Aljabar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20240809)) #IABot (v2.0.9.5) (GreenC bot
 
(16 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Quadratic formula.svg|jmpl|Rumus [[persamaan kuadrat]] mengungkapkan solusi dari persamaan derajat dua <math>ax^2 + bx +c=0</math> dalam koefisien <math>a, b, c</math>, dimana <math>a</math> bukan nol.]]
 
'''Aljabar''' (dari [[Bahasa Arab|bahasa Arab]] الجبر ''"al-jabr"'' yang berarti "pengumpulan bagian yang rusak"<ref name="oed">{{Cite web|url=http://www.oxforddictionaries.com/us/definition/english/algebra|title=algebra|website=Oxford English Dictionary|publisher=Oxford University Press|access-date=2017-02-21|archive-date=2013-12-31|archive-url=https://web.archive.org/web/20131231173558/http://www.oxforddictionaries.com/us/definition/english/algebra|dead-url=yes}}</ref>) adalah salah satu bagian dari bidang [[matematika]] yang luas, bersama-sama dengan [[teori bilangan]], [[geometri]] dan [[Analisis matematis|analisis]]. Dalam bentuk paling umum, aljabar adalah ilmu yang mempelajari simbol-simbol matematika dan aturan untuk memanipulasi simbol-simbol ini;<ref>I. N. Herstein, ''Topics in Algebra'', "An algebraic system can be described as a set of objects together with some operations for combining them." p. 1, Ginn and Company, 1964</ref> aljabar adalah benang pemersatu dari hampir semua bidang matematika.<ref>I. N. Herstein, ''Topics in Algebra'', "...it also serves as the unifying thread which interlaces almost all of mathematics." p. 1, Ginn and Company, 1964</ref> Selain itu, aljabar juga meliputi segala sesuatu dari dasar pemecahan persamaan untuk mempelajari abstraksi seperti [[Grup (matematika)|grup]], [[Gelanggang (matematika)|gelanggang]], dan [[Medan (matematika)|medan]]. Semakin banyak bagian-bagian dasar dari aljabar disebut [[aljabar elementer]], sementara bagian aljabar yang lebih abstrak yang disebut [[aljabar abstrak]] atau aljabar modern. Aljabar elementer umumnya dianggap penting untuk setiap studi matematika, ilmu pengetahuan, atau teknik, serta aplikasi dalam kesehatan dan ekonomi. Aljabar abstrak merupakan topik utama dalam matematika tingkat lanjut, yang dipelajari terutama oleh para profesional dan pakar matematika.
 
Aljabar elementer berbeda dari [[aritmetika]] dalam penggunaan abstraksi, seperti menggunakan huruf untuk mewakili angka-angka yang tidak diketahui atau diperbolehkan untuk mengambil banyak nilai-nilai. Misalnya, dalam <math>x + 2 = 5</math> huruf <math>x</math> tidak diketahui, tetapi hukum inversi dapat digunakan untuk menemukan nilai: <math>x=3</math>. Dalam [[Ekivalensi massa-energi|{{math|1=''E'' = ''mc''{{smallsup|2}}}}]], huruf <math>E</math> dan <math>m</math> adalah variabel, dan huruf <math>c</math> adalah [[Konstanta (matematika)|konstanta]], kecepatan cahaya dalam vakum. Aljabar memberikan metode untuk memecahkan persamaan dan mengekspresikan rumus yang lebih mudah (bagi mereka yang memahami konsepnya) daripada metode konvensional, yaitu menulis semuanya dalam kata-kata.
Baris 36:
 
=== Sejarah awal aljabar ===
[[Berkas:Image-Al-Kitāb_alKitāb al-muḫtaṣar_fī_ḥisāb_almuḫtaṣar fī ḥisāb al-ğabr_wağabr wa-l-muqābala.jpg|jmpl|Halaman dari karya [[Muḥammad bin Mūsā al-Khawārizmī|Al-Khwarizmi]] yang berjudul ''al-Kitab al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala'' (''Buku Ringkasan tentang Perhitungan dengan Pelengkapan dan Penyetimbangan'']]
Akar aljabar dapat ditelusuri hingga masa Babilonia kuno,<ref>{{Cite book|title=A Concise History of Mathematics|last=Struik|first=Dirk J.|publisher=Dover Publications|year=1987|isbn=0-486-60255-9|location=New York}}</ref> yang mengembangkan sistem aritmetika lanjut untuk melakukan perhitungan menurut gaya [[algoritme]]. Bangsa Babilonia mengembangkan rumus untuk menghitung solusi dari masalah-masalah yang dewasa ini umum diselesaikan dengan [[persamaan linear]], [[persamaan kuadrat]], dan [[persamaan taktentu]]. Sebaliknya, sebagian besar [[matematika Mesir Kuno|orang Mesir]] pada era ini serta [[Matematika Yunani|Yunani]] dan [[matematika Tiongkok|Tiongkok]] pada milenium 1 SM biasanya menyelesaikan persamaan tersebut dengan metode geometris, seperti yang dijelaskan dalam ''[[Papirus Matematika Rhind]]'', ''[[Elemen Euklides]]'', dan ''[[Sembilan Bab mengenai Seni Matematika]]''. Karya geometris dari Yunani, seperti yang ditulis dalam ''Elemen'', menyediakan kerangka kerja untuk perumuman rumus melampaui solusi dari soal tertentu menjadi sistem yang lebih umum yang menyatakan dan memecahkan persamaan, meskipun hal ini tidak terealisasi sampai sebelum munculnya [[Matematika Islam abad pertengahan]].<ref>{{harvnb|Boyer|1991}}</ref>
 
Baris 47:
Di dalam konteks di mana aljabar diidentifikasi dengan [[teori persamaan]], Matematikawan Yunani, Diofantus secara tradisional telah dikenali sebagai "bapak aljabar" tetapi dalam waktu yang lebih terkemudian terdapat banyak debat mengenai apakah al-Khwarizmi, yang membentuk disiplin ''al-jabr'', layak menyandang gelar itu.<ref>{{cite book |first=Carl B. |last=Boyer |title=A History of Mathematics |url=https://archive.org/details/historymathemati00boye_328 |edition=Second |location= |publisher=Wiley |year=1991 |pages=[https://archive.org/details/historymathemati00boye_328/page/n197 178], 181 |isbn=0-471-54397-7 }}</ref> Mereka yang mendukung poin Diofantus terhadap fakta bahwa aljabar ditemukan dalam ''Al-Jabr'' adalah sedikit lebih elementer daripada aljabar yang ditemukan dalam ''Arithmetica'' dan bahwa ''Arithmetica'' lebih diperingkas, sedangkan ''Al-Jabr'' sepenuhnya retoris.<ref>{{cite book |first=Carl B. |last=Boyer |title=A History of Mathematics |url=https://archive.org/details/historymathemati00boye_328 |edition=Second |location= |publisher=Wiley |year=1991 |page=[https://archive.org/details/historymathemati00boye_328/page/n247 228] |isbn=0-471-54397-7 }}</ref> Mereka yang mendukung poin Al-Khwarizmi terhadap fakta bahwa dia memperkenalkan metode "[[reduksi (matematika)|reduksi]]" dan "penyetimbangan" (transposisi suku-suku yang diambil ke ruas lain suatu persamaan, yaitu, pencoretan suku-suku yang memiliki [[variabel (matematika)|variabel]] dan [[eksponensiasi|pangkat]] sama pada ruas lain suatu persamaan), yang dirujuk oleh ''al-jabr'' pada mulanya,<ref name=Boyer-229>{{Harv|Boyer|1991|loc="The Arabic Hegemony" p. 229}} "It is not certain just what the terms ''al-jabr'' and ''muqabalah'' mean, but the usual interpretation is similar to that implied in the translation above. The word ''al-jabr'' presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation; the word ''muqabalah'' is said to refer to "reduction" or "balancing" – that is, the cancellation of like terms on opposite sides of the equation."</ref> dan bahwa dia memberikan penjelasan yang panjang-lebar tentang penyelesaian persamaan kuadrat,<ref>{{Harv|Boyer|1991|loc="The Arabic Hegemony" p. 230}} "The six cases of equations given above exhaust all possibilities for linear and quadratic equations having positive root. So systematic and exhaustive was al-Khwarizmi's exposition that his readers must have had little difficulty in mastering the solutions."</ref> didukung oleh bukti-bukti geometris, sambil memperlakukan aljabar sebagai disiplin yang merdeka dan memiliki hak sendiri.<ref>Gandz and Saloman (1936), ''The sources of al-Khwarizmi's algebra'', Osiris i, p. 263–277: "In a sense, Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".</ref> Aljabarnya juga tidak lagi berurusan "dengan sederet soal untuk diselesaikan, tetapi sebuah eksposisi yang bermula dengan suku-suku primitif di mana kombinasi harus memberikan semua purwarupa yang mungkin untuk persamaan, yang untuk selanjutnya secara eksplisit membentuk objek kajian yang sebenarnya". Dia juga mengkaji persamaan untuk kepentingannya sendiri dan "dalam cara yang umum, sejauh itu tidak hanya muncul dalam penyelesaian masalah, namun secara khusus dipanggil untuk mendefinisikan kelas masalah yang tak terbatas".<ref name=Rashed-Armstrong>{{Cite book | last1=Rashed | first1=R. | last2=Armstrong | first2=Angela | year=1994 | title=The Development of Arabic Mathematics | publisher=[[Springer Science+Business Media|Springer]] | isbn=0-7923-2565-6 | oclc=29181926 | pages=11–2 | ref=harv | postscript= }}</ref>
 
Matematikawan Persia lainnya, [[Umar Khayyām]] diakui jasanya sebagai pengidentifikasi dasar-dasar [[geometri aljabar]] dan penemu solusi geometris umum untuk [[fungsi kubik|persamaan kubik]]. Bukunya ''Risalah tentang Peragaan Soal-Soal Aljabar'' (1070), yang menetapkan prinsip-prinsip aljabar, adalah bagian dari tubuh Matematika Persia yang sebenarnya dikirimkan ke Eropa.<ref>[[#refmathmaster|Mathematical Masterpieces: Further Chronicles by the Explorers]], p. 92</ref> Matematikawan Persia lainnya, [[Sharaf al-Din al-Tusi]], menemukan solusi aljabar dan numerik untuk beberapa kasus persamaan kubik.<ref>{{MacTutor|id=Al-Tusi_Sharaf|title=Sharaf al-Din al-Muzaffar al-Tusi}}</ref> Dia juga mengembangkan konsep mengenai [[fungsi (matematika)|fungsi]].<ref>{{Cite journal|last=Victor J. Katz|first=Bill Barton|title=Stages in the History of Algebra with Implications for Teaching|journal=Educational Studies in Mathematics|publisher=[[Springer Science+Business Media|Springer Netherlands]]|volume=66|issue=2|date=October 2007|doi=10.1007/s10649-006-9023-7|pages=185–201 [192]|last2=Barton|first2=Bill|ref=harv|postscript= }}</ref> Matematikawan India, [[Mahavira (matematikawan)|Mahavira]] dan [[Bhāskara II]], Matematikawan Persia [[Al-Karaji]],<ref name="Boyer al-Karkhi ax2n">{{Harv|Boyer|1991|loc="The Arabic Hegemony" p. 239}} "Abu'l Wefa was a capable algebraist as well as a trigonometer.&nbsp;... His successor al-Karkhi evidently used this translation to become an Arabic disciple of Diophantus – but without Diophantine analysis!&nbsp;... In particular, to al-Karkhi is attributed the first numerical solution of equations of the form ax<sup>2n</sup> + bx<sup>n</sup> = c (only equations with positive roots were considered),"</ref> dan Matematikawan Tiongkok, [[Zhu Shijie]], menyelesaikan beberapa kasus persamaan kubik, [[persamaan kuartik|kuartik]], [[persamaan kuintik|kuintik]], dan persamaan-persamaan [[polinomial]] berorde lebih tinggi menggunakan [[metode numerik]]. Pada abad ke-13, penyelesaian persamaan kubik oleh [[Fibonacci]] adalah wakil dari awal kebangkitan aljabar Eropa. [[Abū al-Ḥasan ibn ʿAlī al-Qalaṣādī]] (1412–1486) mengambil "langkah-langkah pertama menuju perkenalan simbolisme aljabar". Dia juga menghitung ∑''n''<sup>2</sup>, ∑''n''<sup>3</sup> dan menggunakan metode pendekatan berurutan (suksesif) untuk menentukan [[akar kuadrat]].<ref>{{Cite web|url=http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Qalasadi.html|title=Al-Qalasadi biography|website=www-history.mcs.st-andrews.ac.uk|access-date=2017-10-17}}</ref> Ketika dunia Islam mengalami kemunduran, dunia Eropa mengalami kebangkitan. Dan pada ketika itulah aljabar berkembang lebih jauh.
 
=== Sejarah modern aljabar ===
Baris 271:
* R. B. J. T. Allenby: ''Cincin, Bidang dan Kelompok''. ISBN 0-340-54440-6
* [[Leonhard Euler|L. Euler]]: ''[http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ unsur-Unsur dari Aljabar] {{Webarchive|url=https://web.archive.org/web/20110413234352/http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ |date=2011-04-13 }}'', ISBN 978-1-899618-73-6
* {{Cite book|title=Realm of Algebra|url=https://archive.org/details/realmofalgebra00asim|last=Asimov|first=Isaac|publisher=Houghton Mifflin|year=1961|author-link=Isaac Asimov}}
 
== Pranala luar ==