Poligon: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) tambah lead |
Dedhert.Jr (bicara | kontrib) |
||
(3 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Assorted polygons.svg|jmpl|Berbagai macam poligon|400x400px]]Dalam [[geometri]], '''poligon''' atau '''segi banyak''' adalah bangun datar yang digambarkan dengan jumlah terhingga dari [[Garis (geometri)|garis]] lurus yang terhubung, sehingga membentuk sebuah [[
Ruas garis dari sirkuit poligonal disebut sebagai [[Sisi (geometri)|sisi]]. Perpotongan dari dua sisi pada poligon dikenal sebagai [[titik
[[Poligon sederhana]] adalah sebuah poligon yang tidak saling berpotongan diri. Akan tetapi, para matematikawan seringkali hanya melibatkan rantai poligonal terbatas dari poligon sederhana, dan karena itu mereka seringkali mendefinisikannya sebagai poligon. Sebuah batas poligonal dapat diperbolehkan untuk berpotongan terhadap dirinya, sehingga mengakibatkan terbentuknya [[poligon bintang]] dan [[Daftar poligon berpotongan diri|poligon yang saling berpotongan diri]] lainnya.
Baris 18:
=== Konveksitas dan non-konveksitas ===
Poligon dapat dicirikan berdasarkan jenis konveksitas (kecembungan) atau non-konveksitas:
* Poligon [[poligon cembung|konveks]] atau [[poligon cembung|cembung]]: sebarang garis yang ditarik melalui poligon (dan tidak menyinggung sisi atau titik
* Poligon non-cembung: sebuah garis dapat ditemukan ketika bertemu ke batasnya lebih dari dua kali. Dengan kata lain, terdapat sebuah ruas garis di antara dua titik batas yang melalui poligon.
* [[Poligon sederhana]]: batas poligon tidak menyilang dirinya sendiri. Semua poligon cembung berbentuk sederhana.
Baris 27:
=== Kesetaraan dan simetri ===
* [[Poligon sama sudut]]: semua sudut di titik
* [[Poligon sama sisi]]: semua sisi memiliki panjang yang sama.
* [[Poligon beraturan]]: sebuah poligon berarti mempunyai sudut dan sisi yang sama.
Baris 43:
[[Berkas:Winkelsumme-polygon.svg|jmpl|Segi-<math>n</math> dibagi menjadi <math>n-2</math> segitiga.]]
Sebarang poligon memiliki banyak sudut yang sama dengan banyaknya sisi. Masing-masing sudut di poligon memiliki beberapa sudut. Dua sudut yang terpenting, di antaranya:
*
*
=== Luas ===
Misalkan titik
==== Poligon sederhana ====
Baris 62:
Math. Debrecen 1, 42–50 (1949)</ref><ref>{{cite web|last=Bourke|first=Paul|date=Juli 1988|title=Calculating The Area And Centroid Of A Polygon|url=http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf|work=|publisher=|archive-url=https://web.archive.org/web/20120916104133/http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf|archive-date=2012-09-16|dead-url=yes|accessdate=6 Feb 2013}}</ref>
Luas bertanda bergantung pada orde dari titik
Luas <math>A</math> dari poligon sederhana juga dapat dihitung jika diketahui panjang sisi <math>a_1,a_2,\dots,a_n</math> dan [[sudut luar]] <math>\theta_1,\theta_2,\dots,\theta_n</math>, dari
<math display="block">A = \frac12 (
{} + a_2[a_3 \sin(\theta_2) + a_4 \sin(\theta_2 + \theta_3) + \cdots + a_{n-1} \sin(\theta_2 + \cdots + \theta_{n-2})]
{} + \cdots + a_{n-2}[a_{n-1} \sin(\theta_{n-2})]
Rumus ini dijelaskan oleh Lopshits pada tahun 1963.<ref name="lopshits">{{cite book|author=A.M. Lopshits|year=1963|title=Computation of areas of oriented figures|publisher=D C Heath and Company: Boston, MA|url-status=live}}</ref>
Jika poligon dapat digambarkan di sebuah kisi yang berjarak sama, sehingga semua titik
Setiap poligon dengan keliling <math>p</math> dan luas <math>A</math>'','' berlaku [[pertidaksamaan isoperimetrik]] <math>p^2 > 4\pi A</math>.<ref>[http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.]</ref>
Baris 85:
=== Pusat massa ===
Dengan menggunakan konvensi yang sama untuk koordinat titik
<math display="block">C_x = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (x_i + x_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i), </math><math display="block">C_y = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (y_i + y_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i).</math>
Baris 94:
== Perumuman ==
Gagasan dari poligon diperumum melalui berbagai cara. Ada beberapa perumuman dari poligon yang lebih penting, di antaranya:
* [[Poligon bola]] adalah poligon yang mempunyai sirkuit dari busur lingkaran besar (yakni, sisi) dan titik
* [[Poligon pencong]] tidak terletak di bidang datar, melainkan di garis zigzag dalam dimensi tiga atau lebih. [[Poligon Petrie]] dari politop beraturan adalah contoh yang terkenal.
* [[Apeirogon]] adalah sebuah poligon yang mempunyai barisan tak hingga dari sisi dan sudut. Barisan tersebut tidak tertutup tetapi tidak punyai titik akhir, sebab barisan tersebut secara tak langsung memperluas ke dua arah.
* [[Apeirogon pencong]] adalah sebuah poligon yang mempunyai barisan tak hingga dari sisi dan sudut yang tidak terletak di sebuah bidang datar.
* [[Politop kompleks|Poligon kompleks]] adalah sebuah [[konfigurasi (politop)|konfigurasi]] yang mirip seperti poligon biasa. Yang membedakannya adalah poligon ini berada di [[bidang kompleks]] dari dua dimensi [[bilangan real]] dan dua dimensi [[bilangan imajiner]].
* [[Politop abstrak|Poligon abstrak]] adalah [[himpunan terurut parsial]] aljabar yang mewakili berbagai elemen (seperti sisi, titik
* [[Polihedron]] adalah benda padat dimensi tiga yang dibatasi oleh muka poligonal datar, mirip seperti poligon dalam dimensi dua yang dibatasi oleh sisi, Bentuk yang korespondensi dalam dimensi empat atau lebih disebut sebagai [[politop]].<ref>Coxeter (3rd Ed 1973)</ref>
== Penamaan ==
Kata ''poligon'' diambil dari [[bahasa Latin]] ''polygōnum'', bahasa Yunani πολύγωνον (''polygōnon/polugōnon'', yang berarti "sudut banyak". Pemberian nama pada masing-masing poligon disesuaikan dengan jumlah sisi, dan gabungan dari [[awalan bilangan]] dalam [[bahasa Yunani]] dan akhiran -gon, sebagai contoh ''[[pentagon
Penamaan ini juga dilakukan tanpa menggunakan kata serapan dari bahasa Latin maupun bahasa Yunani. Pemberian nama pada masing-masing poligon ditulis dari kata "segi-" dan jumlah sisi melalui angka. Sebagai contoh, ''[[segitiga]]'' (mempunyai tiga sisi), ''[[segi empat]]'' (mempunyai empat sisi).
Baris 189:
| [[megagon]] || 1,000,000
|}
Poligon yang mempunyai jumlah sisi yang lebih dari 20 dan kurang dari 100 dinamakan dengan menggunakan awalan kata nama.<ref name="namingpolygons2">{{cite book|last=Salomon|first=David|date=2011|url=https://books.google.com/books?id=DX4YstV76c4C&pg=PA90|title=The Computer Graphics Manual|publisher=Springer Science & Business Media|isbn=978-0-85729-886-7|pages=88–90}}</ref> Kata "kai" dapat dipakai untuk segi-13 dan poligon yang lebih tinggi darinya. Penggunaan kata "kai" dipakai oleh [[Johannes Kepler|Kepler]], dan kemudian [[John H. Conway|Conway]] memperkenalkan penggunaan kata tersebut untuk menjelaskan awalan bilangan yang digabungkan dalam penamaan [[polihedron kuasiberaturan]].<ref name="drmath">{{cite web|title=Naming Polygons and Polyhedra|url=http://mathforum.org/dr.math/faq/faq.polygon.names.html|work=Ask Dr. Math|publisher=The Math
{| class="wikitable" style="vertical-align:center;"
Baris 221:
== Sejarah ==
[[Berkas:Fotothek df tg 0003352 Geometrie
Poligon telah lama dikenal sejak zaman dahulu. Poligon beraturan dipelajari orang [[Yunani kuno]]. [[Pentagram]], sebuah poligon beraturan non-[[cembung]] ([[poligon bintang]]), ditemukan di [[krater]] Aristophonus, sebuah wadah yang ditemukan Caere, dan saat ini berada di [[Museum Capitolini]].<ref>{{citation|title=A History of Greek Mathematics, Volume 1|first=Sir Thomas Little|last=Heath|author-link=Thomas Little Heath|publisher=Courier Dover Publications|year=1981|isbn=978-0-486-24073-2|page=162|url=https://books.google.com/books?id=drnY3Vjix3kC&pg=PA162}}. Reprint of original 1921 publication with corrected errata. Heath uses the Latinized spelling "Aristophonus" for the vase painter's name.</ref><ref>[http://en.museicapitolini.org/collezioni/percorsi_per_sale/museo_del_palazzo_dei_conservatori/sale_castellani/cratere_con_l_accecamento_di_polifemo_e_battaglia_navale Cratere with the blinding of Polyphemus and a naval battle] {{webarchive|url=https://web.archive.org/web/20131112080845/http://en.museicapitolini.org/collezioni/percorsi_per_sale/museo_del_palazzo_dei_conservatori/sale_castellani/cratere_con_l_accecamento_di_polifemo_e_battaglia_navale|date=2013-11-12}}, Castellani Halls, Capitoline Museum, accessed 2013-11-11. Terdapat dua pentagram yang terlihat di dekat pusat gambar.</ref>
|