Protein: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.2 |
Tidak ada ringkasan suntingan |
||
(14 revisi perantara oleh 9 pengguna tidak ditampilkan) | |||
Baris 4:
Sejumlah asam amino membentuk rantai lurus yang disebut [[polipeptida]]. Suatu protein terdiri dari minimum satu polipeptida panjang. Polipeptida pendek (dengan kurang dari 20–30 asam amino) biasanya tidak dianggap sebagai protein, tetapi disebut molekul [[peptida]] atau [[oligopeptida]]. Masing-masing asam amino dalam protein terikat ke asam amino di dekatnya oleh [[ikatan peptida]]. Urutan asam amino dalam protein ditentukan oleh urutan gen yang disandi dalam kode genetik. Secara umum, kode genetik menghasilkan 20 asam amino standar, meskipun beberapa organisme memiliki asam amino tambahan. Tak lama setelah atau bahkan selama [[Sintesis protein|sintesis]], residu dalam protein sering dimodifikasi secara kimiawi melalui proses [[modifikasi pascatranslasi]] yang mengubah sifat fisik dan kimia, lipatan, stabilitas, aktivitas, dan fungsi protein. Beberapa protein memiliki gugus nonpeptida (bukan asam amino), yang dapat disebut [[Kofaktor (biokimia)|kofaktor]] dan [[gugus prostetik]]. Beberapa protein juga dapat bekerja sama untuk menjalankan fungsi tertentu, dan kelompok seperti ini sering membentuk [[kompleks protein]] yang stabil.
Begitu terbentuk, protein hanya ada untuk jangka waktu tertentu lalu [[Proteolisis|didegradasi]] dan didaur ulang dalam sel melalui proses [[pergantian protein]]. Umur protein diukur berdasarkan [[waktu paruh]]nya dan mencakup rentang yang panjang. Protein bisa berumur beberapa menit hingga beberapa tahun dengan umur rata-rata 1–2 hari dalam sel mamalia. Protein yang abnormal atau salah
Bersama dengan biomolekul raksasa lainnya seperti [[polisakarida]] dan [[asam nukleat]], protein merupakan bagian esensial dari organisme dan terlibat dalam hampir seluruh proses di dalam [[Sel (biologi)|sel]]. Sebagian protein adalah [[enzim]] yang berfungsi sebagai [[Katalisis|katalis]] dalam reaksi-reaksi biokimia dan bersifat vital untuk [[metabolisme]]. Sebagian protein memiliki fungsi pembentuk atau penguat, misalnya protein [[aktin]] dan [[miosin]] dalam otot dan protein-protein dalam [[sitoskeleton]]. Protein-protein lainnya memiliki peran penting dalam [[persinyalan sel]], [[respons imun]], [[adhesi sel]], dan [[siklus sel]]. Hewan memerlukan protein dalam makanannya untuk memperoleh [[asam amino esensial]] yang tidak bisa [[Sintesis asam amino|disintesis]] di dalam tubuh. [[Sistem pencernaan]] memecah protein dari makanan untuk dapat digunakan dalam metabolisme.
Protein dapat [[Pemurnian protein|dimurnikan]] dari komponen seluler lainnya menggunakan berbagai teknik seperti [[ultrasentrifugasi]], [[Reaksi pengendapan|presipitasi]], [[elektroforesis]], dan [[kromatografi]]. [[Rekayasa genetika]] memungkinkan sejumlah metode untuk memfasilitasi pemurnian ini. Metode yang biasa
Protein merupakan suatu zat makanan yang amat penting bagi tubuh, karena zat ini berfungsi sebagai bahan bakar, zat pembangun dan pengatur. Dan fungsi utama dari protein adalah membentuk jaringan baru dan mempertahankan jaringan yang telah ada. Mutu protein dalam bahan makanan yang di konsumsi manusia yang akan di serap oleh usus dalam bentuk asam amino <ref>{{Cite book|last=Winarno|first=F. G.|date=1997|title=Kimia pangan dan gizi|location=semarang|publisher=PT Gramedia|url-status=live}}</ref>
== Sejarah dan etimologi ==
Protein dikenali sebagai kelompok [[biomolekul]] pada abad kedelapan belas oleh [[Antoine François, comte de Fourcroy|Antoine Fourcroy]] dan lain-lain, yang dicirikan oleh kemampuannya untuk melakukan [[Penggumpalan darah|koagulasi]] atau [[flokulasi]] di bawah perlakuan dengan panas atau asam.<ref>[[Thomas Burr Osborne (ahli kimia)|Thomas Burr Osborne]] (1909): [[iarchive:vegetableprotein00osbouoft|The Vegetable Proteins]] , History pp 1 to 6, dari [[Internet Archive|archive.org]]</ref> Contoh yang tercatat pada saat itu adalah albumin dari [[putih telur]], [[albumin]] dalam serum darah, [[fibrin]], dan [[gluten]] gandum.
Protein pertama kali dijelaskan oleh kimiawan Belanda [[Gerardus Johannes Mulder]] dan dinamai oleh ahli kimia Swedia [[Jöns Jakob Berzelius|Jöns Jacob Berzelius]] pada tahun 1838.<ref name="Mulder1938">{{Cite journal|year=1838|title=Sur la composition de quelques substances animales|url=https://archive.org/stream/bulletindesscien00leyd#page/104/mode/2up|journal=Bulletin des Sciences Physiques et Naturelles en Néerlande|pages=104|vauthors=Mulder GJ}}</ref><ref name="Hartley">{{Cite journal|last=Harold|first=Hartley|year=1951|title=Origin of the Word 'Protein.'|journal=Nature|volume=168|issue=4267|pages=244|bibcode=1951Natur.168..244H|doi=10.1038/168244a0|pmid=14875059}}</ref> Mulder melakukan analisis unsur terhadap protein umum dan menemukan bahwa hampir semua protein memiliki [[rumus empiris]] yang sama, yaitu C<sub>400</sub>H<sub>620</sub>N<sub>100</sub>O<sub>120</sub>P<sub>1</sub>S<sub>1</sub>.<ref name="Perrett2007">{{cite journal|date=August 2007|title=From 'protein' to the beginnings of clinical proteomics|journal=Proteomics: Clinical Applications|volume=1|issue=8|pages=720–38|doi=10.1002/prca.200700525|pmid=21136729|vauthors=Perrett D|s2cid=32843102}}</ref> Ia sampai pada kesimpulan yang salah bahwa mereka mungkin terdiri dari satu jenis molekul (sangat besar). Istilah "protein" untuk menggambarkan molekul-molekul ini diajukan oleh rekan Mulder, Berzelius; protein berasal dari kata [[Bahasa Yunani|Yunani]] πρώτειος (''proteios''), yang berarti "primer",<ref>''New Oxford Dictionary of English''</ref> "di depan", atau "berdiri di depan",<ref name="Reynolds2003">{{cite book|vauthors=Reynolds JA, Tanford C|year=2003|title=Nature's Robots: A History of Proteins (Oxford Paperbacks)|url=https://archive.org/details/naturesrobotshis0000tanf_g4d8|location=New York, New York|publisher=Oxford University Press|isbn=978-0-19-860694-9|page=[https://archive.org/details/naturesrobotshis0000tanf_g4d8/page/15 15]}}</ref> ditambah akhiran ''[[wiktionary:-in#Suffix|-in]]''. Mulder selanjutnya mengidentifikasi produk degradasi protein seperti [[asam amino]] [[Leusina|leusin]] yang ia temukan dengan berat molekul (hampir benar) 131 [[Dalton (satuan)|Da]].<ref name="Perrett2007" /> Sebelum "protein", nama lainnya telah digunakan, seperti "albumin" atau "bahan albumin" (''Eiweisskörper'', dalam bahasa Jerman).<ref>Reynolds and Tanford (2003).</ref>
Ilmuwan nutrisi awal seperti [[Carl von Voit]] dari Jerman percaya bahwa protein adalah nutrisi terpenting untuk menjaga struktur tubuh karena secara umum diyakini bahwa "daging membuat daging."<ref name="Bischoff1860">{{cite book|vauthors=Bischoff TL, Voit C|year=1860|title=Die Gesetze der Ernaehrung des Pflanzenfressers durch neue Untersuchungen festgestellt|location=Leipzig, Heidelberg|language=de}}</ref> [[Karl Heinrich Ritthausen]] memperluas bentuk protein yang diketahui dengan mengidentifikasi [[asam glutamat]]. Di [[Stasiun Percobaan Pertanian Connecticut]], tinjauan terperinci tentang protein nabati dikumpulkan oleh [[Thomas Burr Osborne (ahli kimia)|Thomas Burr Osborne]]. Ia bekerja dengan [[Lafayette Mendel]] dan menerapkan [[hukum minimum Liebig]] dalam memberi makan [[tikus laboratorium]], sehingga adanya [[asam amino esensial]] pun diketahui. Pekerjaan ini dilanjutkan dan dikomunikasikan oleh [[William Cumming Rose]]. Pemahaman tentang protein sebagai [[Peptida|polipeptida]] muncul melalui karya [[Franz Hofmeister]] dan [[Emil Fischer|Hermann Emil Fischer]] pada tahun 1902.<ref>{{Cite web|title=Hofmeister, Franz|url=http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/hofmeister-franz|publisher=encyclopedia.com|archive-url=https://web.archive.org/web/20170405073423/http://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/hofmeister-franz|archive-date=5 April 2017|access-date=4 April 2017|url-status=live}}</ref><ref>{{Cite web|title=Protein, section: Classification of protein|url=https://www.britannica.com/science/protein/Conformation-of-proteins-in-interfaces#ref593795|publisher=britannica.com|archive-url=https://web.archive.org/web/20170404225132/https://www.britannica.com/science/protein/Conformation-of-proteins-in-interfaces#ref593795|archive-date=4 April 2017|access-date=4 April 2017|url-status=live}}</ref> Peran sentral protein sebagai [[enzim]] dalam organisme hidup tidak sepenuhnya diapresiasi sampai tahun 1926 ketika [[James Batcheller Sumner|James B. Sumner]] menunjukkan bahwa enzim [[urease]] sebenarnya adalah protein.<ref name="Sumner1926">{{cite journal|author=Sumner JB|year=1926|title=The isolation and crystallization of the enzyme urease. Preliminary paper|url=http://www.jbc.org/content/69/2/435.full.pdf+html|format=PDF|journal=Journal of Biological Chemistry|volume=69|issue=2|pages=435–41|archive-url=https://web.archive.org/web/20110325104920/http://www.jbc.org/content/69/2/435.full.pdf+html|archive-date=2011-03-25|access-date=2011-01-16|url-status=live}}</ref>
Baris 21 ⟶ 23:
[[Linus Carl Pauling|Linus Pauling]] dianggap sukses dalam memperkirakan [[struktur sekunder]] protein biasa berdasarkan [[ikatan hidrogen]], sebuah ide yang pertama kali dikemukakan oleh [[William Astbury]] pada tahun 1933.<ref name="Pauling1951">{{cite journal|date=May 1951|title=Atomic coordinates and structure factors for two helical configurations of polypeptide chains|url=http://www.pnas.org/site/misc/Protein8.pdf|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=37|issue=5|pages=235–40|bibcode=1951PNAS...37..235P|doi=10.1073/pnas.37.5.235|pmc=1063348|pmid=14834145|archive-url=https://web.archive.org/web/20121128101620/http://www.pnas.org/site/misc/Protein8.pdf|archive-date=2012-11-28|access-date=2009-04-14|vauthors=Pauling L, Corey RB|url-status=live}}</ref> Belakangan, karya [[Walter Kauzmann]] tentang [[denaturasi]],<ref name="Kauzmann1956">{{cite journal|date=May 1956|title=Structural factors in protein denaturation|journal=Journal of Cellular Physiology|volume=47|issue=Suppl 1|pages=113–31|doi=10.1002/jcp.1030470410|pmid=13332017|vauthors=Kauzmann W}}</ref><ref name="Kauzmann1959">{{Cite book|vauthors=Kauzmann W|year=1959|title=Advances in Protein Chemistry Volume 14|isbn=978-0-12-034214-3|series=Advances in Protein Chemistry|volume=14|pages=1–63|chapter=Some factors in the interpretation of protein denaturation|doi=10.1016/S0065-3233(08)60608-7|pmid=14404936}}</ref> yang sebagian didasarkan pada penelitian sebelumnya oleh [[Kaj Ulrik Linderstrøm-Lang|Kaj Linderstrøm-Lang]],<ref name="Kalman1955">{{cite journal|date=February 1955|title=Degradation of ribonuclease by subtilisin|journal=Biochimica et Biophysica Acta|volume=16|issue=2|pages=297–99|doi=10.1016/0006-3002(55)90224-9|pmid=14363272|vauthors=Kalman SM, Linderstrøm-Lang K, Ottesen M, Richards FM}}</ref> memberi pemahaman tentang [[pelipatan protein]] dan struktur yang dimediasi oleh [[Inti hidrofobik|interaksi hidrofobik]].
Protein pertama yang [[Pengurutan protein|diurutkan]] adalah [[insulin]], oleh [[Frederick Sanger]], pada
[[Struktur protein]] pertama yang diketahhui adalah [[hemoglobin]] dan [[mioglobin]], masing-masing oleh [[Max F. Perutz|Max Perutz]] dan [[John Kendrew|Sir John Cowdery Kendrew]], pada tahun 1958.<ref name="Muirhead1963">{{cite journal|date=August 1963|title=Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution|journal=Nature|volume=199|issue=4894|pages=633–38|bibcode=1963Natur.199..633M|doi=10.1038/199633a0|pmid=14074546|vauthors=Muirhead H, Perutz MF|s2cid=4257461}}</ref><ref name="Kendrew1958">{{cite journal|date=March 1958|title=A three-dimensional model of the myoglobin molecule obtained by x-ray analysis|journal=Nature|volume=181|issue=4610|pages=662–66|bibcode=1958Natur.181..662K|doi=10.1038/181662a0|pmid=13517261|vauthors=Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC|s2cid=4162786}}</ref> {{As of|2017}}, [[Protein Data Bank|Bank Data Protein]] memiliki lebih dari 126.060 struktur protein dengan resolusi atomik.<ref name="urlRCSB Protein Data Bank">{{cite web|title=RCSB Protein Data Bank|url=http://www.rcsb.org/pdb/home/home.do|archive-url=https://web.archive.org/web/20150418160606/http://www.rcsb.org/pdb/home/home.do|archive-date=2015-04-18|access-date=2017-01-19|url-status=dead}}</ref> Baru-baru ini, mikroskop krio-elektron terhadap [[Perakitan makromolekul|kumpulan makromolekul]] besar<ref name="Zhou2008">{{cite journal|date=April 2008|title=Towards atomic resolution structural determination by single-particle cryo-electron microscopy|journal=Current Opinion in Structural Biology|volume=18|issue=2|pages=218–28|doi=10.1016/j.sbi.2008.03.004|pmc=2714865|pmid=18403197|vauthors=Zhou ZH}}</ref> dan [[prediksi struktur protein]] komputasional terhadap [[Domain struktural|domain]] protein kecil<ref name="Keskin2008">{{cite journal|date=April 2008|title=Characterization and prediction of protein interfaces to infer protein-protein interaction networks|journal=Current Pharmaceutical Biotechnology|volume=9|issue=2|pages=67–76|doi=10.2174/138920108783955191|pmid=18393863|vauthors=Keskin O, Tuncbag N, Gursoy A}}</ref> adalah dua metode yang mendekati resolusi atomik.
Baris 36 ⟶ 38:
=== Interaksi ===
Protein dapat berinteraksi dengan banyak jenis molekul, termasuk dengan protein lain, dengan lipid, dengan karbohidrat, dan dengan DNA.<ref>{{Cite journal|last=Ardejani|first=Maziar S.|last2=Powers|first2=Evan T.|last3=Kelly|first3=Jeffery W.|date=2017|title=Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities|journal=Accounts of Chemical Research|volume=50|issue=8|pages=1875–82|doi=10.1021/acs.accounts.7b00195|issn=0001-4842|pmc=5584629|pmid=28723063}}</ref><ref>{{Cite book|vauthors=Branden C, Tooze J|year=1999|title=Introduction to Protein Structure|location=New York|publisher=Garland Pub|isbn=978-0-8153-2305-1}}</ref><ref>{{Cite book|vauthors=Murray RF, Harper HW, Granner DK, Mayes PA, Rodwell VW|year=2006|title=Harper's Illustrated Biochemistry|url=https://archive.org/details/harpersillustrat0000unse_l8z7|location=New York|publisher=Lange Medical Books/McGraw-Hill|isbn=978-0-07-146197-9}}</ref><ref>{{Cite book|vauthors=Van Holde KE, Mathews CK|year=1996|url=https://archive.org/details/biochemistry00math|title=Biochemistry|location=Menlo Park, California|publisher=Benjamin/Cummings Pub. Co., Inc|isbn=978-0-8053-3931-4}}</ref>
=== Kelimpahan dalam sel ===
Baris 46 ⟶ 48:
[[Berkas:Ribosome_mRNA_translation_en.svg|jmpl|Ribosom{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} menghasilkan protein menggunakan mRNA sebagai templat]]
[[Berkas:Genetic_code.svg|jmpl|Urutan{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} [[Asam deoksiribonukleat|DNA]] dari sebuah gen [[Kodon|menyandi]] urutan asam amino dari sebuah protein]]{{Main|Sintesis protein}}
Protein dirakit dari sejumlah asam amino menggunakan informasi yang disandi dalam gen. Setiap protein memiliki urutan asam amino uniknya sendiri yang ditentukan oleh urutan [[nukleotida]] dari gen yang menyandi protein ini. [[Kodon|Kode genetik]] adalah satu set berupa tiga nukleotida yang disebut [[kodon]] dan setiap kombinasi tiga nukleotida menunjukkan asam amino, misalnya AUG ([[adenina]]–[[urasil]]–[[guanina]]) adalah kode untuk [[Metionina|metionin]]. Karena DNA mengandung empat nukleotida, jumlah total kodon yang mungkin adalah 64; oleh karena itu, terdapat beberapa redundansi dalam kode genetik, dengan beberapa asam amino ditentukan oleh lebih dari satu kodon.<ref name="vanHolde1996">van Holde and Mathews, pp. 1002–42.</ref> Gen yang disandi dalam DNA pertama-tama [[Transkripsi (genetik)|ditranskripsikan]] menjadi pra-[[RNA duta]] (mRNA) oleh protein seperti [[RNA polimerase]]. Kebanyakan organisme kemudian memproses pra-mRNA (juga dikenal sebagai ''transkrip primer'') menggunakan berbagai bentuk [[modifikasi pascatranskripsi]] untuk membentuk mRNA yang matang, yang kemudian digunakan sebagai templat untuk sintesis protein oleh [[ribosom]]. Pada [[prokariota]], mRNA dapat digunakan segera setelah diproduksi atau diikat oleh ribosom setelah menjauh dari [[nukleoid]]. Sebaliknya, [[eukariota]] membuat mRNA di [[inti sel]] dan kemudian [[Translokasi protein|mentranslokasikannya]] melewati [[membran inti]] ke dalam [[sitoplasma]], tempat [[sintesis protein]] kemudian terjadi. Tingkat sintesis protein pada prokariota lebih tinggi daripada eukariota dan dapat mencapai hingga 20 asam amino per detik.<ref name="Pain2000">{{cite book|vauthors=Dobson CM|year=2000|title=Mechanisms of Protein Folding|url=https://archive.org/details/mechanismsofprot0000unse_g7p3|location=Oxford, Oxfordshire|publisher=Oxford University Press|isbn=978-0-19-963789-8|veditors=Pain RH|pages=
Proses sintesis protein dari cetakan mRNA dikenal sebagai [[Translasi (genetik)|translasi]]. Selanjutnya, mRNA dimuat ke ribosom dan dibaca tiga nukleotida sekaligus dengan mencocokkan setiap kodon dengan [[RNA transfer|antikodon]] [[pasangan basa]] yang terletak pada molekul [[RNA transfer]] (tRNA), yang membawa asam amino yang sesuai dengan kodon yang dikenalinya. Enzim [[sintetase tRNA-aminoasil]] "mengisi" molekul tRNA dengan asam amino yang benar. Polipeptida yang sedang terbentuk sering disebut ''rantai yang baru lahir''. Protein selalu disintesis dari [[N-terminus]] ke [[C-terminus]].<ref name="vanHolde1996" />
Baris 143 ⟶ 145:
=== Penentuan struktur ===
Penemuan struktur tersier dari suatu protein, atau struktur kuaterner dari kompleks protein, dapat memberikan petunjuk penting tentang bagaimana protein tersebut menjalankan fungsinya dan bagaimana fungsi ini dapat dipengaruhi, misalnya dalam [[Desain obat|mendesain obat]]. Karena protein [[Sistem terbatas difraksi|terlalu kecil untuk dilihat]] di bawah [[mikroskop cahaya]], metode lain harus digunakan untuk menentukan strukturnya. Metode eksperimental yang umum meliputi [[kristalografi sinar-X]] dan [[Protein NMR|spektroskopi NMR]], keduanya dapat menghasilkan informasi struktural pada resolusi [[atom]]ik. Eksperimen NMR mampu memberikan informasi dari mana subset jarak di antara pasangan atom dapat diperkirakan, dan kemungkinan konformasi akhir sebuah protein ditentukan dengan memecahkan masalah [[geometri jarak]]. [[Interferometri polarisasi ganda]] adalah metode analitik kuantitatif untuk mengukur [[Struktur protein|konformasi protein]] secara keseluruhan dan [[Perubahan konformasional|perubahan konformasi]] akibat interaksi atau rangsangan lainnya. Dikroisme sirkuler adalah teknik laboratorium lain untuk menentukan komposisi untiran-alfa atau lembaran-beta internal dari protein. [[Mikroskopi cryoelectron|Mikroskop krioelektron]] digunakan untuk menghasilkan informasi struktural beresolusi rendah tentang kompleks protein yang sangat besar, termasuk [[virus]] yang telah dirakit;<ref>Branden and Tooze, pp. 340–41.</ref> varian yang dikenal sebagai [[kristalografi elektron]] juga dapat menghasilkan informasi resolusi tinggi dalam beberapa kasus, terutama untuk kristal protein membran dua dimensi.<ref name="Gonen2005">{{cite journal|date=December 2005|title=Lipid-protein interactions in double-layered two-dimensional AQP0 crystals|journal=Nature|volume=438|issue=7068|pages=633–38|bibcode=2005Natur.438..633G|doi=10.1038/nature04321|pmc=1350984|pmid=16319884|vauthors=Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T}}</ref> Struktur yang diselesaikan biasanya disimpan di [[Protein Data Bank|Bank Data Protein]] (PDB), sumber daya yang tersedia secara bebas mengenai data struktural dari ribuan protein yang dapat diperoleh dalam bentuk [[Sistem koordinat Kartesius|koordinat Cartesian]] untuk setiap atom dalam protein.<ref name="Standley2008">{{cite journal|date=July 2008|title=Protein structure databases with new web services for structural biology and biomedical research|url=http://bib.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18430752|journal=Briefings in Bioinformatics|volume=9|issue=4|pages=276–85|doi=10.1093/bib/bbn015|pmid=18430752|archive-url=https://archive.
Urutan gen lebih banyak diketahui dibandingkan struktur protein. Lebih jauh, himpunan struktur protein yang terselesaikan cenderung bias terhadap protein yang dapat dengan mudah mengalami kondisi yang diperlukan untuk [[kristalografi sinar-X]], salah satu metode utama penentuan struktur protein. Secara khusus, protein globular secara komparatif mudah untuk [[Kristalisasi|mengkristal]] sebagai persiapan untuk kristalografi sinar-X. Sebaliknya, protein membran dan kompleks protein besar sulit untuk dikristalisasi dan kurang terwakili dalam PDB.<ref name="Walian2004">{{cite journal|year=2004|title=Structural genomics of membrane proteins|journal=Genome Biology|volume=5|issue=4|pages=215|doi=10.1186/gb-2004-5-4-215|pmc=395774|pmid=15059248|vauthors=Walian P, Cross TA, Jap BK}}</ref> [[Genomik struktural|Genomika struktural]] telah berusaha untuk memperbaiki kekurangan ini dengan secara sistematis memecahkan struktur perwakilan dari kelas-kelas lipatan utama. Metode [[prediksi struktur protein]] mencoba mencari cara untuk menghasilkan struktur yang masuk akal untuk protein yang strukturnya belum ditentukan secara eksperimental.<ref name="Sleator2012">{{Cite book|vauthors=Sleator RD|year=2012|title=Functional Genomics|isbn=978-1-61779-423-0|series=Methods in Molecular Biology|volume=815|pages=15–24|chapter=Prediction of protein functions|doi=10.1007/978-1-61779-424-7_2|pmid=22130980}}</ref>
Baris 155 ⟶ 157:
==== Gangguan protein dan prediksi tidak terstruktur ====
Banyak protein (pada eukariota ~33%) mengandung segmen besar yang tidak terstruktur tetapi berfungsi secara biologis dan dapat diklasifikasikan sebagai [[protein yang tidak teratur secara intrinsik]].<ref>{{Cite journal|date=March 2004|title=Prediction and functional analysis of native disorder in proteins from the three kingdoms of life|journal=Journal of Molecular Biology|volume=337|issue=3|pages=635–45|doi=10.1016/j.jmb.2004.02.002|pmid=15019783|vauthors=Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT}}</ref> Oleh karena itu, memprediksi dan menganalisis kelainan protein merupakan bagian penting dari karakterisasi struktur protein.<ref name="TompaFersht2009">{{Cite book|last=Tompa|first=Peter|last2=Fersht|first2=Alan|date=18 November 2009|url=https://books.google.com/books?id=GzuxFYrzfd4C|title=Structure and Function of Intrinsically Disordered Proteins|publisher=CRC Press|isbn=978-1-4200-7893-0|access-date=19 October 2016|archive-url=https://web.archive.org/web/20170419014403/https://books.google.com/books?id=GzuxFYrzfd4C|archive-date=19 April 2017|url-status=live}}</ref>
=== Analisis kimia ===▼
Jumlah kandungan nitrogen dari bahan organik terutama dibentuk oleh gugus amino dalam protein. Total Kjeldahl Nitrogen ([[Metode Kjeldahl|TKN]]) adalah ukuran nitrogen yang banyak digunakan dalam analisis air (limbah), tanah, makanan, pakan, dan bahan organik secara umum. Seperti namanya, [[metode Kjeldahl]] diterapkan untuk menganalisisnya. Meskipun demikian, metode lain yang lebih sensitif juga tersedia.<ref>
== Nutrisi ==
Baris 166 ⟶ 171:
Studi dari Biokimiawan USA Thomas Osborne [[Lafayete Mendel]], Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada [[kelinci]]. Satu grup kelinci-kelinci tersebut diberikan makanan [[protein hewani]], sedangkan grup yang lain diberikan [[protein nabati]]. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari [[University of California, Berkeley|Universitas Berkeley]] menunjukkan bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.{{Butuh rujukan}}
▲== Analisis kimia ==
▲Jumlah kandungan nitrogen dari bahan organik terutama dibentuk oleh gugus amino dalam protein. Total Kjeldahl Nitrogen ([[Metode Kjeldahl|TKN]]) adalah ukuran nitrogen yang banyak digunakan dalam analisis air (limbah), tanah, makanan, pakan, dan bahan organik secara umum. Seperti namanya, [[metode Kjeldahl]] diterapkan untuk menganalisisnya. Meskipun demikian, metode lain yang lebih sensitif juga tersedia.<ref>[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812630/ Muñoz-Huerta et al. (2013) A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances]</ref><ref>[https://cdnsciencepub.com/doi/pdf/10.4141/S01-054 Martin et al. (2002) Determination of soil organic carbon and nitrogen at thefield level using near-infrared spectroscopy]</ref>
== Referensi ==
Baris 176 ⟶ 178:
{{refbegin|32em}}
* {{cite book |vauthors=Branden C, Tooze J |title=Introduction to Protein Structure |publisher=Garland Pub |location=New York |year=1999 |isbn=978-0-8153-2305-1}}
* {{cite book |vauthors=Murray RF, Harper HW, Granner DK, Mayes PA, Rodwell VW |title=Harper's Illustrated Biochemistry |url=https://archive.org/details/harpersillustrat0000unse_l8z7 |publisher=Lange Medical Books/McGraw-Hill |location=New York |year=2006 |isbn=978-0-07-146197-9}}
* {{cite book |vauthors=Van Holde KE, Mathews CK |title=Biochemistry |publisher=Benjamin/Cummings Pub. Co., Inc |location=Menlo Park, California |year=1996 |isbn=978-0-8053-3931-4 |url=https://archive.org/details/biochemistry00math }}
{{refend}}
|