Fungsi trigonometri: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k PNG -> SVG |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(Satu revisi perantara oleh satu pengguna lainnya tidak ditampilkan) | |||
Baris 17:
[[Berkas:TrigonometryTriangle.svg|jmpl|Dalam segitiga siku-siku {{Math|''BAC''}}, ketiga fungsi trigonometri dari sudut {{Math|''A''}} dinyatakan sebagai: {{math|1=sin ''A'' = {{sfrac|''a''|''c''}}}}, {{math|1=cos ''A'' = {{sfrac|''b''|''c''}}}}, dan {{math|1=tan ''A'' = {{sfrac|''a''|''b''}}}}.]]
[[Berkas:TrigFunctionDiagram.svg|jmpl|Plot dari enam fungsi trigonometri, lingkaran satuan, dan sebuah garis yang membentuk sudut dengan sumbu-{{mvar|x}} sebesar {{math|1=''θ'' = 0,7 rad}}.Pada plot tersebut, terdapat titik-titik yang dilabeli {{color|#D00|1}}, {{color|#02D|Sec(''θ'')}}, {{color|#0D1|Csc(''θ'')}} mewakili panjang ruas garis yang ditarik dari titik asal ke titik tersebut. Titik-titik seperti {{color|#D00|Sin(''θ'')}}, {{color|#02D|Tan(''θ'')}}, dan {{color|#0D1|1}} merupakan panjang garis yang ditarik dari sumbu-{{mvar|x}}, sedangkan titik seperti {{color|#D00|Cos(''θ'')}}, {{color|#02D|1}}, dan {{color|#0D1|Cot(''θ'')}} merupakan panjang di sekitar sumbu-{{mvar|x}} yang ditarik dari titik asal.]]
Jika sudut lancip dinyatakan sebagai {{mvar|θ}}, maka setiap sudut siku-siku yang mempunyai sudut {{mvar|θ}} dikatakan [[Kesebangunan (geometri)|sebangun]] terhadap satu sama lain; dalam artian, perbandingan dari setiap dua panjang sisinya hanya bergantung pada {{mvar|θ}}. Jadi, keenam perbandingan tersebut mendefinisikan enam fungsi trigonometri dari {{mvar|θ}}. Definisi berikut mengatakan bahwa [[hipotenusa]] (sisi miring) merupakan panjang dari sisi yang berhadapan dengan sudut siku-siku, sisi depan merupakan panjang sisi yang berhadap dari sudut {{mvar|θ}}, dan sisi samping merupakan panjang sisi yang berhadapan dengan sudut {{mvar|θ}} dan sudut siku-siku.<ref>{{harvtxt|Protter|Morrey|1970|pp=APP-2, APP-3}}</ref><ref>{{Cite web|title=Sine, Cosine, Tangent|url=https://www.mathsisfun.com/sine-cosine-tangent.html|website=www.mathsisfun.com|access-date=29 August 2020|archive-date=2023-06-30|archive-url=https://web.archive.org/web/20230630135422/https://www.mathsisfun.com/sine-cosine-tangent.html|dead-url=no}}</ref>
{|
| style="padding-left: 2em; padding-right: 2em; " |
Baris 85:
Dalam penerapan geometri, argumen fungsi trigonometri umumnya merupakan ukuran [[sudut]]. Setiap [[sudut]] biasanya diukur dan satuan konvensional berupa [[Derajat (satuan sudut)|derajat]]. Sebagai contoh, sudut siku-siku ditulis 90° dan putaran penuh ditulis 360°.{{Efn|Satuan konvensional ini khususnya dipakai dalam [[matematika elementer]].}}
Namun dalam [[kalkulus]] dan [[analisis matematika]], fungsi trigonometri umumnya dipandang lebih abstrak sebagai fungsi [[Bilangan real|real]] ataupun [[Bilangan kompleks|kompleks]], bukan sudut. Bahkan fungsi sepeti '''sin''' dan '''cos''' dapat didefinisikan untuk semua bilangan kompleks dalam bentuk [[fungsi eksponensial]] melalui deret pangkat,<ref name=":0">{{Cite book|last=Rudin, Walter, 1921–2010|url=https://www.worldcat.org/oclc/1502474|title=Principles of mathematical analysis|location=New York|isbn=0-07-054235-X|edition=Third|oclc=1502474|access-date=2022-08-18|archive-date=2020-01-23|archive-url=https://web.archive.org/web/20200123033536/https://www.worldcat.org/title/principles-of-mathematical-analysis/oclc/1502474|dead-url=no}}</ref> atau dapat didefinisikan sebagai penyelesaian nilai awal khusus terhadap [[persamaan diferensial]] (lihat [[Pengguna:Dedhert.Jr/Uji halaman 15#Definisi trigonometri melalui persamaan diferensial|dibawah]]).<ref>{{Cite journal|last=Diamond|first=Harvey|date=2014|title=Defining Exponential and Trigonometric Functions Using Differential Equations|url=https://www.tandfonline.com/doi/full/10.4169/math.mag.87.1.37|journal=Mathematics Magazine|language=en|volume=87|issue=1|pages=37–42|doi=10.4169/math.mag.87.1.37|issn=0025-570X|s2cid=126217060}}</ref> Definisi tersebut tidak mengacu pada gagasan dalam geometri. Adapun empat fungsi lainnya seperti '''tan''', '''cot''', '''sec''', dan '''csc''' dapat didefinisikan sebagia hasil-bagi dan timbal balik dari '''sin''' dan '''cos''', kecuali ketika nol muncul di penyebut. Untuk argumen real, hal ini dapat dibuktikan bahwa definisi tersebut sesuai dengan definisi geometri elementer ''jika argumennya dipandang sebagai sudut yang dinyatakan dalam bentuk radian''.<ref name=":0" /> Lebih lanjut, definisi tersebut memberikan hasil dalam bentuk yang sederhana untuk [[turunan]] dan [[integral taktentu]] dari fungsi trigonometri.<ref name=":1">{{Cite book|last=Spivak|first=Michael|year=1967|title=Calculus|publisher=Addison-Wesley|pages=256–257|chapter=15|lccn=67-20770}}</ref> Jadi dalam cabang selain geometri elementer, radian dipandang sebagai satuan alami dalam matematika untuk menjelaskan ukuran setiap sudut.
Ketika satuan yang dipakai adalah [[radian]], maka sudut dinyatakan sebagai panjang [[Busur (geometri)|busur]] dari [[lingkaran satuan]] yang berhadapan dengannya. Sebagai contoh, sudut yang berhadapan dengan busur dengan panjang 1 di lingkaran satuan adalah 1 rad (≈ 57,3°), dan [[Putaran (sudut)|putaran]] penuh (360°) sama dengan 2{{pi}} (≈ 6,28) rad. Untuk bilangan real {{Math|''x''}}, notasi {{Math|sin ''x''}}, {{Math|cos ''x''}}, dst. mengacu pada nilai dari fungsi trigonometri yang dihitung pada sudut ''{{Math|''x''}}'' rad. Jika satuan yang dimaksud adalah derajat, maka tanda derajat harus diperlihatkan secara eksplisit (sebagai contoh, {{Math|sin ''x''°}}, {{Math|cos ''x''°}}, dsb.). Dengan menggunakan notasi yang standar, argumen dari {{Math|''x''}} untuk fungsi trigonometri memenuhi kaitan dari rumus
Baris 322:
=== Perluasan darab takhingga ===
Darab takhingga untuk fungsi sinus sangat penting dalam [[analisis kompleks]], yang dinyatakan sebagai:
: <math>\sin z = z \prod_{n=1}^\infty \left(1-\frac{z^2}{n^2 \pi^2}\right), \quad z\in\mathbb C.</math>
Baris 452:
Dengan memisalkan <math>t=\tan \tfrac12 \theta</math>, maka semua fungsi trigonometri dari <math>\theta</math> dapat dinyatakan sebagai [[pecahan rasional]] dari <math>t</math>:
:<math>\sin \theta = \frac{2t}{1+t^2}, \cos \theta = \frac{1-t^2}{1+t^2}, \tan \theta = \frac{2t}{1-t^2}, d\theta = \frac{2}{1+t^2} \, dt.</math>
Fungsi yang terakhir merupakan [[substitusi setengah sudut tangen]], yang dipakai untuk membantu perhitungan [[integral]] dari fungsi trigonometri lain menjadi [[fungsi rasional]] tersebut.
===Turunan dan integral dari fungsi trigonometri===
Baris 519:
[[File:Sawtooth Fourier Animation.gif|thumb|280px|Fungsi basis sinusoidal pada animasi di bawah dapat membentuk gelombang geriji seperti animasi di atas saat menambahkan beberapa suku.]]
Fungsi periodik {{math|1=''f'' (''x'')}} umumnya dapat dinyatakan sebagai jumlah [[gelombang sinus]] atau gelombang kosinus dalam [[deret Fourier]].<ref name="Folland_1992"/> Dengan Melambangkan [[fungsi basis]] sinus atau kosinus sebagai {{mvar|φ<sub>k</sub>}}, maka ekspansi dari fungsi periodik {{math|1=''f'' (''t'')}} membentuk:
: <math> f(t) = \sum _{k=1}^\infty c_k \varphi_k(t). </math>
Sebagai contoh, fungsi dari [[gelombang persegi]] dapat ditulis sebagai [[deret Fourier]]
Baris 561:
* {{citation |last1=Nielsen |first1=Kaj L. |title=Logarithmic and Trigonometric Tables to Five Places |edition=2nd |location=New York|publisher=[[Barnes & Noble]] |date=1966 |lccn=61-9103}}
* O'Connor, J. J., and E. F. Robertson, [https://web.archive.org/web/20130120084848/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Trigonometric_functions.html "Trigonometric functions"], ''[[MacTutor History of Mathematics archive]]''. (1996).
* O'Connor, J. J., and E. F. Robertson, [http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Madhava.html "Madhava of Sangamagramma"] {{Webarchive|url=https://web.archive.org/web/20060226001644/http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Madhava.html |date=2006-02-26 }}, ''[[MacTutor History of Mathematics archive]]''. (2000).
* Pearce, Ian G., [http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch9_3.html "Madhava of Sangamagramma"] {{Webarchive|url=https://web.archive.org/web/20060505201342/http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch9_3.html |date=2006-05-05 }}, ''[[MacTutor History of Mathematics archive]]''. (2002).
* {{ citation | last1 = Protter | first1 = Murray H. | last2 = Morrey | first2 = Charles B., Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}
* Weisstein, Eric W., [http://mathworld.wolfram.com/Tangent.html "Tangent"] {{Webarchive|url=https://web.archive.org/web/20060719202529/http://mathworld.wolfram.com/Tangent.html |date=2006-07-19 }} from ''[[MathWorld]]'', diakses pada tanggal 21 Januari 2006.
{{refend}}
{{div col end}}
|