Bilangan segitiga kuadrat: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) kubik sebaiknya diganti dengan pangkat. Selain itu, ce |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
(2 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Nicomachus_theorem_3D.svg|ka|jmpl| Persegi yang panjang sisinya adalah bilangan segitiga dapat dipartisi menjadi persegi dan setengah persegi, yang luasnya bertambah menjadi jumlah bilangan pangkat tiga.<ref>{{Harvard citation text|Gulley|2010}}</ref> ]]
Dalam [[Teori bilangan|teorema bilangan]], jumlah <math>n </math> [[pangkat tiga]] pertama adalah kuadrat dari bilangan [[Bilangan segitiga|segitiga]] ke-<math>n </math>. Jumlah tersebut dirumuskan sebagai<math display="block">1^3+2^3+3^3+\cdots+n^3 = \left(1+2+3+\cdots+n\right)^2.</math>Dengan menggunakan [[notasi Sigma]], persamaan tersebut dapat ditulis<math display="block">\sum_{k=1}^n k^3 = \bigg(\sum_{k=1}^n k\bigg)^2.</math>
[[ Identitas (matematika) |Identitas]] tersebut terkadang disebut juga '''teorema Nicomachus''', yang dinamai dari [[Nicomachus|Nicomachus dari Geresa]].
Baris 23 ⟶ 17:
Bilangan segitiga kuadrat tersebut dapat dipandang sebagai [[bilangan figurasi]], suatu perumuman hiperpiramidal empat dimensi dari [[bilangan segitiga]] dan [[bilangan piramidal persegi]].
{{Harvard citation text|Stein|1971}} mengamati bahwa bilangan segitiga kuadrat juga menghitung jumlah [[persegi panjang]] dengan sisi horizontal dan vertikal dibentuk dalam sebuah <math>n \times n </math> [[ Kisi persegi |kisi]]. Sebagai contoh, titik-titik dari <math>4\times4</math> kisi (atau persegi yang terdiri dari tiga persegi kecil di samping) dapat membentuk 36 persegi panjang yang berbeda. Dengan cara yang serupa, jumlah bilangan kuadrat dalam kisi persegi tersebut dihitung dengan bilangan piramidal kuadrat.
Identitas tersebut juga mengatakan pandangan probabilistik sebagai berikut: Misalkan <math>W, X, Y, Z </math> menyatakan [[bilangan bulat]] yang dipilih secara independen dan seragam di sebarang bilangan di antara <math>1</math> dan <math>n </math>. Maka, probabilitas mengatakan bahwa <math>W </math> adalah bilangan bulat terbesar dari keempat bilangan yang sama dengan probabilitas yang mengatakan <math>Y </math> setidaknya sebesar <math>X </math>, dan <math>W </math> setidaknya sebesar <math>Z </math><math display="block">\mathbf{P}({\max(X,Y,Z) \leq W}) = \mathbf{P}(\{X \leq Y\} \cap \{Z \leq W\}). </math>Probabilitas masing-masing adalah ruas kiri dan ruas kanan pada identitas Nichomacus, yang dinormalisasi untuk membuat probabilitas dengan membagi kedua ruas oleh <math>n^4</math>.{{Butuh rujukan}}
== Pembuktian ==
{{harvs|txt|first=Charles|last=Wheatstone|authorlink=Charles Wheatstone|year=1854}} memberikan pembuktian yang sangat sederhana, dengan memperluas setiap bilangan kubik dalam penjumlahan menjadi suatu himpunan dari bilangan ganjil yang berurutan. Wheatstone memulainya dengan memberikan identitas<math display="block">n^3 = \underbrace{\left(n^2-n+1\right) + \left(n^2-n+1+2\right) + \left(n^2-n+1+4\right)+ \cdots + \left(n^2+n-1\right)}_{n\text{ bilangan ganjil berurutan }}.</math>Identitas tersebut berkaitan dengan [[bilangan segitiga]] <math>T_n</math> yang disederhankan sebagai:<math display="block">n^3 =\sum _{k=T_{n-1}+1}^{T_{n}} (2 k-1).</math>Dengan demikian, tinambah di atas akan membentuk <math>n^3 </math> setelah semua bilangan segitiga membentuk nilai sebelumnya yang dimulai dari <math>1^3 </math> sampai <math>(n-1)^3</math> . Dengan menerapkan sifat tersebut, bersama dengan identitas terkenal lainnya:<math display="block">n^2 = \sum_{k=1}^n (2k-1),</math>maka akan menghasilkan bentuk berikut:<math display="block">
\begin{align}
\sum_{k=1}^n k^3 &= 1 + 8 + 27 + 64 + \cdots + n^3 \\
Baris 41 ⟶ 29:
&= (1 + 2 + \cdots + n)^2 \\
&= \bigg(\sum_{k=1}^n k\bigg)^2.
\end{align}</math>
{{harvtxt|Row|1893}} mendapatkan bukti lain dengan menjumlahkan bilangan-bilangan dalam suatu [[tabel perkalian]] persegi dengan dua cara berbeda. Jumlah dari baris ke-<math>i</math> adalah <math>i</math> dikalikan dengan bilangan segitiga, yang berarit bahwa jumlah dari semua baris adalah kuadrat dari bilangan segitiga. Cara lainnya adalah seseorang dapat menguraikan tabel menjadi barisan [[gnomon]] bersarang, yang masing-masing bilangan terdiri dari hasil kali yang lebih besar dari dua suku memberikan suatu nilai konstan. Jumlah dalam setiap gnomon adalah bilangan pangkat tiga, dan demikian bahwa jumlah seluruh tabel adalah jumlah bilangan pangkat tiga.
Baris 54 ⟶ 42:
== Referensi ==
{{Reflist}}
*{{citation|last1=Benjamin|first1=Arthur T.|author1-link=Arthur T. Benjamin|last2=Orrison|first2=M. E.|title=Two quick combinatorial proofs of <math>\textstyle \sum k^3 = {n+1\choose 2}^2</math>|journal=[[College Mathematics Journal]]|year=2002|volume=33|issue=5|pages=406–408|url=http://www.math.hmc.edu/~orrison/research/papers/two_quick.pdf|doi=10.2307/1559017|jstor=1559017}}.
*{{citation|doi=10.2307/27646391|title=Summing cubes by counting rectangles|url=http://www.math.hmc.edu/~benjamin/papers/rectangles.pdf|pages=387–389|issue=5|volume=37|year=2006|journal=[[College Mathematics Journal]]|first3=Calyssa|last1=Benjamin|last3=Wurtz|author2-link=Jennifer Quinn|first2=Jennifer J.|last2=Quinn|author1-link=Arthur T. Benjamin|first1=Arthur T.|jstor=27646391}}.
|