Pengguna:Dedhert.Jr/Bak pasir/Botol Klein: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
mesin terjemah
Tag: Suntingan visualeditor-wikitext
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
 
(5 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 1:
{{refimprove|date=October 2021}}
{{terjemah|Klein bottle}}
{{Short description|Non-orientable mathematical surface}}
[[Gambar:Klein bottle.svg|thumb|240px|right|Representasi dua dimensi dari botol Klein [[Immesi (matematika)|immers]] dalam ruang tiga dimensi]]
[[GambarImage:Surface of Klein bottle with traced line.svg|thumb|150px240px|right|StrukturRepresentasi botol Klein tigaberdimensi dimensidua yang [[Pencelupan (matematika)|dicelup]] (''immersed'') dalam ruang berdimensi tiga]]
[[Image:Surface of Klein bottle with traced line.svg|thumb|150px|right|Structure of a three-dimensional Klein bottle]]
 
Dalam [[topologi]], cabang darimatematka yang bernama [[matematikatopologi]], '''Lubangbotol Klein''' atau '''Botol Klein''' ({{IPAc-en|ˈ|k|l|aɪ|n}}) adalah contoh dari [[Orientabilitas|tidak berorientasimanifold]] dariberdimensi [[Permukaan (topologi)|permukaan]]; ini adalah [[dua dimensi]] [[manifold]] yang dengannyamemiliki sistemsifat untukbahwa menentukanpermukaannya [[vektorOrientabilitas|tak normalterorientasikan]] tidak(''non-orientable''). dapatHal didefinisikantersebut secaradikarenakan konsisten.botol Klein Secaramemiliki informal,permukaan inibersisi adalahsatu, permukaanyang satuberarti sisiketika yang,suatu jikaobjek dilaluimelintasi, dapatmaka diikutiakan kembali ke titik asalasalnya sambilsaat membalikkanobjek yang pengelanamelintasinya secaradibuat terbalik. Beberapa Objek nonobjek-orientasiobjek terkaityang tak terorientasikan lainnya termasukdalam topologi adalah [[pita Möbius]] dan [[bidang proyektif nyatareal]]. SedangkanWalaupun sama-sama tak terorientasikan, pita Möbius adalahmemiliki suatu permukaan dengan adanya [[Batas (topologi)|batas]], sedangkan botol Klein tidak memiliki batas. Sebagai perbandingan, [[bolaBola (geometri)|bola]] adalahmerupakan suatu permukaan yang dapatterorientasikan diorientasikandengan tanpatidak memiliki batas.
 
Konsep botol Klein pertama kali diperkenalkan oleh matematikawan berkebangsaan Jerman yang bernama [[Felix Klein]] di tahun 1882.{{sfn|Stillwell|1993|p=65|loc=1.2.3 The Klein Bottle}}
Lubang Klein pertama kali dijelaskan pada tahun 1882 oleh matematikawan asal [[Jerman]] [[Felix Klein]]. Mungkin awalnya dinamai ''Kleinsche Fläche'' ("Permukaan Klein") dan kemudian disalahartikan sebagai ''Kleinsche Flasche'' ("Lubang klein"), yang pada akhirnya mungkin telah menyebabkan adopsi istilah ini terdapat dalam bahasa Jerman.<ref>{{Cite book | publisher = AMS Bookstore | isbn = 978-0-8218-4816-6 | last = Bonahon | first = Francis | title = Geometri berdimensi rendah: dari permukaan Euklides hingga simpul hiperbolik | date = 2009-08-05 | page=95 | url=https://books.google.com/books?id=YZ1L8S4osKsC}} [https://books.google.com/books?id=YZ1L8S4osKsC&pg=PA95 Extract of page 95]</ref>
 
== Konstruksi Construction==
The following square is a [[fundamental polygon]] of the Klein bottle. The idea is to 'glue' together the corresponding red and blue edges with the arrows matching, as in the diagrams below. Note that this is an "abstract" gluing in the sense that trying to realize this in three dimensions results in a self-intersecting Klein bottle.{{fact|date=October 2021}}
Persegi berikut adalah [[poligon fundamental]] dari lubang Klein. Idenya adalah untuk 'merekatkan' tepi warna yang sesuai dengan panah yang cocok, seperti pada diagram di bawah ini. Perhatikan bahwa ini adalah perekatan "abstrak" dalam arti bahwa mencoba mewujudkan hal ini dalam tiga dimensi akan menghasilkan lubang Klein yang berpotongan sendiri.
 
:[[GambarImage:Klein Bottle Folding 1.svg]]
To construct the Klein bottle, glue the red arrows of the square together (left and right sides), resulting in a cylinder. To glue the ends of the cylinder together so that the arrows on the circles match, one would pass one end through the side of the cylinder. This creates a circle of self-intersection – this is an [[Immersion (mathematics)|immersion]] of the Klein bottle in three dimensions.{{fact|date=October 2021}}
 
<gallery |="" align="center">
Untuk membuat botol Klein, rekatkan panah merah dari kotak menjadi satu (sisi kiri dan kanan) maka setelah itu akan menghasilkan tabung. Untuk merekatkan kedua ujung tabung sehingga panah pada lingkaran cocok, salah satu ujungnya akan melewati sisi tabung. Ini menciptakan lingkaran perpotongan diri, maka ini adalah [[Immersi (matematika)|immersi]] dari lubang Klein dalam tiga dimensi.
Image:Klein Bottle Folding 1.svg
 
Image:Klein Bottle Folding 2.svg
<gallery | align = center>
GambarImage:Klein Bottle Folding 13.svg
GambarImage:Klein Bottle Folding 24.svg
GambarImage:Klein Bottle Folding 35.svg
GambarImage:Klein Bottle Folding 46.svg
Gambar:Klein Bottle Folding 5.svg
Gambar:Klein Bottle Folding 6.svg
</gallery>
 
This immersion is useful for visualizing many properties of the Klein bottle. For example, the Klein bottle has no ''boundary'', where the surface stops abruptly, and it is [[orientability|non-orientable]], as reflected in the one-sidedness of the immersion.
Immersi ini berguna untuk memvisualisasikan banyak properti lubang Klein. Misalnya, lubang Klein tidak memiliki ''batas'', di mana permukaannya berhenti tiba-tiba, dan itu [[Orientabilitas|orientasi]], seperti yang tercermin dalam pencelupan satu sisi.
[[Berkas:Science Museum London 1110529 nevit.jpg|thumb|right|150px|Lubang Klein yang dibenamkan di [[Science Museum (London)|Museum Sains di London]]]]
[[Gambar:Acme klein bottle.jpg|thumb|150px|right|Lubang Klein buatan tangan]]
Model fisik umum dari botol Klein adalah konstruksi yang serupa. [[Museum Sains (London)|Museum Sains di London]] memamerkan koleksi botol Klein dari kaca yang ditiup dengan tangan, menunjukkan banyak variasi pada tema topologi ini. Botol tersebut berasal dari tahun 1995 dan dibuat untuk museum oleh [[Alan Bennett (peniup gelas)|Alan Bennett]].<ref>{{cite web|archiveurl=https://web.archive.org/web/20061128155852/http://www.sciencemuseum.org.uk/on-line/surfaces/new.asp|archivedate=2006-11-28 |url=http://www.sciencemuseum.org.uk/on-line/surfaces/new.asp|title=Strange Surfaces: New Ideas |publisher=Science Museum London }}</ref>
 
[[File:Science Museum London 1110529 nevit.jpg|thumb|right|150px|Immersed Klein bottles in the [[Science Museum (London)|Science Museum in London]]]]
Lubang Klein, benar, tidak berpotongan sendiri. Meskipun demikian, ada cara untuk membayangkan lubang Klein terkandung dalam empat dimensi. Dengan menambahkan dimensi keempat ke ruang tiga dimensi, perpotongan diri dapat dihilangkan. Dorong dengan hati-hati sepotong tabung yang berisi persimpangan di sepanjang dimensi keempat. Sebuah analogi yang berguna adalah dengan mempertimbangkan kurva yang berpotongan sendiri pada bidang; persimpangan sendiri dapat dihilangkan dengan mengangkat satu untai dari bidang.
[[BerkasImage:KleinAcme klein bottle time evolution in xyzt-space.gifjpg|thumb|Evolusi150px|right|A waktu sosokhand-blown Klein di ''xyzt'' pada angkasaBottle]]
The common physical model of a Klein bottle is a similar construction. The [[Science Museum (London)|Science Museum in London]] has a collection of hand-blown glass Klein bottles on display, exhibiting many variations on this topological theme. The bottles date from 1995 and were made for the museum by Alan Bennett.<ref>{{cite web|archive-url=https://web.archive.org/web/20061128155852/http://www.sciencemuseum.org.uk/on-line/surfaces/new.asp|archive-date=2006-11-28 |url=http://www.sciencemuseum.org.uk/on-line/surfaces/new.asp|title=Strange Surfaces: New Ideas |publisher=Science Museum London }}</ref>
 
The Klein bottle, proper, does not self-intersect. Nonetheless, there is a way to visualize the Klein bottle as being contained in four dimensions. By adding a fourth dimension to the three-dimensional space, the self-intersection can be eliminated. Gently push a piece of the tube containing the intersection along the fourth dimension, out of the original three-dimensional space. A useful analogy is to consider a self-intersecting curve on the plane; self-intersections can be eliminated by lifting one strand off the plane.{{fact|date=October 2021}}
== Properti ==
Seperti [[pita Möbius]], luabng Klein adalah [[manifold]] dua dimensi yang bukan dari [[orientasi]]. Berbeda dengan pita Möbius, lubang Klein adalah bagian manifold dengan pita ''tertutup'', yang berarti manifold tersebut dengan [[Ruang kompak|kompak]] tanpa batas. Sementara strip Möbius dapat disematkan dalam [[ruang Euklides]] tiga dimensi '''R'''<sup>3</sup> ke '''R'''<sup>4</sup>.
 
[[File:Klein bottle time evolution in xyzt-space.gif|thumb|[[Time evolution]] of a Klein figure in ''xyzt''-space]]
Lubang Klein dapat dilihat sebagai [[bundel serat]] di atas [[lingkaran]] ''S''<sup>1</sup>, dengan serat ''S''<sup>1</sup>, sebagai berikut: seseorang jika persegi sisi modulo dengan sudut yang mengidentifikasi hubungan ekivalen dari atas menjadi ''E'' sebagai ruang total, sedangkan ruang dasar ''B'' diberikan oleh interval satuan dalam ''y'' sebagai modulo ''1~0''. Proyeksi π:''E''→''B'' maka akan diberikan oleh {{nowrap|π([''x'', ''y'']) {{=}} [''y'']}}.
Suppose for clarification that we adopt time as that fourth dimension. Consider how the figure could be constructed in ''xyzt''-space. The accompanying illustration ("Time evolution...") shows one useful evolution of the figure. At {{nowrap|1=''t'' = 0}} the wall sprouts from a bud somewhere near the "intersection" point. After the figure has grown for a while, the earliest section of the wall begins to recede, disappearing like the [[Cheshire Cat]] but leaving its ever-expanding smile behind. By the time the growth front gets to where the bud had been, there is nothing there to intersect and the growth completes without piercing existing structure. The 4-figure as defined cannot exist in 3-space but is easily understood in 4-space.{{fact|date=October 2021}}
 
More formally, the Klein bottle is the [[Quotient space (topology)|quotient space]] described as the [[Square (geometry)|square]] [0,1] × [0,1] with sides identified by the relations {{nowrap|(0, ''y'') ~ (1, ''y'')}} for {{nowrap|0 ≤ ''y'' ≤ 1}} and {{nowrap|(''x'', 0) ~ (1 − ''x'', 1)}} for {{nowrap|0 ≤ ''x'' ≤ 1}}.
Botol Klein dapat dibuat (dalam ruang empat dimensi, karena dalam ruang tiga dimensi tidak dapat dilakukan tanpa membiarkan permukaannya berpotongan sendiri) dengan menggabungkan tepi dua strip Mbius menjadi satu, seperti yang dijelaskan dalam [[limerick (puisi)|limerick]] oleh [[Leo Moser]]:<ref name="Darling2004">{{cite book|author=David Darling|title=Buku Universal Matematika: Dari Abracadabra ke Paradoks Zeno|url=https://books.google.com/?id=nnpChqstvg0C&pg=PA176&lpg=PA176&vq=get+a+weird+bottle+like+mine|date=11 August 2004|publisher=John Wiley & Sons|isbn=978-0-471-27047-8|page=176}}</ref>
 
==Properties==
{{poemquote|text=Seorang matematikawan bernama Klein
Like the [[Möbius strip]], the Klein bottle is a two-dimensional [[manifold]] which is not [[orientability|orientable]]. Unlike the Möbius strip, it is a ''closed'' manifold, meaning it is a [[compact space|compact]] manifold without boundary. While the Möbius strip can be embedded in three-dimensional [[Euclidean space]] '''R'''<sup>3</sup>, the Klein bottle cannot. It can be embedded in '''R'''<sup>4</sup>, however.
Pikir band Mbius itu ilahi.
Katanya:"Jika Anda merekatkan
Tepi dua,
Anda akan mendapatkan botol aneh seperti milik saya."}}
 
Continuing this sequence, for example creating a surface which cannot be embedded in '''R'''<sup>4</sup> but can be in '''R'''<sup>5</sup>, is possible; in this case, connecting two ends of a [[spherinder]] to each other in the same manner as the two ends of a cylinder for a Klein bottle, creates a figure, referred to as a "spherinder Klein bottle", that cannot fully be embedded in '''R'''<sup>4</sup>.<ref>[[Marc ten Bosch]] - https://marctenbosch.com/news/2021/12/4d-toys-version-1-7-klein-bottles/</ref>
Konstruksi awal botol Klein dengan mengidentifikasi sisi berlawanan dari persegi menunjukkan bahwa botol Klein dapat diberi struktur [[CW kompleks]] dengan satu sel 0 ''P'', dua sel 1 ''C''<sub>1</sub>, ''C''<sub>2</sub> dan satu 2-sel '' D ''. Karena itu [[Karakteristik Euler]] adalah {{nowrap|1 − 2 + 1 {{=}} 0}}. Homomorfisme batas diberikan oleh {{nowrap|&part;''D'' {{=}} 2''C''<sub>1</sub>}} dan {{nowrap|&part;''C''<sub>1</sub> {{=}} &part;''C''<sub>1</sub> {{=}} 0}}, menghasilkan bagian [[homologi seluler|kelompok homologi]] dari lubang Klein ''K'' to be {{nowrap|H<sub>0</sub>(''K'', '''Z''') {{=}} '''Z'''}}, {{nowrap|H<sub>1</sub>(''K'', '''Z''') {{=}} '''Z'''×('''Z'''/2'''Z''')}} dan {{nowrap|H<sub>''n''</sub>(''K'', '''Z''') {{=}} 0}} for {{nowrap|''n'' > 1}}.
 
The Klein bottle can be seen as a [[fiber bundle]] over the [[circle]] ''S''<sup>1</sup>, with fibre ''S''<sup>1</sup>, as follows: one takes the square (modulo the edge identifying equivalence relation) from above to be ''E'', the total space, while the base space ''B'' is given by the unit interval in ''y'', modulo ''1~0''. The projection π:''E''→''B'' is then given by {{nowrap|π([''x'', ''y'']) {{=}} [''y'']}}.{{fact|date=October 2021}}
Ada 2-1 [[peta penutup]] dari [[torus]] ke luabng Klein, karena dua salinan dari [[wilayah dasar]] dari botol Klein, yang satu ditempatkan di samping bayangan cermin yang lain, menghasilkan wilayah fundamental torus. [[Penutup universal]] dari torus dan botol Klein adalah bidangnya '''R'''<sup>2</sup>.
 
The Klein bottle can be constructed (in a four dimensional space, because in three dimensional space it cannot be done without allowing the surface to intersect itself) by joining the edges of two (mirrored) Möbius strips, as described in the following [[limerick (poetry)|limerick]] by [[Leo Moser]]:<ref name="Darling2004">{{cite book|author=David Darling|title=The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes|url=https://books.google.com/books?id=nnpChqstvg0C&q=get+a+weird+bottle+like+mine&pg=PA176|date=11 August 2004|publisher=John Wiley & Sons|isbn=978-0-471-27047-8|page=176}}</ref>
[[Grup fundamental]] dari lubang Klein dapat ditentukan sebagai [[Transformasi dek#Grup transformasi dek, penutup reguler|grup transformasi dek]] dari penutup universal dan memiliki {{nowrap|{{angbr|1=''a'', ''b'' {{!}} ''ab'' = ''b''<sup>&minus;1</sup>''a''}}}}.
 
{{poemquote|text=A mathematician named Klein
Enam warna cukup untuk mewarnai peta mana pun di permukaan botol Klein; ini adalah satu-satunya pengecualian untuk
Thought the Möbius band was divine.
[[dugaan Heawood]], sebuah generalisasi dari [[teorema empat warna]], yang akan membutuhkan tujuh.
Said he: "If you glue
The edges of two,
You'll get a weird bottle like mine."}}
 
The initial construction of the Klein bottle by identifying opposite edges of a square shows that the Klein bottle can be given a [[CW complex]] structure with one 0-cell ''P'', two 1-cells ''C''<sub>1</sub>, ''C''<sub>2</sub> and one 2-cell ''D''. Its [[Euler characteristic]] is therefore {{nowrap|1 − 2 + 1 {{=}} 0}}. The boundary homomorphism is given by {{nowrap|&part;''D'' {{=}} 2''C''<sub>1</sub>}} and {{nowrap|&part;''C''<sub>1</sub> {{=}} &part;''C''<sub>2</sub> {{=}} 0}}, yielding the [[cellular homology|homology groups]] of the Klein bottle ''K'' to be {{nowrap|H<sub>0</sub>(''K'', '''Z''') {{=}} '''Z'''}}, {{nowrap|H<sub>1</sub>(''K'', '''Z''') {{=}} '''Z'''×('''Z'''/2'''Z''')}} and {{nowrap|H<sub>''n''</sub>(''K'', '''Z''') {{=}} 0}} for {{nowrap|''n'' > 1}}.
Botol Klein bersifat homeomorfik terhadap [[jumlah terhubung]] dari dua [[bidang proyektif]]. Ini juga merupakan homeomorfik bagi sebuah bola ditambah dua [[cross cap]].
 
There is a 2-1 [[covering map]] from the [[torus]] to the Klein bottle, because two copies of the [[fundamental region]] of the Klein bottle, one being placed next to the mirror image of the other, yield a fundamental region of the torus. The [[universal cover]] of both the torus and the Klein bottle is the plane '''R'''<sup>2</sup>.{{fact|date=October 2021}}
Saat tertanam di ruang Euclidean, botol Klein memiliki satu sisi. Namun, ada 3 ruang topologi lainnya, dan dalam beberapa contoh yang tidak dapat diorientasikan, botol Klein dapat disematkan sedemikian rupa sehingga dua sisi, meskipun karena sifat ruangnya, botol tersebut tetap tidak dapat diorientasikan.<ref>{{Cite book | publisher = CRC Press | isbn = 978-1138061217 | last = Weeks | first = Jeffrey | title = The Shape of Space, 3rd Edn. | year = 2020 | url = https://www.crcpress.com/The-Shape-of-Space/Weeks/p/book/9781138061217 }}</ref>
 
The [[fundamental group]] of the Klein bottle can be determined as the [[Deck transformation#Deck transformation group, regular covers|group of deck transformations]] of the universal cover and has the [[presentation of a group|presentation]] {{nowrap|{{angbr|1=''a'', ''b'' {{!}} ''ab'' = ''b''<sup>&minus;1</sup>''a''}}}}.{{fact|date=October 2021}}
== Pembedahan ==
[[Berkas:KleinBottle-cut.svg|thumb|right|150px|Membedah hasil lubang Klein di strip Möbius.]]
 
[[File:Klein_bottle_colouring.svg|thumb|upright|A 6-colored Klein bottle, the only exception to the Heawood conjecture]]
Membedah lubang Klein menjadi dua bagian sepanjang [[bidang simetri]] menghasilkan dua bayangan cermin [[Möbius strip]], yaitu satu dengan putaran setengah tangan kiri dan yang lainnya dengan putaran setengah tangan kanan (salah satunya digambarkan di sebelah kanan). Ingatlah bahwa persimpangan dalam gambar sebenarnya tidak ada.
Six colors suffice to color any map on the surface of a Klein bottle; this is the only exception to the [[Heawood conjecture]], a generalization of the [[four color theorem]], which would require seven.{{fact|date=October 2021}}
 
A Klein bottle is homeomorphic to the [[connected sum]] of two [[projective plane]]s.<ref>{{Cite book |last=Shick |first=Paul |title=Topology: Point-Set and Geometric |publisher=Wiley-Interscience |year=2007 |isbn=9780470096055 |pages=191–192}}</ref> It is also homeomorphic to a sphere plus two [[cross-cap]]s.{{fact|date=October 2021}}
== Kurva tertutup sederhana ==
Salah satu penjelasan tentang tipe kurva tertutup sederhana yang mungkin muncul pada permukaan botol Klein diberikan dengan menggunakan kelompok homologi pertama botol Klein yang dihitung dengan koefisien bilangan bulat. Kelompok ini disebut isomorfik '''Z'''×'''Z'''<sub>2</sub>. Sampai pembalikan orientasi, satu-satunya kelas homologi yang mengandung kurva tertutup-sederhana adalah sebagai berikut: (0,0), (1,0), (1,1), (2,0), (0,1). Sampai pembalikan orientasi kurva tertutup sederhana, jika terletak di dalam salah satu dari dua crosscaps yang membentuk botol Klein, maka itu berada di kelas homologi (1,0) atau (1,1); jika botol Klein dipotong menjadi dua strip Möbius, maka itu termasuk dalam kelas homologi (2,0); jika itu memotong botol Klein menjadi annulus, kemudian di kelas homologi (0,1); dan jika membatasi disk, maka itu berada di kelas homologi (0,0).
 
When embedded in Euclidean space, the Klein bottle is one-sided. However, there are other topological 3-spaces, and in some of the non-orientable examples a Klein bottle can be embedded such that it is two-sided, though due to the nature of the space it remains non-orientable.<ref>{{Cite book | publisher = CRC Press | isbn = 978-1138061217 | last = Weeks | first = Jeffrey | title = The Shape of Space, 3rd Edn. | year = 2020 | url = https://www.crcpress.com/The-Shape-of-Space/Weeks/p/book/9781138061217 }}</ref>
== Parametriisasi ==
[[Gambar:KleinBottle-Figure8-01.svg|thumb|left|Perendaman "angka 8" dari lubang Klein.]]
[[Gambar:Kleinbagel cross section.png|thumb|left|Penampang bagel klein menggunakan kurva angka delapan ([[lemniscate dari Gerono]]).]]
 
==Dissection==
=== Angka 8 perendaman ===
[[File:KleinBottle-cut.svg|thumb|right|150px|Dissecting the Klein bottle results in Möbius strips.]]
Untuk membuat "gambar 8" atau "bagel" [[Immersi (matematika)|immersi]] dari lubang Klein, seseorang dapat memulai dengan [[Möbius strip]] dan menggulungnya untuk membawa tepi ke tengah; karena hanya ada satu tepi, ia akan bertemu dengan sendirinya di sana, melewati garis tengah. Ini memiliki parametriisasi yang sangat sederhana sebagai torus "angka-8" dengan setengah putaran:
Dissecting a Klein bottle into halves along its [[plane of symmetry]] results in two mirror image [[Möbius strip]]s, i.e. one with a left-handed half-twist and the other with a right-handed half-twist (one of these is pictured on the right). Remember that the intersection pictured is not really there.<ref>[https://www.youtube.com/watch?v=I3ZlhxaT_Ko Cutting a Klein Bottle in Half – Numberphile on YouTube]</ref>
 
==Simple-closed curves==
One description of the types of simple-closed curves that may appear on the surface of the Klein bottle is given by the use of the first homology group of the Klein bottle calculated with integer coefficients. This group is isomorphic to '''Z'''×'''Z'''<sub>2</sub>. Up to reversal of orientation, the only homology classes which contain simple-closed curves are as follows: (0,0), (1,0), (1,1), (2,0), (0,1). Up to reversal of the orientation of a simple closed curve, if it lies within one of the two cross-caps that make up the Klein bottle, then it is in homology class (1,0) or (1,1); if it cuts the Klein bottle into two Möbius strips, then it is in homology class (2,0); if it cuts the Klein bottle into an annulus, then it is in homology class (0,1); and if bounds a disk, then it is in homology class (0,0).{{fact|date=October 2021}}
 
==Parametrization==
[[Image:KleinBottle-Figure8-01.svg|thumb|left|The "figure 8" immersion of the Klein bottle.]]
[[Image:Kleinbagel cross section.png|thumb|left|Klein bagel cross section, showing a figure eight curve (the [[lemniscate of Gerono]]).]]
 
=== The figure 8 immersion ===
To make the "figure 8" or "bagel" [[Immersion (mathematics)|immersion]] of the Klein bottle, one can start with a [[Möbius strip]] and curl it to bring the edge to the midline; since there is only one edge, it will meet itself there, passing through the midline. It has a particularly simple parametrization as a "figure-8" torus with a half-twist:{{fact|date=October 2021}}
 
:<math>\begin{align}
Baris 79 ⟶ 85:
for 0 ≤ ''θ'' < 2π, 0 ≤ ''v'' < 2π and ''r'' > 2.
 
DalamIn pencelupanthis iniimmersion, lingkaranthe perpotonganself-intersection diricircle (di manawhere sin(''v'') adalahis nolzero) adalahis a geometric [[lingkarancircle]] geometriin pada bidangthe ''xy'' plane. KonstantaThe positifpositive constant ''r'' adalahis jari-jarithe lingkaranradius iniof this circle. ParameterThe parameter ''θ'' memberikangives sudutthe padaangle bidangin the ''xy'' sertaplane rotasias well as the rotation of the gambarfigure 8, and ''v'' specifies the position around the 8-shaped cross section. DenganWith parameterisasithe diabove atas,parametrization penampangthe melintangcross adalahsection is a 2:1 [[kurva Lissajous curve]].{{fact|date=October 2021}}
 
=== 4-D tidak berpotongannon-intersecting ===
A non-intersecting 4-D parametrization can be modeled after that of the [[Flat torus#Flat torus|flat torus]]:
Parameterisasi 4-D yang tidak berpotongan dapat dimodelkan setelah parameter [[Torus datar#Torus datar|torus datar]]:
:<math>\ \begin{align}
x & = R\left(\cos\frac{\theta}{2}\cos v - \sin\frac{\theta}{2}\sin 2v\right) \\
y & = R\left(\sin\frac{\theta}{2}\cos v + \cos\frac{\theta}{2}\sin 2v\right) \\
z & = P\cos\theta\left(1 +{ \epsilon}\sin v\right) \\
w & = P\sin\theta\left(1 + {\epsilon}\sin v\right)
\end{align}</math>
 
di manawhere ''R'' danand ''P'' adalahare konstantaconstants yangthat menentukandetermine rasioaspect aspekratio, ''θ'' danand ''v'' miripare dengansimilar yangto didefinisikanas didefined atasabove. ''v'' menentukandetermines posisithe diposition sekitararound gambarthe figure-8 sertaas well as the posisiposition diin bidangthe x-y plane. ''θ'' jugadetermines menentukanthe sudutrotational rotasiangle gambarof the figure-8 danas posisiwell diand sekitarthe bidangposition around the z-w plane. ''ε'' adalahis sembarangany konstantasmall kecilconstant danand ''ε'' sin''v'' adalahis kecila small ''v'' tergantungdepended tonjolanbump di ruangin ''z-w'' untukspace menghindarito perpotonganavoid diriself intersection. TonjolanThe ''v'' menyebabkanbump gambar-8causes the self intersecting 2-D / planar yangfigure-8 berpotonganto sendirispread menyebarout menjadiinto "keripik kentang" bergayaa 3-D ataustylized bentuk"potato pelanachip" dior tepisaddle ruangshape yangin dilihatthe x-y-w danand x-y-z space viewed edge on. KetikaWhen ''ε = 0'' perpotonganthe sendiriself berbentukintersection lingkaranis padaa bidangcircle in the z-w plane <0, 0, cos''θ'', sin''θ''>.{{fact|date=October 2021}}
 
=== Tabung3D pinched torus / Möbius 4D terjepitMöbius 3Dtube ===
[[GambarImage:Pinched Torus Klein bottle.jpg|thumb|left|TorusThe pencelupanpinched botoltorus Kleinimmersion yangof terjepitthe Klein bottle.]]
The pinched torus is perhaps the simplest parametrization of the klein bottle in both three and four dimensions. It's a torus that, in three dimensions, flattens and passes through itself on one side. Unfortunately, in three dimensions this parametrization has two [[pinch point (mathematics)|pinch point]]s, which makes it undesirable for some applications. In four dimensions the ''z'' amplitude rotates into the ''w'' amplitude and there are no self intersections or pinch points.{{fact|date=October 2021}}
 
Torus yang terjepit mungkin merupakan parametrikisasi botol klein yang paling sederhana dalam tiga dan empat dimensi. Itu adalah torus yang, dalam tiga dimensi, rata dan melewati dirinya sendiri di satu sisi. Sayangnya, dalam tiga dimensi parameter ini memiliki dua titik jepit, yang membuatnya tidak diinginkan untuk beberapa aplikasi. Dalam empat dimensi, amplitudo '' z '' berputar menjadi amplitudo '' w '' dan tidak ada persimpangan sendiri atau titik jepit.
 
:<math>\begin{align}
Baris 104 ⟶ 109:
\end{align}</math>
 
SeseorangOne dapatcan melihatview inithis sebagaias tabunga atautube silinderor yangcylinder membungkusthat wraps around, sepertias in padaa torus, tetapibut penampangits melingkarcircular terbalikcross dalamsection empatflips dimensiover in four dimensions, menampilkanpresenting "bagianits belakang"backside" saatas terhubungit kembalireconnects, sepertijust penampangas stripa Möbius berputarstrip sebelumcross menyambungsection kembalirotates before it reconnects. Proyeksi ortogonalThe 3D iniorthogonal adalahprojection torusof terjepitthis yangis ditunjukkanthe dipinched atastorus shown above. SamaJust sepertias stripa Möbius adalahstrip bagianis daria torussubset padatof a solid torus, tabungthe Möbius adalahtube bagianis daria subset of a toroidally closed [[spherinder]] tertutup toroid (padatsolid [[spheritorus]]).{{fact|date=October 2021}}
 
=== BentukBottle lubangshape ===
The parametrization of the 3-dimensional immersion of the bottle itself is much more complicated.
Parameterisasi pencelupan 3 dimensi botol itu sendiri jauh lebih rumit.
[[BerkasFile:Klein bottle translucent.png|thumb|right|Lubang Klein denganBottle with sedikitslight transparansitransparency]]
 
:<math>\begin{align}
x(u, v) = -&\frac{2}{15}\cos u \left(3\cos{v} - 30\sin{u} + 90\cos^4{u}\sin{u}\right. - \\
&\left.60\cos^6{u}\sin{u} + 5\cos{u}\cos{v}\sin{u}\right) \\[3pt]
 
y(u, v) = -&\frac{1}{15}\sin u \left(3\cos{v} - 3\cos^2{u}\cos{v} - 48\cos^4{u}\cos{v} + 48\cos^6{u}\cos{v}\right. -\\
&60\sin{u} + 5\cos{u}\cos{v}\sin{u} - 5\cos^3{u}\cos{v}\sin{u} -\\
&\left.80\cos^5{u}\cos{v}\sin{u} + 80\cos^7{u}\cos{v}\sin{u}\right) \\[3pt]
 
z(u, v) = &\frac{2}{15} \left(3 + 5\cos{u}\sin{u}\right) \sin{v}
\end{align}</math>
untukfor 0 ≤ ''u'' < π danand 0 ≤ ''v'' < 2π.{{fact|date=October 2021}}
 
== KelasHomotopy homotopiclasses ==
EmbeddingsRegular 3D regulerimmersions dariof botolthe Klein terbagibottle dalamfall tigainto kelasthree [[homotopiregular regulerhomotopy]] (empat jika seseorang mengecatnya)classes.<ref>{{cite journal|last1=Séquin|first1=Carlo H|title=On the number of Klein bottle types|journal=Journal of Mathematics and the Arts|date=1 June 2013|volume=7|issue=2|pages=51–63|doi=10.1080/17513472.2013.795883|citeseerx=10.1.1.637.4811|s2cid=16444067}}</ref> Ketiganya diwakili oleh
The three are represented by:
# Lubang Klein "tradisional"
* the "traditional" Klein bottle;
# Lubang Klein angka-8 tangan kiri
* the left-handed figure-8 Klein bottle;
# Lubang Klein angka-8 tangan kanan
* the right-handed figure-8 Klein bottle.
 
The traditional Klein bottle immersion is [[chirality|achiral]]. The figure-8 immersion is chiral. (The pinched torus immersion above is not regular, as it has pinch points, so it is not relevant to this section.)
Penyematan botol Klein tradisional adalah [[Chiraliti|akhiral]]. Gambar-8 embedding adalah kiral (embedding torus terjepit di atas tidak teratur karena memiliki titik jepit sehingga tidak relevan dalam hal ini). Ketiga embeddings di atas tidak dapat diubah dengan mulus menjadi satu sama lain dalam tiga dimensi. Jika lubang Klein tradisional dipotong memanjang, botol tersebut akan terdekonstruksi menjadi dua, sebaliknya strip Möbius kiral.
 
If the traditional Klein bottle is cut in its plane of symmetry it breaks into two Möbius strips of opposite chirality.{{fact|date=October 2021}} A figure-8 Klein bottle can be cut into two Möbius strips of the ''same'' chirality, and cannot be regularly deformed into its mirror image.{{fact|date=October 2021}}
Jika lubang Klein Angka 8 tangan kiri dipotong, ia akan mendekonstruksi menjadi dua strip Mbius tangan kiri, dan juga untuk lubang Klein Angka 8 tangan kanan.
 
Painting the traditional Klein bottle in two colors can induce chirality on it, splitting its homotopy class in two.{{fact|date=October 2021}}
Jika lubang Klein tradisional dicat dengan dua warna, hal ini akan menyebabkan chirality di atasnya, menciptakan empat kelas homotopi.
 
== Generalisasi Generalizations==
The generalization of the Klein bottle to higher [[genus (mathematics)|genus]] is given in the article on the [[fundamental polygon]].<ref>{{Cite web |last=Day |first=Adam |date=17 February 2014 |title=Quantum gravity on a Klein bottle |url=https://cqgplus.com/2014/02/17/quantum-gravity-on-a-klein-bottle/ |archive-date=26 October 2022 |website=CQG+}}</ref>
Generalisasi lubang Klein ke [[genus (matematika)|genus]] yang lebih tinggi diberikan dalam artikel di [[poligon fundamental]].
 
DalamIn urutananother ideorder yangof lainideas, dengan membuatconstructing [[3-manifold]]s, diketahuiit bahwais known that a [[botolsolid Klein padatbottle]] adalahis [[homeomorfikhomeomorphic]] terhadapto the [[produkCartesian Kartesiusproduct]] dariof a [[Möbius strip]] danand intervala tertutupclosed interval. The ''Lubangsolid Klein padatbottle'' adalahis versithe non-orientable dariversion of the '''solid torus''', setaraequivalent denganto <math>D^2 \times S^1.</math>{{fact|date=October 2021}}
 
== Permukaan Klein surface==
A '''Klein surface''' is, as for [[Riemann surface]]s, a surface with an atlas allowing the [[transition map]]s to be composed using [[complex conjugation]]. One can obtain the so-called [[dianalytic structure]] of the space.<ref>{{Cite book |last=Bitetto |first=Dr Marco |url=https://books.google.com/books?id=K4DQDwAAQBAJ&dq=A+Klein+surface+is%2C+as+for+Riemann+surfaces%2C+a+surface+with+an+atlas+allowing+the+transition+maps+to+be+composed+using+complex+conjugation.+One+can+obtain+the+so-called+dianalytic+structure+of+the+space&pg=PA222 |title=Hyperspatial Dynamics |date=2020-02-14 |publisher=Dr. Marco A. V. Bitetto |language=en}}</ref>
'''Permukaan Klein''' adalah, seperti untuk [[Permukaan Riemann]], permukaan dengan atlas yang memungkinkan [[peta transisi]] untuk disusun menggunakan [[konjugasi kompleks]].
 
==See Lihat pula also==
* [[TopologiAlgebraic aljabartopology]]
* [[AlamAlice semesta Aliceuniverse]]
* [[Systoles of surfaces#Klein bottle|Bavard's Klein bottle systolic inequality]]
* [[Sistol permukaan#Lubang Klein|Pertidaksamaan sistolik botol Klein dari Bavard]]
* [[Permukaan Boy's surface]]
 
== ReferensiReferences ==
=== KutipanCitations ===
{{Reflist}}
 
=== SumberSources ===
{{refbegin}}
* {{PlanetMath attribution|id=4249|title=Klein bottle}}
* {{MathWorld|urlname=KleinBottle|title=Klein Bottle}}
* A classical on the theory of '''Klein surfaces''' is {{cite journal |title = Klein surfaces and real algebraic function fields |first1 = Norman |last1 = Alling |first2 = Newcomb |last2 = Greenleaf |journal = [[Bulletin of the American Mathematical Society]] |id = {{Euclid|euclid.bams/1183530665}} |mr=0251213 |volume = 75 |number= 4 |year=1969 |pages=627–888 |doi=10.1090/S0002-9904-1969-12332-3 |doi-access = free }}
* {{cite book | title = Classical Topology and Combinatorial Group Theory | edition = 2nd | author-link = John Stillwell | author-last = Stillwell | author-first = John | publisher = [[Springer-Verlag]] | isbn = 0-387-97970-0 | year = 1993}}
{{refend}}
 
==External links==
== Pranala luar ==
{{Commons category|Klein bottle}}
* [httphttps://plus.maths.org/content/os/issue26/features/mathart/index-gifd.html PencitraanImaging MatematikaMaths - BotolThe Klein Bottle] {{Webarchive|url=https://web.archive.org/web/20110302160042/http://plus.maths.org/issue26/features/mathart/index-gifd.html |date=2011-03-02 }}
* [http://www.kleinbottle.com/meter_tall_klein_bottle.html The biggest Klein bottle in all the world]
* [https://www.youtube.com/watch?v=E8rifKlq5hc AnimasiKlein BotolBottle Kleinanimation: diproduksiproduced untukfor seminara topologitopology diseminar Universitasat the Leibniz University Hannover.]
* [https://www.youtube.com/watch?v=sRTKSzAOBr4&fmt=22 Animasi Botol Klein dariBottle tahunanimation from 2010 termasukincluding perjalanana mobilcar melaluiride botolthrough danthe deskripsibottle asliand olehthe original description by Felix Klein: diproduksiproduced at dithe Free University Berlin.]
* [https://archive.istoday/20130713133627/https://github.com/danfuzz/xscreensaver/blob/master/hacks/glx/klein.man Klein Bottle], [[XScreenSaver]] "hack". A screensaver for [[X Window System|X 11]] and [[OS X]] featuring an animated Klein Bottle.
 
{{Compact topological surfaces}}
{{Manifolds}}
 
[[Category:Geometric topology]]
[[Kategori:Permukaan]]
[[Category:Manifolds]]
[[Kategori:Topologi geometris]]
[[Category:Surfaces]]
[[Category:Topological spaces]]