebut yang dikalikan dengan suku terakhir {{mvar|t}} di deret tersebut dikatakan sempurna. Ketika mengekspresikan bentuk tersebut, jumlah {{mvar|q}} dari deret terhingga menghasilkan bilangan prima Mersenne {{math|2<sup>''p''</sup> − 1}} dan suku terakhir {{mvar|t}} dalam deret tersebut merupakan perpangkatan dari dua {{math|2<sup>''p''−1</sup>}}. Euklides kemudian membuktikan bahwa {{math|''qt''}} dikatakan sempurna dengan mengamati deret geometrik dengan rasio 2 yang diawali dari {{mvar|q}}, dengan jumlah suku yang sama, sebanding dengan deret asli. Karena deret asli dijumlahkan sampai {{math|1=''q'' = 2''t'' − 1}}, maka deret kedua dijumlahkan sampai {{math|1=''q''(2''t'' − 1) = 2''qt'' − ''q''}}, dan kedua deret tersebut ditambahkan sampai {{math|2''qt''}}, dua kali dari bilangan sempurna sebelumnya. Akan tetapi, kedua deret tersebut terlepas dari satu sama lain serta (berdasarkan primalitas dari {{mvar|q}}) menghabiskan semua pembagi dari {{math|''qt''}}, sehingga {{math|''qt''}} mempunyai pembagi yang dijumlahkan sampai {{math|2''qt''}}, dan ini diperlihatkan bahwa bilangannya sempurna.<ref>{{citation|author=[[Euclid]]|title=The Thirteen Books of The Elements, Translated with introduction and commentary by Sir Thomas L. Heath, Vol. 2 (Books III–IX)|edition=2nd|publisher=Dover|year=1956|pages=421–426}}. See in particular Prop. IX.36.</ref>
 
Karena keterbatasan tipografi dalam beberapa kasus, simbol-simbol lain yang menyerupai simbol takhingga dipakai dalam arti yang sama.{{r|notations}} [[Leonhard Euler]] menggunakan simbol huruf S terbalik dan menyamping yang menyerupai simbol lemniskat.{{r|notations-incorrect}} Bahkan, simbol "O–O" dipakai menggantikan simbol takhingga itu sendiri.{{r|notations}}
 
== Pemakaian ==
 
=== Matematika ===
Dalam matematika, simbol takhingga seringkali dipakai untuk merepresentasikan [[takhingga potensial]],{{r|cosmic}} daripada kuantitas takhingga sebenarnya. Simbol takhingga dipakai diantaranya dalam [[bilangan real diperluas]], [[bilangan kardinal]], dan [[bilangan ordinal]] (notasi lain, seperti <math>\aleph_0</math> dan <math>\omega</math>, dipakai untuk bilangan takhingga). Misalnya, simbol takhingga pada bentuk [[penjumlahan]] dan [[limit]] dalam matematika seperti
 
: <math> \sum_{n=0}^{\infty} \frac{1}{2^n} = \lim_{x\to\infty}\frac{2^x-1}{2^{x-1}} = 2</math>,
 
biasanya diartikan bahwa variabel tersebut naik membesar mendekati takhingga<u>,</u> walaupun bentuk di atas dapat diartikan sebagai nilai takhingga sebenarnya.{{r|convergence}}
 
Simbol takhingga juga dapat diartikan dalam [[titik di takhingga]], termasuk ketika hanya ada satu titik yang diketahui. Simbol ini khususnya digunakan seperti titik takhingga dari [[garis proyektif]],{{r|algebraic}} dan titik yang ditambahkan ke [[ruang topologis]] untuk membentuk [[Perluasan Alexandroff|kompaktifikasi satu titik]].{{r|hitchhiker}}
 
=== Penggunaan teknis lainnya ===
[[Berkas:Infrarotindex_md_300_mm_IMGP1196.jpg|al=Minolta MD 4.5/300mm IF lens|jmpl|Gambar kamera lensa yang memperlihatkan ada simbol takhingga pada indikator jarak fokus lensa.]]
Dalam cabang selain matematika, simbol takhingga dapat dipakai dalam arti yang berkaitan dengan yang lainnya. Misalnya, simbol takhingga dipakai dalam [[Penjilidan|penjilidan buku]] yang menunjukkan bahwa buku yang dicetak pada [[kertas bebas asam]] sehingga menjadi lebih awet.{{r|book}} Dalam [[kamera]] and [[lensa]]<nowiki/>nya, simbol takhingga menunjukkan bahwa [[jarak fokus]] lensa [[Pumpun ananta|diatur sebagai jarak ananta]], dan simbol takhingga "mungkin salah satu simbol takhingga paling terlama yang dipakai dalam kamera".{{r|camera}}
 
=== Penggunaan simbolisme dan kesusasteraan ===
[[Berkas:RWS_Tarot_08_Strength.jpg|al=Strength tarot card, depicting a woman crowned by an infinity symbol, holding shut a lion's mouth|jmpl|Simbol takhingga muncul pada beberapa [[kartu tarot Rider–Waite]].{{r|tarot}}]]
Dalam mistisisme modern, simbol takhingga telah diidentifikasikan sebagai variasi [[ouroboros]], gambaran kuno tentang seekor ular yang memakan ekornya sendiri juga merupakan simbol takhingga, dan ouroboros terkadang digambar dalam bentuk gambar angka delapan yang mengambarkan identifikasi simbol tersebut—daripada dalam bentuk lingkaran yang lebih sederhana.{{r|dreams}}
 
Dalam karya [[Vladimir Nabokov]], seperti ''[[The Gift (Novel Nabokov)|The Gift]]'' dan ''[[Pale Fire]]'', gambar berbentuk angka delapan dipakai sebagai simbol yang merujuk [[pita Möbius]] dan takhingga, seperti kasus dalam deskripsi buku tentang bentuk-bentuk jejak ban sepeda dan garis besar mengenai orang yang mengingat sebagian. Puisi Nabokov yang karya novelnya berjudulkan ''Pale Fire'' mengacu pada "keajaiban lemniskat" ({{Lang-en|miracle of the lemniscate}}).{{r|nabokov}} Beberapa penulis yang mengerjakan kegunaan simbol takhingga beserta pengertiannya seperti [[James Joyce]], di ''[[Ulysses (novel)|Ulysses]]'',{{r|sands}} dan [[David Foster Wallace]], di ''[[Infinite Jest]]''.{{r|wallace}}
 
=== Desain grafis ===
Bentuk yang terkenal dan arti simbol takhingga ini menjadikan elemen [[tipografi]] yang umum dalam [[desain grafis]]. Misalnya, [[bendera Métis]], yang dipakai oleh orang-orang [[Orang Métis Kanada|Métis]] Kanada sejak awal abad ke-19. {{r|flags}} Ada teori yang berbeda yang mengemukakan arti simbol dari bendera tersebut, di antaranya sebagai harapan untuk masa depan takhingga dalam budaya Métis, dan sebagai campuran tradisi Eropa dan [[First Nations in Canada|First Nations]],{{r|gaudry|dumont}} namun ada juga yang menimbulkan bentuk geometris dari tarian Métic,{{r|racette}}, [[buhul Celtic]],{{r|prefontaine}} atau [[Plains Indian Sign Language|Plains First Nations Sign Language]].{{r|barkwell}}
 
Simbol takhingga berwarnakan [[pelangi]] dalam [[gerakan hak autisme]] juga dipakai untuk melambangkan ada tak berhingga berbagai orang-orang dalam pergerakan dan kognitif manusia.{{r|autism}} Simbol ini dipakai dalam badan logo perusahaan [[Bakelite]] yang mengacu kepada berbagai pemakaian yang sangat luas pada material sintesis yang diproduksi.{{r|bakelite}} Ada versi dari simbol ini yang dipakai dalam merek dagang, badan logo, dan lambang lainnya seperti [[Fujitsu]],{{r|brands}} [[Cell Press]],{{r|inspires}} dan [[Piala Dunia FIFA 2022]].{{r|qatar}}
 
== Pengodean ==
Simbol takhingga dikodekan sebagai {{unichar|221E|infinity}} dalam Unicode,{{r|compart}} dan <code>\infty</code>: <math>\infty</math> dalam [[LaTeX]].{{r|comprehensive}} Simbol takhingga yang dilingkari dipakai sebagai lambang [[kertas bebas asam]].
{{charmap|221E|map6=[[EUC-KR]]{{r|unicode-euc-kr}} / [[Unified Hangul Code|UHC]]{{r|unicode-uhc}}|namedref2=[[Common Locale Data Repository|CLDR]] text-to-speech name{{r|cldr}}|ref1char2=\acidfree|ref1char1=\infty|namedref1=[[LaTeX]]{{r|comprehensive}}|IncludeGB=1|map8char1=A1 DB|map8=[[Big5]]{{r|encoding}}|map7char1=A2 AC|map7=[[KPS 9566|EUC-KPS-9566]]{{r|unicode-kps}}|map6char1=A1 C4|map5char1=A1 E7|267E|map5=[[EUC-JP]]{{r|unicode-euc-jp}}|map4char1=81 87|map4=[[Shift JIS]]{{r|unicode-jis}}|map3char1=A5|map3=[[Simbol (rupa huruf)#Pengodean|Pengodean fon simbol]]{{r|unicode-mac-symbol}}|map2char1=B0|map2=[[Mac OS Roman]]{{r|unicode-mac-roman}}|map1char1=EC|map1=[[Code page 437|OEM-437 (Alt Code)]]{{r|unicode-cp437}}|name2=permanent paper sign|name1=infinity|ref2char2=infinity}}
Ada kumpulan simbol Unicode yang juga diantaranya berupa bentuk simbol takhingga yang berbeda, namun simbol tersebut jarang tersedia dalam <u>[[Miscellaneous Mathematical Symbols-B]]</u>.{{r|unicode-misc}}
{{charmap|29DC|29DD|29DE|name1=incomplete infinity|name2=tie over infinity|name3=infinity negated with vertical bar|namedref1=[[LaTeX]]{{r|comprehensive}}|ref1char1=\iinfin|ref1char2=\tieinfty|ref1char3=\nvinfty}}
 
== Lihat pula ==
{{commons category|Simbol takhingga}}
 
* [[Bilangan alef]]
* [[Sejarah notasi matematika]]
 
== Rujukan ==
{{reflist|refs=<ref name=algebraic>{{cite book
| last = Perrin | first = Daniel
| isbn = 978-1-84800-056-8
| page = 28
| publisher = Springer
| title = Algebraic Geometry: An Introduction
| url = https://books.google.com/books?id=Vn1yR9qPvlMC&pg=PA28
| year = 2007}}</ref>
 
<ref name=autism>{{cite journal
| last = Gross | first = Liza
| date = September 2016
| doi = 10.1371/journal.pbio.2000958
| issue = 9
| journal = [[PLOS Biology]]
| page = e2000958
| title = In search of autism's roots
| volume = 14}}</ref>
 
<ref name=bakelite>{{cite journal
| last1 = Crespy | first1 = Daniel
| last2 = Bozonnet | first2 = Marianne
| last3 = Meier | first3 = Martin
| date = April 2008
| doi = 10.1002/anie.200704281
| issue = 18
| journal = Angewandte Chemie
| pages = 3322–3328
| title = 100 years of Bakelite, the material of a 1000 uses
| volume = 47}}</ref>
 
<ref name=barkwell>{{cite web |last1=Barkwell |first1=Lawrence J. |title=The Metis Infinity Flag |url=http://www.metismuseum.ca/resource.php/07245 |website=Virtual Museum of Métis History and Culture |publisher=Gabriel Dumont Institute |access-date=15 July 2020}}</ref>
 
<ref name=beautiful>{{cite book
| last = Erickson | first = Martin J.
| contribution = 1.1 Lemniscate
| contribution-url = https://books.google.com/books?id=LgeP62-ZxikC&pg=PA1
| isbn = 978-0-88385-576-8
| pages = 1–3
| publisher = [[Mathematical Association of America]]
| series = MAA Spectrum
| title = Beautiful Mathematics
| year = 2011}}</ref>
 
<ref name=beyond>{{cite book
| last = Maor | first = Eli | author-link = Eli Maor
| isbn = 0-691-02511-8
| mr = 1129467
| page = 7
| publisher = Princeton University Press | location = Princeton, New Jersey
| title = To Infinity and Beyond: A Cultural History of the Infinite
| url = https://books.google.com/books?id=pMY9DwAAQBAJ&pg=PA7
| year = 1991}}</ref>
 
<ref name=book>{{cite book
| last1 = Zboray | first1 = Ronald J.
| last2 = Zboray | first2 = Mary Saracino
| isbn = 978-0-8444-1015-9
| page = 49
| publisher = [[Center for the Book]], [[Library of Congress]]
| title = A Handbook for the Study of Book History in the United States
| url = https://archive.org/details/handbookforstudy0000zbor/page/49
| year = 2000}}</ref>
 
<ref name=brands>{{cite book
| last1 = Rivkin | first1 = Steve
| last2 = Sutherland | first2 = Fraser
| isbn = 978-0-19-988340-0
| page = 130
| publisher = Oxford University Press
| title = The Making of a Name: The Inside Story of the Brands We Buy
| url = https://books.google.com/books?id=WJVcgta-HToC&pg=PA130
| year = 2005}}</ref>
 
<ref name=camera>{{cite journal<!-- Although it would make more sense for this to be a conference, SAGE publishes it as a journal --> | last1 = Crist | first1 = Brian | last2 = Aurello | first2 = David N. | date = October 1990 | doi = 10.1177/154193129003400512 | issue = 5 | journal = Proceedings of the Human Factors Society Annual Meeting | pages = 489–493 | title = Development of camera symbols for consumers | volume = 34}}</ref>
 
<ref name=cldr>{{cite web |url=https://github.com/unicode-org/cldr/blob/master/common/annotations/en.xml |author=Unicode, Inc |author-link=Unicode Consortium |title=Annotations |work=[[Common Locale Data Repository]]|via=[[GitHub]]}}</ref>
 
<ref name=compart>{{Cite web|url=https://www.compart.com/en/unicode/U+221E|title=Unicode Character "∞" (U+221E)|work=Unicode|publisher=Compart AG|language=en|access-date=2019-11-15}}</ref>
 
<ref name=comprehensive>{{cite book|contribution=Table 294: stix Infinities|page=118|title=The Comprehensive LATEX Symbol List|first=Scott|last=Pakin|date=May 5, 2021|url=https://ctan.org/pkg/comprehensive|publisher=[[CTAN]]|access-date=2022-02-19}}</ref>
 
<ref name=convergence>{{cite journal
| last = Shipman | first = Barbara A.
| date = April 2013
| doi = 10.1080/10511970.2012.753963
| issue = 5
| journal = PRIMUS
| pages = 441–458
| title = Convergence and the Cauchy property of sequences in the setting of actual infinity
| volume = 23}}</ref>
 
<ref name=cosmic>{{cite book
| last = Barrow | first = John D. | author-link = John D. Barrow
| contribution = Infinity: Where God Divides by Zero
| contribution-url = https://books.google.com/books?id=uRg6iN10JCIC&pg=PA339
| isbn = 978-0-393-06177-2
| pages = 339–340
| publisher = W. W. Norton & Company
| title = Cosmic Imagery: Key Images in the History of Science
| year = 2008}}</ref>
 
<ref name=dreams>{{cite book|url=https://books.google.com/books?id=vhNNrX3bmo4C&pg=PA243|title=Dreams, Illusion, and Other Realities|last=O'Flaherty|first=Wendy Doniger|author-link=Wendy Doniger|publisher=University of Chicago Press|year=1986|isbn=978-0-226-61855-5|page=243}} The book also features this image on its cover.</ref>
 
<ref name=dumont>{{cite web |url= http://www.metisresourcecentre.mb.ca/index.php?option=com_content&view=article&id=2&Itemid=8 |title=The Métis flag |work=Gabriel Dumont Institute(Métis Culture & Heritage Resource Centre) |archive-url=https://web.archive.org/web/20130724192737/http://metisresourcecentre.mb.ca/index.php?option=com_content&view=article&id=2&Itemid=8 |archive-date=2013-07-24}}</ref>
 
<ref name=encoding>{{cite web |url=https://encoding.spec.whatwg.org/big5.html |title=big5 |work=Encoding Standard |publisher=[[WHATWG]] |last=van Kesteren |first=Anne |author-link=Anne van Kesteren}}</ref>
 
<ref name=flags>{{cite book|title=Native American Flags|first1=Donald T.|last1=Healy|first2=Peter J.|last2=Orenski|publisher=University of Oklahoma Press|year=2003|isbn=978-0-8061-3556-4|page=[https://archive.org/details/nativeamericanfl0000heal/page/284 284]|url=https://archive.org/details/nativeamericanfl0000heal/page/284}}</ref>
 
<ref name=gaudry>{{Cite journal|last=Gaudry |first=Adam |date=Spring 2018 |title= Communing with the Dead: The "New Métis," Métis Identity Appropriation, and the Displacement of Living Métis Culture |journal= American Indian Quarterly |volume=42 |issue=2 |pages=162–190 |jstor=10.5250/amerindiquar.42.2.0162 |doi=10.5250/amerindiquar.42.2.0162 |s2cid=165232342}}</ref>
 
<ref name=hitchhiker>{{cite book
| last1 = Aliprantis | first1 = Charalambos D. | author1-link = Charalambos D. Aliprantis
| last2 = Border | first2 = Kim C. | author2-link = Kim Border
| edition = 3rd
| isbn = 978-3-540-29587-7
| pages = 56–57
| publisher = Springer
| title = Infinite Dimensional Analysis: A Hitchhiker's Guide
| url = https://books.google.com/books?id=4vyXtR3vUhoC&pg=PA56
| year = 2006}}</ref>
 
<ref name=inspires>{{cite journal | last = Willmes | first = Claudia Gisela | date = January 2021 | doi = 10.1016/j.molmed.2020.11.001 | issue = 1 | journal = Trends in Molecular Medicine | page = 1 | pmid = 33308981 | title = Science that inspires | volume = 27}}</ref>
 
<ref name=mind>{{cite book
| last = Rucker | first = Rudy | author-link = Rudy Rucker
| isbn = 3-7643-3034-1
| location = Boston, Massachusetts
| mr = 658492
| page = 1
| publisher = Birkhäuser
| title = Infinity and the Mind: The science and philosophy of the infinite
| year = 1982}}</ref>
 
<ref name=nabokov>{{cite book|title=Nabokov: The Mystery of Literary Structures|first=Leona|last=Toker|publisher=Cornell University Press|year=1989|isbn=978-0-8014-2211-9|page=[https://archive.org/details/nabokovmysteryof00toke/page/159 159]|url=https://archive.org/details/nabokovmysteryof00toke|url-access=registration}}</ref>
 
<ref name=notations>{{Cite book|title-link=A History of Mathematical Notations|title=A History of Mathematical Notations, Volume II: Notations Mainly in Higher Mathematics|last=Cajori|first=Florian|author-link=Florian Cajori|publisher=Open Court |year=1929 |pages=44–48|contribution-url=https://archive.org/details/AHistoryOfMathematicalNotationVolII/page/n67|contribution=Signs for infinity and transfinite numbers}}</ref>
 
<ref name=notations-incorrect>{{harvtxt|Cajori|1929}} salah menampilkan simbol tersebut, ketika huruf S menyamping tanpa dibalikkan. Simbol tersebut dapat dilihat ketika [[Leonhard Euler|Euler, Leonhard]] memakainya di {{cite journal|first=Leonhard|last=Euler|author-link=Leonhard Euler|language=la|title=Variae observationes circa series infinitas|journal=Commentarii academiae scientiarum Petropolitanae|volume=9|year=1744|pages=160–188|url=http://eulerarchive.maa.org/docs/originals/E072.pdf}}, di hlm. 174</ref>
 
<ref name=prefontaine>{{cite journal |last1=Darren R. |first1=Préfontaine |title=Flying the Flag, Editor's note. |journal=New Breed Magazine |date=2007 |issue=Winter 2007 |page=6 |url=http://www.metismuseum.ca/resource.php/05851 |access-date=26 August 2020}}</ref>
 
<ref name=qatar>{{cite news|url=https://www.aljazeera.com/news/2019/09/qatar-2022-football-world-cup-logo-unveiled-190903193444377.html|publisher=Al Jazeera|title=Qatar 2022: Football World Cup logo unveiled|date=September 3, 2019}}</ref>
 
<ref name=racette>{{Cite book |url= http://www.metismuseum.ca/media/document.php/12153.Flags%20of%20the%20Metis.pdf |title=Flags of the Métis |last=Racette |first=Calvin |publisher=Gabriel Dumont Institute |year=1987 |isbn=0-920915-18-3}}</ref>
 
<ref name=sands>{{cite book | last = Bahun | first = Sanja | editor1-last = Kim | editor1-first = Rina | editor2-last = Westall | editor2-first = Claire | contribution = 'These heavy sands are language tide and wind have silted here': Tidal voicing and the poetics of home in James Joyce's Ulysses | doi = 10.1057/9781137020758_4 | pages = 57–73 | publisher = Palgrave Macmillan | title = Cross-Gendered Literary Voices: Appropriating, Resisting, Embracing | year = 2012}}</ref>
 
<ref name=sectionibus>{{cite book|url=https://archive.org/details/bub_gb_03M_AAAAcAAJ|title=De Sectionibus Conicis, Nova Methodo Expositis, Tractatus|last=Wallis|first=John|year=1655|pages=[https://archive.org/details/bub_gb_03M_AAAAcAAJ/page/n17 4]|language=la|chapter=Pars Prima|author-link=John Wallis}}</ref>
 
<ref name=tarot>{{cite journal
| last = Armson | first = Morandir
| date = June 2011
| issue = 1
| journal = Literature & Aesthetics
| pages = 196–212
| title = The transitory tarot: an examination of tarot cards, the 21st century New Age and theosophical thought
| url = https://openjournals.library.sydney.edu.au/index.php/LA/article/viewFile/5056/5761
| volume = 21}} Khususnya, lihat di hlm. 203: "Reinkarnasi dilambangkan dalam jumlah kartu tarot Waite-Smith. Simbol utama reinkarnasi yang dipakai berupa simbol takhingga atau lemniskat, roda dan lingkaran."</ref>
 
<ref name=unicode-cp437>{{cite web |url=https://unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP437.TXT |title=cp437_DOSLatinUS to Unicode table |date=April 24, 1996 |last=Steele |first=Shawn |publisher=[[Unicode Consortium]] | access-date=2022-02-19}}</ref>
 
<ref name=unicode-euc-jp>{{cite web |url=https://raw.githubusercontent.com/unicode-org/icu/master/icu4c/source/data/mappings/euc-jp-2007.ucm |title=EUC-JP-2007 |publisher=[[Unicode Consortium]] |work=[[International Components for Unicode]] | access-date=2022-02-19|via=[[GitHub]]}}</ref>
 
<ref name=unicode-euc-kr>{{cite web |url=https://raw.githubusercontent.com/unicode-org/icu/master/icu4c/source/data/mappings/ibm-970_P110_P110-2006_U2.ucm |title=IBM-970 |publisher=[[Unicode Consortium]] |work=[[International Components for Unicode]]|date=May 9, 2007 | access-date=2022-02-19|via=[[GitHub]]}}</ref>
 
<ref name=unicode-jis>{{cite web |url=https://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/SHIFTJIS.TXT |title=Shift-JIS to Unicode |publisher=[[Unicode Consortium]] |date=December 2, 2015 | access-date=2022-02-19}}</ref>
 
<ref name=unicode-kps>{{cite web |url=https://unicode.org/Public/MAPPINGS/VENDORS/MISC/KPS9566.TXT |title=KPS 9566-2003 to Unicode |date=April 27, 2011 |publisher=[[Unicode Consortium]] | access-date=2022-02-19}}</ref>
 
<ref name=unicode-mac-roman>{{cite web |url=http://unicode.org/Public/MAPPINGS/VENDORS/APPLE/ROMAN.TXT |title=Map (external version) from Mac OS Roman character set to Unicode 2.1 and later |date=April 5, 2005 |publisher=[[Apple Inc.]] |via=[[Unicode Consortium]]| access-date=2022-02-19}}</ref>
 
Setelah Euklides membuktikannya selama bertahun-tahun, [[Alhazen]] menduga bahwa ''setiap'' bilangan sempurna genap merupakan bilangan berbentuk {{math|2<sup>''p''−1</sup>(2<sup>''p''</sup> − 1)}} dengan {{math|2<sup>''p''</sup> − 1}} bilangan prima, tetapi sayangnya ia belum daat membuktikan hasil tersebut.<ref>{{MacTutor Biography|id=Al-Haytham|title=Abu Ali al-Hasan ibn al-Haytham}}</ref> Hingga pada abad ke-18, lebih dari 2000 tahun setelah Euklides,<ref>{{citation
<ref name=unicode-mac-symbol>{{cite web |url=http://unicode.org/Public/MAPPINGS/VENDORS/APPLE/SYMBOL.TXT |title=Map (external version) from Mac OS Symbol character set to Unicode 4.0 and later|date=April 5, 2005 |publisher=[[Apple Inc.]] |via=[[Unicode Consortium]]| access-date=2022-02-19}}</ref>
| last1 = Pollack | first1 = Paul
| last2 = Shevelev | first2 = Vladimir
| doi = 10.1016/j.jnt.2012.06.008
| issue = 12
| journal = Journal of Number Theory
| mr = 2965207
| pages = 3037–3046
| title = On perfect and near-perfect numbers
| volume = 132
| year = 2012| arxiv = 1011.6160
| s2cid = 13607242
}}</ref> [[Leonhard Euler]] membuktikan bahwa rumus {{math|2<sup>''p''−1</sup>(2<sup>''p''</sup> − 1)}} akan menghasilkan bilangan sempurna genap.<ref name="stillwell" /><ref>{{citation|first=Leonhard|last=Euler|authorlink=Leonhard Euler|chapter=De numeris amicibilibus|trans-chapter=On amicable numbers|language=Latin|contribution-url=https://scholarlycommons.pacific.edu/euler-works/798/|title=Commentationes arithmeticae|volume=2|year=1849|pages=627–636}}. Originally read to the Berlin Academy on February 23, 1747, and published posthumously. See in particular section 8, p. 88.</ref> Jadi, bukti tersebut mempunyai kaitan antara bilangan sempurna genap dengan bilangan prima Mersenne, yang menyatakan masing-masing bilangan prima Mersenne menghasilkan sebuah bilangan sempurna genap, dan begitupula sebaliknya. Setelah Euler membuktikannya, banyak matematikawan lain telah menerbitkan bukti-bukti yang berbeda, di antaranya bukti [[Victor-Amédée Lebesgue]], [[Robert Daniel Carmichael]], [[Leonard Eugene Dickson]], John Knopfmacher, dan Wayne L. McDaniel. Bukti Dickson khususnya sudah umum dipakai dalam buku cetak.<ref>{{citation|last=Cohen|first=Graeme L.|date=March 1981|doi=10.2307/3617930|issue=431|journal=[[The Mathematical Gazette]]|jstor=3617930|pages=28–30|title=Even perfect numbers|volume=65}}</ref>
 
Teorema ini tercantum dalam sebuah situs yang memuat daftar dari "100 teorema matematika yang terkenal", dating from 1999, which later became used by Freek Wiedijk as a [[Benchmark (computing)|benchmark]] set to test the power of different [[proof assistant]]s. {{as of|2021}}, the proof of the Euclid–Euler theorem had been formalized in 5 of the 10 proof assistants recorded by Wiedijk.<ref>{{citation|first=Freek|last=Wiedijk|url=https://www.cs.ru.nl/~freek/100/|title=Formalizing 100 Theorems|publisher=Radboud University Institute for Computing and Information Sciences|access-date=2021-07-10}}</ref>
<ref name=unicode-misc>{{cite web|url=https://www.unicode.org/charts/PDF/U2980.pdf|title=Miscellaneous Mathematical Symbols-B|publisher=[[Unicode Consortium]]|archive-url=https://web.archive.org/web/20181112231107/https://www.unicode.org/charts/PDF/U2980.pdf|archive-date=2018-11-12|url-status=live| access-date=2022-02-19}}</ref>
 
== Proof ==
<ref name=unicode-uhc>{{cite web |url=https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP949.TXT |title=cp949 to Unicode table |last=Steele |first=Shawn |publisher=[[Unicode Consortium]] |date=January 7, 2000 | access-date=2022-02-19}}</ref>
Euler's proof is short<ref name="stillwell" /> and depends on the fact that the [[Divisor function|sum of divisors]] function {{mvar|σ}} is [[multiplicative function|multiplicative]]; that is, if {{mvar|a}} and {{mvar|b}} are any two [[relatively prime]] integers, then {{math|1=''σ''(''ab'') = ''σ''(''a'')''σ''(''b'')}}. For this formula to be valid, the sum of divisors of a number must include the number itself, not just the proper divisors. A number is perfect if and only if its sum of divisors is twice its value.
 
=== Sufficiency ===
<ref name=unthinkable>{{cite book
One direction of the theorem (the part already proved by Euclid) immediately follows from the multiplicative property: every Mersenne prime gives rise to an even perfect number. When {{math|1=2<sup>''p''</sup> − 1}} is prime,
| last = Clegg | first = Brian | author-link = Brian Clegg (writer)
<math display-block>\sigma(2^{p-1}(2^p - 1)) = \sigma(2^{p-1})\sigma(2^p - 1).</math>
| contribution = Chapter 6: Labelling the infinite
The divisors of {{math|2<sup>''p''−1</sup>}} are {{math|1, 2, 4, 8, ..., 2<sup>''p''−1</sup>}}. The sum of these divisors is a [[geometric series]] whose sum is {{math|1=2<sup>''p''</sup> − 1}}. Next, since {{math|1=2<sup>''p''</sup> − 1}} is prime, its only divisors are {{math|1}} and itself, so the sum of its divisors is {{math|1=2<sup>''p''</sup>}}.
| isbn = 978-1-84119-650-3
| publisher = Constable & Robinson Ltd
| title = A Brief History of Infinity: The Quest to Think the Unthinkable
| year = 2003}}</ref>
 
Combining these,
<ref name=viking>{{cite journal
<math display=block>\begin{align}
| last = van Riel | first = Sjoerd
\sigma(2^{p-1}(2^p - 1)) &= \sigma(2^{p-1})\sigma(2^p - 1) \\
| journal = Lund Archaeological Review
&= (2^p - 1)(2^p) \\
| pages = 163–178
&= 2(2^{p-1})(2^p - 1).
| title = Viking Age Combs: Local Products or Objects of Trade?
\end{align}</math>
| url = https://journals.lub.lu.se/lar/article/view/21656
Therefore, {{math|2<sup>''p''−1</sup>(2<sup>''p''</sup> − 1)}} is perfect.<ref name="imsp">{{citation|title=Introduction to Mathematical Structures and Proofs|series=Undergraduate Texts in Mathematics|first=Larry|last=Gerstein|publisher=Springer|year=2012|isbn=978-1-4614-4265-3|at=Theorem 6.94, p.&nbsp;339|url=https://books.google.com/books?id=qK9y768b1NQC&pg=PA339}}.</ref><ref name="pp">{{citation|title=A proof that all even perfect numbers are a power of two times a Mersenne prime|website=Prime Pages|url=https://primes.utm.edu/notes/proofs/EvenPerfect.html|access-date=2014-12-02|first=Chris K.|last=Caldwell}}.</ref><ref name="ntfagd">{{citation|title=Number Theory, Fourier Analysis and Geometric Discrepancy|volume=81|series=London Mathematical Society Student Texts|first=Giancarlo|last=Travaglini|publisher=Cambridge University Press|year=2014|isbn=978-1-107-04403-6|pages=26–27|url=https://books.google.com/books?id=mIaYAwAAQBAJ&pg=PA26}}.</ref>
| volume = 23
| year = 2017}} See p. 172: "Within this type the lemniscate (∞) is a commonly used motif."</ref>
 
=== Necessity ===
<ref name=wallace>{{cite book | last = Natalini | first = Roberto | editor1-last = Boswell | editor1-first = Marshall | editor2-last = Burn | editor2-first = Stephen J. | contribution = David Foster Wallace and the mathematics of infinity | doi = 10.1057/9781137078346_3 | pages = 43–57 | publisher = Palgrave Macmillan | series = American Literature Readings in the 21st Century | title = A Companion to David Foster Wallace Studies | year = 2013}}</ref>
In the other direction, suppose that an even perfect number has been given, and partially factor it as {{math|2<sup>''k''</sup>''x''}}, where {{mvar|x}} is odd. For {{math|2<sup>''k''</sup>''x''}} to be perfect, the sum of its divisors must be twice its value:
{{NumBlk|:|<math>2^{k+1}x = \sigma(2^k x) = (2^{k+1} - 1)\sigma(x).</math>|∗}}
The odd factor {{math|2<sup>''k''+1</sup> − 1}} on the right side of '''(∗)''' is at least 3, and it must divide {{mvar|''x''}}, the only odd factor on the left side, so {{math|1=''y'' = ''x''/(2<sup>''k''+1</sup> − 1)}} is a proper divisor of {{mvar|x}}. Dividing both sides of '''(∗)''' by the common factor {{math|1=2<sup>''k''+1</sup> − 1}} and taking into account the known divisors {{mvar|x}} and {{mvar|y}} of {{mvar|x}} gives
{{Block indent|left=1.6|<math>2^{k+1}y = \sigma(x) = x + y + {}</math>other divisors<math>{} = 2^{k+1}y + {}</math>other divisors.}}
For this equality to be true, there can be no other divisors. Therefore, {{mvar|y}} must be {{math|1}}, and {{mvar|x}} must be a prime of the form {{math|1=2<sup>''k''+1</sup> − 1}}.<ref name="imsp" /><ref name="pp" /><ref name="ntfagd" />
 
== References ==
<ref name=wallis>{{cite book
| last = Scott | first = Joseph Frederick
| edition = 2nd
| isbn = 0-8284-0314-7
| page = 24
| publisher = [[American Mathematical Society]]
| title = The mathematical work of John Wallis, D.D., F.R.S., (1616-1703)
| url = https://books.google.com/books?id=XX9PKytw8g8C&pg=PA24
| year = 1981}}</ref>
 
{{reflist}}
<ref name=zero>{{cite book|title=Zero to Lazy Eight: The Romance of Numbers|first1=Alexander|last1=Humez|first2= Nicholas D.|last2=Humez|first3= Joseph|last3= Maguire|publisher =Simon and Schuster|year=1993|isbn= 978-0-671-74281-2|page=18|url=https://books.google.com/books?id=X429EAr8g4kC&pg=PA18}}</ref>}}