Bakteri: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Save
Tag: halaman dengan galat kutipan Suntingan perangkat seluler Suntingan peramban seluler
Mitgatvm Bot (bicara | kontrib)
k →‎top: migrasi
 
(17 revisi perantara oleh 14 pengguna tidak ditampilkan)
Baris 1:
{{Automatic taxobox
{{Taxobox
| name = Bakteri
| color = {{https://www.google.com+Search+Snap"s"Client=ms+comandroid+android+bbroweser+&gbv+=1-9+Sites+to+URL&DuGun&Oq&Aui&aqs+online+on+in+Shows+URL=WebDuckDuckgo.com
| image = E. coli Bacteria (7316101966).jpg
| image_caption = [[Mikroskop pemindai elektron|Mikrograf pemindai elektron]] [[basilus]] ''[[Escherichia coli]]''
| taxon = Bacteria
| authority = (Woese dkk., 1990)<ref name="Woese">{{Cite journal|last=Woese|first=C.R.|last2=Kandler|first2=O.|last3=Wheelis|first3=M.L.|date=1 Juni 1990|title=Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.|url=http://www.pnas.org/cgi/doi/10.1073/pnas.87.12.4576|journal=Proceedings of the National Academy of Sciences|language=|volume=87|issue=12|pages=4576–4579|doi=10.1073/pnas.87.12.4576|issn=0027-8424|pmc=PMC54159|pmid=2112744}}</ref>
| subdivision_ranks = Filum
| subdivision = {{plainlist|
* [[Acidobacteria]]
* [[Actinobacteria]]
* [[Aquificae]]
* [[Armatimonadetes]]
* [[Bacteroidetes]]
* [[Caldiserica]]
* [[Chlamydiae]]
* [[Chlorobi]]
* [[Chloroflexi (phylum)|Chloroflexi]]
* [[Chrysiogenetes]]
* [[Coprothermobacterota]]<ref>{{Cite journal|last=Pavan|first=María Elisa|last2=Pavan|first2=Esteban E.|last3=Glaeser|first3=Stefanie P.|last4=Etchebehere|first4=Claudia|last5=Kämpfer|first5=Peter|last6=Pettinari|first6=María Julia|last7=López|first7=Nancy I.|date=1 Mei 2018|title=Proposal for a new classification of a deep branching bacterial phylogenetic lineage: transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., Coprothermobacteria classis nov. and Coprothermobacterota phyl. nov. and emended description of the family Thermodesulfobiaceae|url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002720|journal=International Journal of Systematic and Evolutionary Microbiology|language=|volume=68|issue=5|pages=1627–1632|doi=10.1099/ijsem.0.002720|issn=1466-5026|access-date=2021-05-24|archive-date=2021-05-24|archive-url=https://web.archive.org/web/20210524220108/https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002720|dead-url=no}}</ref>
* [[Cyanobacteria]]
* [[Deferribacteres]]
* [[Deinococcus-Thermus]]
* [[Dictyoglomi]]
* [[Elusimicrobia]]
* [[Fibrobacteres]]
* [[Firmicutes]]
* [[Fusobacteria]]
* [[Gemmatimonadetes]]
* [[Lentisphaerae]]
* [[Nitrospirae]]
* [[Planctomycetes]]
* [[Proteobacteria]]
* [[Spirochaetes]]
* [[Synergistetes]]
* [[Tenericutes]]
* [[Thermodesulfobacteria]]
* [[Thermotogae]]
* [[Verrucomicrobia]]}}
| synonyms = Eubacteria <small>(Woese & Fox, 1977)</small><ref name=Woese1977>{{Cite journal|last=Woese|first=C.R.|last2=Fox|first2=G.E.|date=1 November 1977|title=Phylogenetic structure of the prokaryotic domain: The primary kingdoms|url=http://www.pnas.org/cgi/doi/10.1073/pnas.74.11.5088|journal=Proceedings of the National Academy of Sciences|language=|volume=74|issue=11|pages=5088–5090|doi=10.1073/pnas.74.11.5088|issn=0027-8424|pmc=PMC432104|pmid=270744|access-date=2021-05-24|archive-date=2020-06-09|archive-url=https://web.archive.org/web/20200609233450/https://dx.doi.org/cgi/doi/10.1073/pnas.74.11.5088|dead-url=yes}}</ref>
| color={{Taxobox/colour|[[Bacteria]]}}
| image_width=210px
| fossil_range={{Long fossil range|4200|0|[[Arkean]] atau sebelumnya&nbsp;– saat ini}}
| <!-- cleanup -->=yes
}}
'''Bakteri''' ([[nama ilmiah]]: '''Bacteria''') adalah kelompok [[mikroorganisme]] [[Organisme uniseluler|bersel satu]] yang diklasifikasikan pada tingkat [[domain (biologi)|domain]]. Bersama dengan domain [[Arkea]], bakteri digolongkan sebagai [[prokariota]]<ref>{{Cite book|last=Parker|first=Sybil, P|date=1984|title=McGraw-Hill Dictionary of Biology|publisher=McGraw-Hill Company|url-status=live}}</ref>. Sel bakteri memiliki bentuk tertentu, misalnya menyerupai [[Kokus|bola]], [[Basilus|batang]], atau [[Bakteri spiral|spiral]], yang biasanya berukuran beberapa [[Mikrometer (satuan)|mikrometer]]. Bakteri merupakan salah satu [[Bentuk kehidupan paling awal yang diketahui|bentuk kehidupan pertama]] yang muncul dan saat ini menghuni sebagian besar habitat di Bumi. Bakteri dapat hidup di tanah, air, [[mata air panas]] yang asam, [[limbah radioaktif]], hingga [[kerak Bumi]]. Bakteri juga menjalin hubungan [[simbiosis]] dengan tumbuhan dan hewan. Sebagian besar bakteri belum diketahui karakternya, dan hanya sekitar 27 persen [[filum]] bakteri yang memiliki spesies yang dapat [[Kultur mikrobiologi|ditumbuhkan]] di laboratorium. Studi tentang bakteri disebut [[bakteriologi]], salah satu cabang [[mikrobiologi]].
 
Hampir semua hewan bergantung pada bakteri agar mereka dapat bertahan hidup karena hanya bakteri dan sejumlah arkea yang memiliki [[gen]] dan [[enzim]] yang diperlukan untuk menyintesis [[Vitamin B12|vitamin B<sub>12</sub>]]. Vitamin ini diperoleh hewan melalui rantai makanan atau dihasilkan oleh mikroorganisme yang hidup dalam sistem pencernaan mereka. Terdapat sekitar 40 juta sel bakteri dalam satu gram tanah dan satu juta sel bakteri dalam satu mililiter air tawar. Secara keseluruhan, ada sekitar 4–6 x 10<sup>30</sup> bakteri dan arkea di Bumi, yang membentuk [[Biomassa (ekologi)|biomassa]] yang hanya dilampaui oleh tumbuhan. Bakteri sangat berperan dalam [[siklus nutrisi]], misalnya dalam proses [[pengikatan nitrogen]] dari atmosfer dan [[dekomposisi]] mayat. Pada [[komunitas]] organisme di sekitar [[ventilasi hidrotermal]] dan [[ventilasi dingin]], bakteri [[ekstremofil]] menyediakan nutrisi yang dibutuhkan untuk menopang kehidupan dengan mengubah senyawa terlarut, seperti [[hidrogen sulfida]] dan [[metana]], menjadi energi.
 
Pada manusia dan sebagian besar hewan, bakteri paling banyak berada di saluran pencernaan. Kulit juga dihuni bakteri dalam jumlah besar. Mayoritas bakteri dalam tubuh tidak berbahaya karena tubuh dilindungi [[sistem imun]]. Di samping itu, banyak bakteri yang bermanfaat, terutama sebagai [[flora usus]]. Namun, beberapa spesies bakteri bersifat [[patogen]]ik dan menyebabkan [[penyakit menular]], antara lain [[kolera]], [[sifilis]], [[gonore]], [[antraks]], [[Penyakit Hansen|kusta]], dan [[pes]]. Penyakit bakterial mematikan yang paling banyak ditemukan adalah [[infeksi saluran pernapasan]]. [[Tuberkulosis]] membunuh sekitar dua juta orang per tahun, yang kebanyakan terjadi di [[Afrika Sub-Sahara]]. [[Antibiotik]] digunakan untuk mengobati infeksi bakteri dan juga digunakan dalam pertanian, yang membuat [[resistansi antibiotik]] menjadi masalah yang terus berkembang. Di bidang perindustrian, bakteri berperan penting dalam [[pengolahan limbah]] dan penguraian [[tumpahan minyak]], produksi keju dan [[yoghurt]] melalui [[fermentasi]], pemurnian emas, [[paladium]], tembaga, dan logam lainnya pada sektor pertambangan, serta dalam [[bioteknologi]] seperti pembuatan antibiotik dan bahan kimia lainnya.
 
== Sejarah penemuan ==
Baris 78 ⟶ 125:
Endospora tidak menunjukkan tanda-tanda metabolisme dan dapat bertahan dari tekanan fisik dan kimia, seperti [[sinar ultraungu]], [[Sinar gama|radiasi gama]], [[detergen]], [[disinfektan]], panas, pembekuan, tekanan, dan pengeringan, dalam tingkatan yang ekstrem.<ref>{{Cite journal|last=Nicholson|first=Wayne L.|last2=Fajardo-Cavazos|first2=Patricia|last3=Rebeil|first3=Roberto|last4=Slieman|first4=Tony A.|last5=Riesenman|first5=Paul J.|last6=Law|first6=Jocelyn F.|last7=Xue|first7=Yaming|date=2002|title=Bacterial endospores and their significance in stress resistance|url=http://link.springer.com/10.1023/A:1020561122764|journal=Antonie van Leeuwenhoek|volume=81|issue=1/4|pages=27–32|doi=10.1023/A:1020561122764}}</ref> Dalam keadaan yang tidak aktif ini, suatu organisme dapat tetap hidup selama jutaan tahun,<ref>{{Cite journal|last=Vreeland|first=Russell H.|last2=Rosenzweig|first2=William D.|last3=Powers|first3=Dennis W.|date=Oktober 2000|title=Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal|url=http://www.nature.com/articles/35038060|journal=Nature|language=|volume=407|issue=6806|pages=897–900|doi=10.1038/35038060|issn=0028-0836|access-date=2021-05-23|archive-date=2021-06-05|archive-url=https://web.archive.org/web/20210605063537/https://www.nature.com/articles/35038060|dead-url=no}}</ref><ref>{{Cite journal|last=Cano|first=R.|last2=Borucki|first2=M.|date=19 Mei 1995|title=Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber|url=https://www.sciencemag.org/lookup/doi/10.1126/science.7538699|journal=Science|language=|volume=268|issue=5213|pages=1060–1064|doi=10.1126/science.7538699|issn=0036-8075}}</ref> dan endospora bahkan memungkinkan bakteri bertahan hidup pada kondisi [[hampa udara]] dan radiasi di ruang angkasa sehingga mungkin bakteri dapat didistribusikan ke seluruh [[Alam semesta]] melalui [[debu kosmik]], [[meteoroid]], [[asteroid]], [[komet]], [[planetoid]], atau melalui [[panspermia terarah]].<ref>{{Cite journal|last=Nicholson|first=Wayne L.|last2=Schuerger|first2=Andrew C.|last3=Setlow|first3=Peter|date=1 April 2005|title=The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight|url=https://linkinghub.elsevier.com/retrieve/pii/S0027510704004981|journal=Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis|language=|volume=571|issue=1-2|pages=249–264|doi=10.1016/j.mrfmmm.2004.10.012|access-date=2021-05-23|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308084657/https://linkinghub.elsevier.com/retrieve/pii/S0027510704004981|dead-url=no}}</ref> Bakteri pembentuk endospora juga dapat menyebabkan penyakit. Sebagai contoh, [[antraks]] dapat ditularkan dengan menghirup endospora ''[[Bacillus anthracis]]'', sementara luka-tusuk dalam yang terkontaminasi endospora ''[[Clostridium tetani]]'' dapat menyebabkan [[tetanus]].<ref>{{Cite journal|last=Hatheway|first=C L|date=Januari 1990|title=Toxigenic clostridia|url=http://cmr.asm.org/lookup/doi/10.1128/CMR.3.1.66|journal=Clinical Microbiology Reviews|language=|volume=3|issue=1|pages=66–98|doi=10.1128/CMR.3.1.66|issn=0893-8512|pmc=PMC358141|pmid=2404569}}</ref> Selain itu, endospora ''[[Clostridium botulinum]]'' membuatnya terlindung dari suhu dan tekanan tinggi pada pemrosesan makanan kaleng sehingga dapat mengakibatkan [[Keracunan makanan|keracunan]] saat dikonsumsi.<ref>{{Cite journal|last=Margosch|first=Dirk|last2=Ehrmann|first2=Matthias A.|last3=Buckow|first3=Roman|last4=Heinz|first4=Volker|last5=Vogel|first5=Rudi F.|last6=Ganzle|first6=Michael G.|date=Mei 2006|title=High-Pressure-Mediated Survival of Clostridium botulinum and Bacillus amyloliquefaciens Endospores at High Temperature|url=https://aem.asm.org/content/72/5/3476|journal=Applied and Environmental Microbiology|language=|volume=72|issue=5|pages=3476–3481|doi=10.1128/AEM.72.5.3476-3481.2006|issn=0099-2240|pmc=PMC1472378|pmid=16672493|access-date=2021-05-23|archive-date=2021-05-23|archive-url=https://web.archive.org/web/20210523050522/https://aem.asm.org/content/72/5/3476|dead-url=no}}</ref>
 
== Metabolisme ==
==
Bakteri menunjukkan tipe [[metabolisme]] yang sangat beragam.<ref>{{Cite journal|last=Nealson|first=Kenneth H.|date=1999|title=Post-Viking Microbiology: New Approaches, New Data, New Insights|url=http://link.springer.com/10.1023/A:1006515817767|journal=Origins of Life and Evolution of the Biosphere|volume=29|issue=1|pages=73–93|doi=10.1023/A:1006515817767}}</ref> Perbedaan sifat metabolik dalam suatu kelompok bakteri awalnya digunakan untuk menentukan [[Taksonomi (biologi)|taksonomi]] mereka, tetapi sifat-sifat ini sering kali tidak selaras dengan klasifikasi modern berbasis genetik.<ref>{{Cite journal|last=Xu|first=Jianping|date=8 Maret 2006|title=Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances|url=http://doi.wiley.com/10.1111/j.1365-294X.2006.02882.x|journal=Molecular Ecology|language=|volume=15|issue=7|pages=1713–1731|doi=10.1111/j.1365-294X.2006.02882.x}}</ref> Metabolisme bakteri dibagi menjadi beberapa [[kelompok nutrisi]] berdasarkan tiga kriteria utama: sumber [[energi]], [[donor elektron]] yang digunakan, dan sumber [[karbon]] yang digunakan untuk pertumbuhan.<ref>{{Cite journal|last=Zillig|first=Wolfram|date=Desember 1991|title=Comparative biochemistry of Archaea and Bacteria|url=https://linkinghub.elsevier.com/retrieve/pii/S0959437X05802060|journal=Current Opinion in Genetics & Development|language=|volume=1|issue=4|pages=544–551|doi=10.1016/S0959-437X(05)80206-0|access-date=2021-05-24|archive-date=2021-04-04|archive-url=https://web.archive.org/web/20210404124403/https://linkinghub.elsevier.com/retrieve/pii/S0959437X05802060|dead-url=no}}</ref>
 
[[Berkas:Troph flowchart.svg|jmpl|kiri|Diagram alir untuk mengelompokkan mikrob berdasarkan karakteristik metabolismenya]]
Bakteri memperoleh energi dengan salah satu dari dua cara: berfotosintesis untuk mengubah energi dari cahaya (mereka disebut [[fototrof]]) atau dengan memecah senyawa kimia menggunakan [[oksidasi]] (disebut [[Kemotropisme|kemotrof]]).<ref name=":1">{{Cite book|last=Slonczewski|first=Joan L.|last2=Foster|first2=John W.|date=2013|url=https://www.worldcat.org/oclc/956340090|title=Microbiology: An Evolving Science|location=|publisher=W.W. Norton & Company|isbn=0-393-12368-5|pages=491|oclc=956340090|url-status=live|Edisi=3}}</ref> Bakteri kemotrof menggunakan senyawa kimia sebagai sumber energi dengan mentransfer elektron dari [[Donor elektron|donor]] ke [[Akseptor elektron|akseptor terminal]] dalam reaksi [[redoks]]. Reaksi ini melepaskan energi yang dapat digunakan untuk bermetabolisme. Kemotrof selanjutnya dibagi berdasarkan jenis senyawa yang mereka gunakan untuk mentransfer elektron. Bakteri yang menggunakan [[senyawa anorganik]] seperti hidrogen, [[karbon monoksida]], atau [[amonia]] sebagai sumber elektron disebut [[litotrof]], sedangkan yang menggunakan [[senyawa organik]] disebut [[organotrof]]. Senyawa yang digunakan untuk menerima elektron juga digunakan untuk mengklasifikasikan bakteri: organisme [[Bakteri Aerob|aerob]] menggunakan [[oksigen]] sebagai akseptor elektron terminal, sedangkan organisme [[Bakteri anaerob|anaerob]] menggunakan senyawa lain seperti [[nitrat]], [[sulfat]], atau [[karbon dioksida]].<ref name=":1" />
 
Banyak bakteri mendapatkan karbon untuk selnya dari karbon organik lain; mereka disebut [[heterotrof]]. Bakteri lainnya seperti sianobakteri dan beberapa [[bakteri ungu]] merupakan [[autotrof]], artinya mereka memperoleh karbon dengan [[Fiksasi karbon|memfiksasi]] karbon dioksida.<ref>{{Cite journal|last=Hellingwerf|first=K. J.|last2=Crielaard|first2=W.|last3=Hoff|first3=W. D.|last4=Matthijs|first4=H. C. P.|last5=Mur|first5=L. R.|last6=van Rotterdam|first6=B. J.|date=Desember 1994|title=Photobiology of Bacteria|url=http://link.springer.com/10.1007/BF00872217|journal=Antonie van Leeuwenhoek|language=|volume=65|issue=4|pages=331–347|doi=10.1007/BF00872217|issn=0003-6072}}</ref> Dalam situasi tertentu, gas [[metana]] dapat digunakan oleh bakteri [[metanotrof]] sebagai sumber elektron dan sebagai [[Substrat (kimia)|substrat]] untuk [[anabolisme]] karbon.<ref>{{Cite journal|last=Dalton|first=Howard|date=29 Juni 2005|title=The Leeuwenhoek Lecture 2000 The natural and unnatural history of methane-oxidizing bacteria|url=https://royalsocietypublishing.org/doi/10.1098/rstb.2005.1657|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|language=|volume=360|issue=1458|pages=1207–1222|doi=10.1098/rstb.2005.1657|issn=0962-8436|pmc=PMC1569495|pmid=16147517|access-date=2021-05-24|archive-date=2021-03-18|archive-url=https://web.archive.org/web/20210318020659/https://royalsocietypublishing.org/doi/10.1098/rstb.2005.1657|dead-url=no}}</ref>
 
{|class="wikitable" style="margin-left: auto; margin-right: auto;"
|+ Tipe nutrisi dalam metabolisme bakteri
|-
!Tipe nutrisi
!TipOS&Aui&&IM&Photos-sbap+networks+AutomatecWellcom+to+Telefones>
!Sumber energi
!Sumber karbon
!Contoh
|-
|[[Fototrof]]
| Cahaya matahari
| Senyawa organik (fotoheterotrof) atau fiksasi karbon (fotoautotrof)
|[[Sianobakteri]], [[bakteri belerang hijau]], [[Chloroflexi]], dan [[bakteri ungu]]
|-
|[[Litotrof]]
| Senyawa anorganik
| Senyawa organik (litoheterotrof) atau fiksasi karbon (litoautotrof)
|[[Thermodesulfobacteriaceae]], [[Hydrogenophilaceae]], dan [[Nitrospiraceae]]
|-
|[[Organotrof]]
| Senyawa organik
| Senyawa organik (kemoheterotrof) atau fiksasi karbon (kemoautotrof)
|''[[Bacillus]]'', ''[[Clostridium]]'', dan [[Enterobacteriaceae]]
|}
 
Dalam banyak hal, metabolisme bakteri memberi manfaat bagi stabilitas ekologi dan kehidupan manusia. Sebagai contoh, beberapa bakteri mampu [[Pengikatan nitrogen|memfiksasi gas nitrogen]] menggunakan enzim [[nitrogenase]]. Sifat ini penting bagi lingkungan dan dapat ditemukan pada sebagian besar tipe metabolisme bakteri yang disebutkan di atas,<ref>{{Cite journal|last=Zehr|first=Jonathan P.|last2=Jenkins|first2=Bethany D.|last3=Short|first3=Steven M.|last4=Steward|first4=Grieg F.|date=Juli 2003|title=Nitrogenase gene diversity and microbial community structure: a cross-system comparison|url=http://doi.wiley.com/10.1046/j.1462-2920.2003.00451.x|journal=Environmental Microbiology|language=|volume=5|issue=7|pages=539–554|doi=10.1046/j.1462-2920.2003.00451.x|issn=1462-2912}}</ref> yang mengarah pada proses [[denitrifikasi]], reduksi sulfat, dan [[asetogenesis]], yang semuanya penting secara ekologis.<ref>{{Cite journal|last=Zumft|first=W G|date=1997|title=Cell biology and molecular basis of denitrification.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232623/|journal=Microbiology and molecular biology reviews|language=|volume=61|issue=4|pages=533–616|doi=10.1128/61.4.533-616.1997|issn=1092-2172|access-date=2021-05-24|archive-date=2021-05-25|archive-url=https://web.archive.org/web/20210525174517/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232623/|dead-url=no}}</ref><ref>{{Cite journal|last=Drake|first=Harold L.|last2=Daniel|first2=Steven L.|last3=Küsel|first3=Kirsten|last4=Matthies|first4=Carola|last5=Kuhner|first5=Carla|last6=Braus-Stromeyer|first6=Susanna|date=1997|title=Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?|url=http://doi.wiley.com/10.1002/biof.5520060103|journal=BioFactors|language=|volume=6|issue=1|pages=13–24|doi=10.1002/biof.5520060103}}</ref> Proses metabolisme bakteri juga berperan penting dalam [[pencemaran]]; misalnya, [[Mikroorganisme reduktor sulfat|bakteri pereduksi sulfat]] sangat bertanggung jawab atas produksi bentuk [[merkuri]] yang sangat beracun ([[Metil merkuri|metilmerkuri]] dan [[dimetilmerkuri]]) di lingkungan.<ref>{{Cite journal|last=Morel|first=François M. M.|last2=Kraepiel|first2=Anne M. L.|last3=Amyot|first3=Marc|date=November 1998|title=The Chemical Cycle and Bioaccumulation of Mercury|url=http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.29.1.543|journal=Annual Review of Ecology and Systematics|language=|volume=29|issue=1|pages=543–566|doi=10.1146/annurev.ecolsys.29.1.543|issn=0066-4162|access-date=2021-05-24|archive-date=2021-05-25|archive-url=https://web.archive.org/web/20210525181251/http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.29.1.543|dead-url=no}}</ref> Bakteri anaerob nonrespiratori menggunakan fermentasi untuk menghasilkan energi dan mengurangi daya, serta mengeluarkan produk sampingan metabolik (seperti [[etanol]] dalam pembuatan bir) sebagai limbah. Bakteri [[Organisme anaerobik fakultatif|anaerob fakultatif]] dapat beralih antara fermentasi dan beberapa bentuk akseptor elektron terminal yang berbeda, tergantung pada kondisi lingkungan tempat mereka berada.<ref>{{Cite journal|last=Ślesak|first=Ireneusz|last2=Kula|first2=Monika|last3=Ślesak|first3=Halina|last4=Miszalski|first4=Zbigniew|last5=Strzałka|first5=Kazimierz|date=Agustus 2019|title=How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth|url=https://linkinghub.elsevier.com/retrieve/pii/S0891584918324614|journal=Free Radical Biology and Medicine|language=|volume=140|pages=61–73|doi=10.1016/j.freeradbiomed.2019.03.004|access-date=2021-05-24|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308015624/https://linkinghub.elsevier.com/retrieve/pii/S0891584918324614|dead-url=no}}</ref>
 
== Habitat ==
Baris 102 ⟶ 179:
 
Pada umumnya bakteri memerlukan [[kelembaban relatif]] yang cukup tinggi, kira-kira 85%.<ref name="brock40">{{cite book|author=Madigan MT|year=2009|title=Brock Biology of Microorganisms Twelfth Edition|publisher=Pearson Benjammin Cummings|coauthors=Martinko JM, Dunlap PV, Clark DP}}</ref> Kelembaban relatif dapat didefinisikan sebagai kandungan air yang terdapat di udara.<ref name="brock40" /> Pengurangan kadar air dari [[protoplasma]] menyebabkan kegiatan [[metabolisme]] terhenti, misalnya pada proses pembekuan dan pengeringan.<ref name="brock40" /> Sebagai contoh, bakteri ''[[Escherichia coli]]'' akan mengalami penurunan daya tahan dan elastisitas dinding selnya saat RH lingkungan kurang dari 84%.<ref name="Nikiyan">Nikiyan H, Vasilchencko A, Deryabin D. 2010. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope. ''Int J Microbiol''. Vol 2010. doi:10.1155/2010/704170.</ref> Bakteri gram positif cenderung hidup pada kelembaban udara yang lebih tinggi dibandingkan dengan bakteri gram negatif terkait dengan perubahan struktur membran selnya yang mengandung [[lipid]] bilayer.<ref name="Maier">{{cite book|author=Maier RM, Pepper IL, Gerba CP|year=2009|url=https://archive.org/details/environmentalmic0000unse_i4r2|title=Environmental Microbiology, 2nd Edition|publisher=Elsevier|isbn=978-0-12-370519-8|page=[https://archive.org/details/environmentalmic0000unse_i4r2/page/91 91]}}</ref>
[[Berkas:Deinococcus radiodurans.jpg|jmpl|ka|160px|''[[Deinococcus radiodurans]]'', hasil pencitraan dengan '[[transmission electron micrograghmicrograph]]'' (TEM)'']][[Cahaya]] merupakan salah satu faktor yang mempengaruhi pertumbuhan bakteri.<ref name="Caldwell">Caldwell A. 2011. The Effects of Ultraviolet Light on Bacterial Growth. http://www.ehow.com/facts_5871403_effects-ultraviolet-light-bacterial-growth.html {{Webarchive|url=https://web.archive.org/web/20120215024557/http://www.ehow.com/facts_5871403_effects-ultraviolet-light-bacterial-growth.html |date=2012-02-15 }}. Diakses pada 24 Juni 2011.</ref> Secara umum, bakteri dan mikroorganisme lainnya dapat hidup dengan baik pada paparan cahaya normal.<ref name="Caldwell" /> Akan tetapi, paparan cahaya dengan intensitas [[sinar ultraviolet]] (UV) tinggi dapat berakibat fatal bagi pertumbuhan bakteri.<ref name="Caldwell" /> Teknik penggunaan sinar UV, [[sinar x]], dan [[sinar gamma]] untuk mensterilkan suatu lingkungan dari bakteri dan mikroorganisme lainnya dikenal dengan teknik [[iradiasi]] yang mulai berkembang sejak awal abad ke-20.<ref name="Caldwell" /><ref name="Todar">{{cite web|last=Todar|first=Kenneth Gregory|title=Todar's Online Textbook of Bacteriology|url=http://textbookofbacteriology.net/|access-date=2021-05-29|archive-date=2019-12-09|archive-url=https://web.archive.org/web/20191209234447/http://www.textbookofbacteriology.net/|dead-url=no}}</ref> Metode ini telah diaplikasikan secara luas untuk berbagai keperluan, terutama pada sterilisasi makanan untuk meningkatkan masa simpan dan daya tahan.<ref name="Todar" /> Beberapa contoh bakteri patogen yang mampu dihambat ataupun dihilangkan antara lain ''Escherichia coli'' 0157:H7 dan ''[[Salmonella]]''.<ref name="Todar" />
 
[[Radiasi]] pada kekuatan tertentu dapat menyebabkan kelainan dan bahkan dapat bersifat letal bagi [[makhluk hidup]], terutama bakteri.<ref name="rad1">Shrieve DC, Loeffler JS. 2010. ''Human Radiation Injury''. Halaman 105. Philadelphia: Lippincott Williams & Wilkins. ISBN 978-1-60547-011-5</ref> Sebagai contoh pada [[manusia]], radiasi dapat menyebabkan penyakit [[hati]] akut, [[katarak]], [[hipertensi]], dan bahkan [[kanker]].<ref name="rad1" /> Akan tetapi, terdapat kelompok bakteri tertentu yang mampu bertahan dari paparan radiasi yang sangat tinggi, bahkan ratusan kali lebih besar dari daya tahan manusia tehadap radiasi, yaitu kelompok ''[[Deinococcaceae]]''.<ref name="rad3">Mattimore V, Battista JR. 1995. Radioresistance of Deinococcus radiodurans: Functions Necessary To Survive Ionizing Radiation Are Also Necessary To Survive Prolonged Desiccation. ''J Bacteriol'' 178(3): 633-637.</ref> Sebagai perbandingan, manusia pada umumnya tidak dapat bertahan pada paparan radiasi lebih dari 10 [[Gray]] (Gy, 1 Gy = 100 rad), sedangkan bakteri yang termasuk dalam kelompok ini dapat bertahan hingga 5.000 Gy.<ref name="rad3" /><ref name="brock1">{{cite book|author=Madigan MT|year=2009|title=Brock Biology of Microorganisms Twelfth Edition|publisher=Pearson Benjammin Cummings|pages=480-481|coauthors=Martinko JM, Dunlap PV, Clark DP}}</ref>
Baris 139 ⟶ 216:
[[Berkas:Dvulgaris_micrograph.JPG|jmpl|Mikrograf mikroskop transmisi elektron dari ''[[Desulfovibrio vulgaris]]'' yang menampilkan flagela tunggal di salah satu ujung sel bakteri. Panjang garis skala yaitu 0,5 mikrometer.]]
Banyak bakteri bersifat [[Motilitas|motil]] (dapat bergerak sendiri) dengan menggunakan berbagai mekanisme. Alat gerak yang paling dipelajari dengan baik adalah [[flagela]], filamen panjang menyerupai cambuk yang pangkalnya menempel pada rotor yang berputar untuk menghasilkan gerakan seperti baling-baling.<ref name=":3">{{Cite journal|last=Bardy|first=Sonia L.|last2=Ng|first2=Sandy Y. M.|last3=Jarrell|first3=Ken F.|date=1 Februari 2003|title=Prokaryotic motility structures|url=https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.25948-0|journal=Microbiology|language=|volume=149|issue=2|pages=295–304|doi=10.1099/mic.0.25948-0|issn=1350-0872|access-date=2021-05-25|archive-date=2022-10-15|archive-url=https://web.archive.org/web/20221015111309/https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.25948-0|dead-url=no}}</ref> Arah putaran flagela bersifat reversibel, yang menggunakan [[gradien elektrokimia]] lintas membran untuk menciptakan daya.<ref>{{Cite journal|last=Macnab|first=Robert M.|date=1 Desember 1999|title=The Bacterial Flagellum: Reversible Rotary Propellor and Type III Export Apparatus|url=https://jb.asm.org/content/181/23/7149|journal=Journal of Bacteriology|language=|volume=181|issue=23|pages=7149–7153|doi=10.1128/JB.181.23.7149-7153.1999|issn=1098-5530|access-date=2021-05-25|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308063753/https://jb.asm.org/content/181/23/7149|dead-url=no}}</ref>
[[Berkas:Flagella.pngsvg|jmpl|Beragam susunan flagela bakteri: A-Monotrik; B-Lofotrik; C-Amfitrik; D-Peritrik]]
Spesies bakteri yang berbeda memiliki jumlah dan susunan flagela yang berbeda. Ada spesies yang mempunyai flagela tunggal (disebut bakteri monotrik), ada juga yang memiliki flagela di setiap ujungnya (amfitrik), memiliki kelompok flagela di kutub sel (lofotrik), atau flagela yang terdistribusi di seluruh permukaan sel (peritrik). Flagela pada [[spiroket]] ditemukan di tempat yang unik, yaitu antara dua membran di ruang periplasmik. Kelompok bakteri ini memiliki tubuh [[heliks]] khas yang ikut berputar saat mereka bergerak.<ref name=":3" />
 
Baris 196 ⟶ 273:
=== Bidang lingkungan ===
{{main|Bakteri pengurai|Bakteri nitrifikasi|Bakteri denitrifikasi|Bakteri nitrogen}}
Keanekaragaman bakteri dan jalur metabolismenya menyebabkan bakteri memiliki peranan yang besar bagi lingkungan.<ref name="Todar"/> Sebagai contoh, bakteri [[saprofit]] menguraikan tumbuhan atau hewan yang telah mati dan sisa-sisa atau kotoran organisme.<ref name="Todar"/> Bakteri tersebut menguraikan [[protein]], [[karbohidrat]] dan senyawa [[Senyawa organik|organik]] lain menjadi CO<sub>2</sub>, gas amoniak, dan senyawa-senyawa lain yang lebih sederhana.<ref name="Todar"/> Contoh bakteri saprofit antara lain ''[[Proteus]]'' dan ''[[Clostridium]]''.<ref name="Todar"/> Tidak hanya berperan sebagai pengurai senyawa organik, beberapa kelompok bakteri saprofit juga merupakan [[patogen]] oportunis.<ref name="Todar"/>
 
[[Berkas:Frankia alni.jpg|jmpl|200px|ka|''[[Frankia alni]]'', salah satu bakteri pengikat N<sub>2</sub> yang berasosiasi dengan tanaman membentuk bintil akar.]]
Baris 265 ⟶ 342:
Penyakit busuk pangkal batang pada tanaman kedelai oleh ''Sclerotium rolsfii'' dapat menyebabkan rendahnya produksi kedelai. Penyakit ini sering ditemukan pada tanaman kedelai baik lahan kering, tadah hujan maupun pasang surut dengan intensitas serangan sebesar 5 - 55%. Tingkat serangan lebih dari 5% di lapang sudah dapat merugikan secara ekonomi.
<ref>{{Cite web |url=http://repository.ipb.ac.id/handle/123456789/53363 |title=Pengaruh Mulsa dan PGPR Terhadap Insidensi Penyakit Busuk Pangkal Batang (Sclerotium rolfsii Sacc.) pada Tanaman Kedelai (Glycine max (L) Merill) |access-date=2013-06-07 |archive-date=2016-06-16 |archive-url=https://web.archive.org/web/20160616232425/http://repository.ipb.ac.id/handle/123456789/53363 |dead-url=no }}</ref>
''Fusarium oxysporum'' f.sp. ''cubense'' (Foc) menyebabkan layu fusarium pada tanaman pisang. Infeksinya akan menganggumengganggu proses penyerapan, transportasi air dan zat makanan di dalam tanah, sehingga tanaman menjadi layu dan akhirnya mati.
<ref>{{Cite web |url=http://repository.ipb.ac.id/handle/123456789/1271 |title=Eksplorasi Agens Antagonis yang Berpotensi Menekan Penyakit Fusarium pada Pisang |access-date=2013-06-07 |archive-date=2016-06-16 |archive-url=https://web.archive.org/web/20160616225555/http://repository.ipb.ac.id/handle/123456789/1271 |dead-url=no }}</ref>
 
Baris 283 ⟶ 360:
 
Dekomposisi jasad makhluk hidup dimulai oleh bakteri yang hidup di dalam tubuh manusia, dimulai dari jaringan-jaringan otot.<ref name=stut/> Proses ini dipercepat saat tubuh telah dikuburkan. Reaksi pertama dalam dekomposisi ini adalah [[hidrolisis]] protein oleh [[protease]] membentuk [[asam amino]].<ref name=stut/> Selanjutnya, asam amino akan diubah menjadi [[asam asetat]], gas [[hidrogen]], gas [[nitrogen]], dan [[karbon dioksida]] sehingga pH lingkungan akan turun menjadi 4-5.<ref name=stut/> Reaksi ini dilakukan oleh bakteri ''[[acetogen]]''. Pada tahap akhir, semua senyawa tersebut diubah menjadi gas [[metana]] oleh ''[[metanogen]]''.<ref name=stut/>
 
=== Bidang penelitian ===
Karena tingkat pertumbuhannya yang cepat dan manipulasi yang relatif mudah, bakteri memainkan peran penting dalam bidang biologi molekuler, genetika, dan biokimia. Dengan memperkenalkan mutasi ke dalam DNA bakteri dan memeriksa perubahan fenotip yang dihasilkan, para ilmuwan dapat mengungkap fungsi gen, enzim, dan jalur metabolisme pada bakteri. Pengetahuan ini kemudian dapat diekstrapolasi ke organisme yang lebih rumit.
 
Tujuan akhir dari memahami biokimia seluler dicontohkan dengan pembuatan model matematika yang komprehensif untuk seluruh organisme, yang menggabungkan data ekstensif tentang kinetika enzim dan ekspresi gen. Dalam kasus bakteri yang dipelajari dengan baik, seperti ''Escherichia coli'', model-model ini saat ini sedang dalam pengembangan dan eksperimen.
 
Pemahaman mendalam tentang genetika dan metabolisme bakteri ini mendasari bidang bioteknologi, yang memungkinkan bioteknologi bakteri untuk memproduksi protein terapeutik seperti insulin, faktor pertumbuhan, dan antibodi.
 
== Referensi ==
Baris 291 ⟶ 375:
* {{cite book|author=Alcamo IE|title=Fundamentals of microbiology|url=https://archive.org/details/isbn_9790763710674|publisher=Jones and Bartlett|location=Boston|year=2001|pages=|isbn=0-7637-1067-9}}
* {{cite book|author=Atlas RM|title=Principles of microbiology|url=https://archive.org/details/principlesofmicr0000atla_l1q7|publisher=Mosby|location=St. Louis|year=1995|pages=|isbn=0-8016-7790-4}}
* {{cite book|author=Holt JC, Bergey DH|title=Bergey's manual of determinative bacteriology|url=https://archive.org/details/bergeysmanualofd0000unse_l7d4|edition = 9th ed.|publisher=Williams & Wilkins|location=Baltimore|year=1994|pages=|isbn=0-683-00603-7}}
* {{Cite book|last=Madigan|first=Michael T.|last1=Martinko|first1=John M.| last2=Bender|first2=Kelly S.| last3=Buckley|first3=Daniel Hezekiah| last4=Stahl|first4=David Allan|date=2015|url=https://www.worldcat.org/oclc/857863493|title=Brock Biology of Microorganisms|location=Boston|publisher=Pearson|isbn=978-0-321-89739-8|edition=14|oclc=857863493|ref={{sfnref|Madigan dkk.|2015}}}}
* {{Cite book|last=Tortora|first=Gerard J.|last2=Funke|first2=Berdell L.|last3=Case|first3=Christine L.|date=2010|url=https://www.google.co.id/books/edition/Microbiology/wUkqAQAAMAAJ|title=Microbiology: An Introduction|location=San Francisco, CA|publisher=Pearson Benjamin Cummings|edition=10|ref={{sfnref|Tortora dkk.|2010}}}}